Как пишется число гугл

A googol is the large number 10100. In decimal notation, it is written as the digit 1 followed by one hundred zeroes: 10,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000.

Etymology

The term was coined in 1920 by 9-year-old Milton Sirotta (1911–1981), nephew of U.S. mathematician Edward Kasner.[1] He may have been inspired by the contemporary comic strip character Barney Google.[2] Kasner popularized the concept in his 1940 book Mathematics and the Imagination.[3] Other names for this quantity include ten duotrigintillion on the short scale,[4] ten thousand sexdecillion on the long scale, or ten sexdecilliard on the Peletier long scale.

Size

A googol has no special significance in mathematics. However, it is useful when comparing with other very large quantities such as the number of subatomic particles in the visible universe or the number of hypothetical possibilities in a chess game. Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics. To give a sense of how big a googol really is, the mass of an electron, just under 10−30 kg, can be compared to the mass of the visible universe, estimated at between 1050 and 1060 kg.[5][original research?] It is a ratio in the order of about 1080 to 1090, or at most one ten-billionth of a googol (0.00000001% of a googol).

Another way of illustrating the immense size of a googol is to picture the Frontier supercomputer, which as of 2022 is the most powerful supercomputer in the world and measures 680 m2 (7,300 sq ft), almost exactly the same size of a basketball court with run-offs and sidelines.[6] The Frontier is capable of making 1,102,000 TFLOPs (1.1 quintillion calculations per second). Imagine if the supercomputer, which cost approximately US$600 million to build, was shrunk down to the size of an atom (for reference, a typical grain of sand might have 37 quintillion atoms).[7] If every atom in the observable universe (~1080 atoms total[8]) was as powerful as a Frontier supercomputer, it would take approximately 100 seconds of parallel computing to manually add up all the digits like an adding machine (instead of using shorthand calculations).

Carl Sagan pointed out that the total number of elementary particles in the universe is around 1080 (the Eddington number) and that if the whole universe were packed with neutrons so that there would be no empty space anywhere, there would be around 10128. He also noted the similarity of the second calculation to that of Archimedes in The Sand Reckoner. By Archimedes’s calculation, the universe of Aristarchus (roughly 2 light years in diameter), if fully packed with sand, would contain 1063 grains. If the much larger observable universe of today were filled with sand, it would still only equal 1095 grains. Another 100,000 observable universes filled with sand would be necessary to make a googol.[9]

The decay time for a supermassive black hole of roughly 1 galaxy-mass (1011 solar masses) due to Hawking radiation is on the order of 10100 years.[10] Therefore, the heat death of an expanding universe is lower-bounded to occur at least one googol years in the future.

A googol is considerably smaller than a centillion.[11]

Properties

A googol is approximately 70! (factorial of 70).[a] Using an integral, binary numeral system, one would need 333 bits to represent a googol, i.e., 1 googol = 2^{(100/mathrm{log}_{10}2)} ≈ 2332.19280949. However, a googol is well within the maximum bounds of an IEEE 754 double-precision floating point type, but without full precision in the mantissa.

Using modular arithmetic, the series of residues (mod n) of one googol, starting with mod 1, is as follows:

0, 0, 1, 0, 0, 4, 4, 0, 1, 0, 1, 4, 3, 4, 10, 0, 4, 10, 9, 0, 4, 12, 13, 16, 0, 16, 10, 4, 16, 10, 5, 0, 1, 4, 25, 28, 10, 28, 16, 0, 1, 4, 31, 12, 10, 36, 27, 16, 11, 0, … (sequence A066298 in the OEIS)

This sequence is the same as that of the residues (mod n) of a googolplex up until the 17th position.

Cultural impact

Widespread sounding of the word occurs through the name of the company Google, with the name «Google» being an accidental misspelling of «googol» by the company’s founders,[12] which was picked to signify that the search engine was intended to provide large quantities of information.[13] In 2004, family members of Kasner, who had inherited the right to his book, were considering suing Google for their use of the term «googol»;[14] however, no suit was ever filed.[15]

Since October 2009, Google has been assigning domain names to its servers under the domain «1e100.net», the scientific notation for 1 googol, in order to provide a single domain to identify servers across the Google network.[16][17]

The word is notable for being the subject of the £1 million question in a 2001 episode of the British quiz show Who Wants to Be a Millionaire?, when contestant Charles Ingram cheated his way through the show with the help of a confederate in the studio audience.[18]

See also

  • Googolplex
  • Graham’s number
  • Skewes’ number
  • Infinity
  • Names of large numbers

Notes

  1. ^ ≈1.1979×10100

References

  1. ^ Bialik, Carl (June 14, 2004). «There Could Be No Google Without Edward Kasner». The Wall Street Journal Online. Archived from the original on November 30, 2016. (retrieved March 17, 2015)
  2. ^ Ralph Keyes (2021). The Hidden History of Coined Words. Oxford University Press. p. 120. ISBN 978-0-19-046677-0. Extract of page 120
  3. ^ Kasner, Edward; Newman, James R. (1940). Mathematics and the Imagination. Simon and Schuster, New York. ISBN 0-486-41703-4. Archived from the original on 2014-07-03. The relevant passage about the googol and googolplex, attributing both of these names to Kasner’s nine-year-old nephew, is available in James R. Newman, ed. (2000) [1956]. The world of mathematics, volume 3. Mineola, New York: Dover Publications. pp. 2007–2010. ISBN 978-0-486-41151-4.
  4. ^ Bromham, Lindell (2016). An Introduction to Molecular Evolution and Phylogenetics (2nd ed.). New York, NY: Oxford University Press. p. 494. ISBN 978-0-19-873636-3. Retrieved April 15, 2022.
  5. ^ McPherson, Kristine (2006). Elert, Glenn (ed.). «Mass of the universe». The Physics Factbook. Retrieved 2019-08-24.
  6. ^ «Basketball Court Dimensions & Markings | Harrod Sport». www.harrodsport.com. Retrieved 2022-09-14.
  7. ^ Yongsheng, Zhong (2016-07-31). Chinese Classic Economics. Paths International. ISBN 978-1-84464-467-4.
  8. ^ Villanueva, John Carl (2009-07-31). «How Many Atoms Are There in the Universe?». Universe Today. Retrieved 2022-09-14.
  9. ^ Sagan, Carl (1981). Cosmos. Book Club Associates. pp. 220–221.
  10. ^ Page, Don N. (1976-01-15). «Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole». Physical Review D. American Physical Society (APS). 13 (2): 198–206. Bibcode:1976PhRvD..13..198P. doi:10.1103/physrevd.13.198. ISSN 0556-2821. See in particular equation (27).
  11. ^ Stewart, Ian (2017). Infinity: A Very Short Introduction. New York, NY: Oxford University Press. p. 20. ISBN 978-0-19-875523-4. Retrieved April 15, 2022.
  12. ^ Koller, David (January 2004). «Origin of the name «Google»«. Stanford University. Archived from the original on June 27, 2012. Retrieved July 4, 2012.
  13. ^ «Google! Beta website». Google, Inc. Archived from the original on February 21, 1999. Retrieved October 12, 2010.
  14. ^ «Have your Google people talk to my ‘googol’ people». Archived from the original on 2014-09-04.
  15. ^ Nowlan, Robert A. (2017). Masters of Mathematics: The Problems They Solved, Why These Are Important, and What You Should Know about Them. Rotterdam: Sense Publishers. p. 221. ISBN 978-9463008938.
  16. ^ Cade Metz (8 February 2010). «Google doppelgänger casts riddle over interwebs». The Register. Archived from the original on 3 March 2016. Retrieved 30 December 2015.
  17. ^ «What is 1e100.net?». Google Inc. Archived from the original on 9 January 2016. Retrieved 30 December 2015.
  18. ^ Falk, Quentin; Falk, Ben (2005), «A Code and a Cough: Who Wants to Be a Millionaire? (1998–)», Television’s Strangest Moments: Extraordinary But True Tales from the History of Television, Franz Steiner Verlag, pp. 245–246, ISBN 9781861058744.

External links

Look up googol in Wiktionary, the free dictionary.

  • Weisstein, Eric W. «Googol». MathWorld.
  • Googol at PlanetMath.
  • Padilla, Tony; Symonds, Ria. «Googol and Googolplex». Numberphile. Brady Haran. Archived from the original on 2014-03-29. Retrieved 2013-04-06.

A googol is the large number 10100. In decimal notation, it is written as the digit 1 followed by one hundred zeroes: 10,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000,​000.

Etymology

The term was coined in 1920 by 9-year-old Milton Sirotta (1911–1981), nephew of U.S. mathematician Edward Kasner.[1] He may have been inspired by the contemporary comic strip character Barney Google.[2] Kasner popularized the concept in his 1940 book Mathematics and the Imagination.[3] Other names for this quantity include ten duotrigintillion on the short scale,[4] ten thousand sexdecillion on the long scale, or ten sexdecilliard on the Peletier long scale.

Size

A googol has no special significance in mathematics. However, it is useful when comparing with other very large quantities such as the number of subatomic particles in the visible universe or the number of hypothetical possibilities in a chess game. Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics. To give a sense of how big a googol really is, the mass of an electron, just under 10−30 kg, can be compared to the mass of the visible universe, estimated at between 1050 and 1060 kg.[5][original research?] It is a ratio in the order of about 1080 to 1090, or at most one ten-billionth of a googol (0.00000001% of a googol).

Another way of illustrating the immense size of a googol is to picture the Frontier supercomputer, which as of 2022 is the most powerful supercomputer in the world and measures 680 m2 (7,300 sq ft), almost exactly the same size of a basketball court with run-offs and sidelines.[6] The Frontier is capable of making 1,102,000 TFLOPs (1.1 quintillion calculations per second). Imagine if the supercomputer, which cost approximately US$600 million to build, was shrunk down to the size of an atom (for reference, a typical grain of sand might have 37 quintillion atoms).[7] If every atom in the observable universe (~1080 atoms total[8]) was as powerful as a Frontier supercomputer, it would take approximately 100 seconds of parallel computing to manually add up all the digits like an adding machine (instead of using shorthand calculations).

Carl Sagan pointed out that the total number of elementary particles in the universe is around 1080 (the Eddington number) and that if the whole universe were packed with neutrons so that there would be no empty space anywhere, there would be around 10128. He also noted the similarity of the second calculation to that of Archimedes in The Sand Reckoner. By Archimedes’s calculation, the universe of Aristarchus (roughly 2 light years in diameter), if fully packed with sand, would contain 1063 grains. If the much larger observable universe of today were filled with sand, it would still only equal 1095 grains. Another 100,000 observable universes filled with sand would be necessary to make a googol.[9]

The decay time for a supermassive black hole of roughly 1 galaxy-mass (1011 solar masses) due to Hawking radiation is on the order of 10100 years.[10] Therefore, the heat death of an expanding universe is lower-bounded to occur at least one googol years in the future.

A googol is considerably smaller than a centillion.[11]

Properties

A googol is approximately 70! (factorial of 70).[a] Using an integral, binary numeral system, one would need 333 bits to represent a googol, i.e., 1 googol = 2^{(100/mathrm{log}_{10}2)} ≈ 2332.19280949. However, a googol is well within the maximum bounds of an IEEE 754 double-precision floating point type, but without full precision in the mantissa.

Using modular arithmetic, the series of residues (mod n) of one googol, starting with mod 1, is as follows:

0, 0, 1, 0, 0, 4, 4, 0, 1, 0, 1, 4, 3, 4, 10, 0, 4, 10, 9, 0, 4, 12, 13, 16, 0, 16, 10, 4, 16, 10, 5, 0, 1, 4, 25, 28, 10, 28, 16, 0, 1, 4, 31, 12, 10, 36, 27, 16, 11, 0, … (sequence A066298 in the OEIS)

This sequence is the same as that of the residues (mod n) of a googolplex up until the 17th position.

Cultural impact

Widespread sounding of the word occurs through the name of the company Google, with the name «Google» being an accidental misspelling of «googol» by the company’s founders,[12] which was picked to signify that the search engine was intended to provide large quantities of information.[13] In 2004, family members of Kasner, who had inherited the right to his book, were considering suing Google for their use of the term «googol»;[14] however, no suit was ever filed.[15]

Since October 2009, Google has been assigning domain names to its servers under the domain «1e100.net», the scientific notation for 1 googol, in order to provide a single domain to identify servers across the Google network.[16][17]

The word is notable for being the subject of the £1 million question in a 2001 episode of the British quiz show Who Wants to Be a Millionaire?, when contestant Charles Ingram cheated his way through the show with the help of a confederate in the studio audience.[18]

See also

  • Googolplex
  • Graham’s number
  • Skewes’ number
  • Infinity
  • Names of large numbers

Notes

  1. ^ ≈1.1979×10100

References

  1. ^ Bialik, Carl (June 14, 2004). «There Could Be No Google Without Edward Kasner». The Wall Street Journal Online. Archived from the original on November 30, 2016. (retrieved March 17, 2015)
  2. ^ Ralph Keyes (2021). The Hidden History of Coined Words. Oxford University Press. p. 120. ISBN 978-0-19-046677-0. Extract of page 120
  3. ^ Kasner, Edward; Newman, James R. (1940). Mathematics and the Imagination. Simon and Schuster, New York. ISBN 0-486-41703-4. Archived from the original on 2014-07-03. The relevant passage about the googol and googolplex, attributing both of these names to Kasner’s nine-year-old nephew, is available in James R. Newman, ed. (2000) [1956]. The world of mathematics, volume 3. Mineola, New York: Dover Publications. pp. 2007–2010. ISBN 978-0-486-41151-4.
  4. ^ Bromham, Lindell (2016). An Introduction to Molecular Evolution and Phylogenetics (2nd ed.). New York, NY: Oxford University Press. p. 494. ISBN 978-0-19-873636-3. Retrieved April 15, 2022.
  5. ^ McPherson, Kristine (2006). Elert, Glenn (ed.). «Mass of the universe». The Physics Factbook. Retrieved 2019-08-24.
  6. ^ «Basketball Court Dimensions & Markings | Harrod Sport». www.harrodsport.com. Retrieved 2022-09-14.
  7. ^ Yongsheng, Zhong (2016-07-31). Chinese Classic Economics. Paths International. ISBN 978-1-84464-467-4.
  8. ^ Villanueva, John Carl (2009-07-31). «How Many Atoms Are There in the Universe?». Universe Today. Retrieved 2022-09-14.
  9. ^ Sagan, Carl (1981). Cosmos. Book Club Associates. pp. 220–221.
  10. ^ Page, Don N. (1976-01-15). «Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole». Physical Review D. American Physical Society (APS). 13 (2): 198–206. Bibcode:1976PhRvD..13..198P. doi:10.1103/physrevd.13.198. ISSN 0556-2821. See in particular equation (27).
  11. ^ Stewart, Ian (2017). Infinity: A Very Short Introduction. New York, NY: Oxford University Press. p. 20. ISBN 978-0-19-875523-4. Retrieved April 15, 2022.
  12. ^ Koller, David (January 2004). «Origin of the name «Google»«. Stanford University. Archived from the original on June 27, 2012. Retrieved July 4, 2012.
  13. ^ «Google! Beta website». Google, Inc. Archived from the original on February 21, 1999. Retrieved October 12, 2010.
  14. ^ «Have your Google people talk to my ‘googol’ people». Archived from the original on 2014-09-04.
  15. ^ Nowlan, Robert A. (2017). Masters of Mathematics: The Problems They Solved, Why These Are Important, and What You Should Know about Them. Rotterdam: Sense Publishers. p. 221. ISBN 978-9463008938.
  16. ^ Cade Metz (8 February 2010). «Google doppelgänger casts riddle over interwebs». The Register. Archived from the original on 3 March 2016. Retrieved 30 December 2015.
  17. ^ «What is 1e100.net?». Google Inc. Archived from the original on 9 January 2016. Retrieved 30 December 2015.
  18. ^ Falk, Quentin; Falk, Ben (2005), «A Code and a Cough: Who Wants to Be a Millionaire? (1998–)», Television’s Strangest Moments: Extraordinary But True Tales from the History of Television, Franz Steiner Verlag, pp. 245–246, ISBN 9781861058744.

External links

Look up googol in Wiktionary, the free dictionary.

  • Weisstein, Eric W. «Googol». MathWorld.
  • Googol at PlanetMath.
  • Padilla, Tony; Symonds, Ria. «Googol and Googolplex». Numberphile. Brady Haran. Archived from the original on 2014-03-29. Retrieved 2013-04-06.

Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.

Гугол

Из Википедии — свободной энциклопедии

Не следует путать с Google.

Гугóл (от англ. googol) — число, в десятичной системе счисления изображаемое единицей со 100 нулями:

10100 = 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.

История термина

В 1938 году известный американский математик Эдвард Казнер гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта, предложил назвать это число «гугол» (англ. googol). Также было предложено название ещё для одного числа: «гуголплекс», численно равного десяти в степени гугол. В 1940 году Эдвард Казнер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Новые названия в математике» (англ. New Names in Mathematics), где и рассказал любителям математики о числах гугол и гуголплекс.[1][неавторитетный источник?]

Гугол как число

Как и все степени 10, гугол имеет только два простых делителя — 2 и 5. Общее количество целых делителей числа гугол превосходит 10 тыс.[2]

Двоичное представление гугола состоит из 333 бит, из которых последние 100 цифр — нули:

0001 0010 0100 1001 1010 1101 0010 0101 1001 0100 1100 0011 0111 1100 1110 1011 0000 1011 0010 0111 1000 0100 1100 0100 1100 1110 0000 1011 1111 0011 1000 1010 1100 1110 0100 0000 1000 1110 0010 0001 0001 1010 0111 1100 1010 1010 1011 0010 0100 0011 0000 1000 1010 1000 0010 1110 1000 1111 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00002

Запись в шестнадцатеричной системе гугола состоит из 84 символов, из которых последние 25 цифр — нули:

1249 AD25 94C3 7CEB 0B27 84C4 CE0B F38A CE40 8E21 1A7C AAB2 4308 A82E 8F10 0000 0000 0000 0000 0000 000016

Гугол можно примерно оценить сверху как факториал 70, который превышает гугол примерно на 20 %:

70! = 11 978 571 669 969 891 796 072 783 721 689 098 736 458 938 142 546 425 857 555 362 864 628 009 582 789 845 319 680 000 000 000 000 000 ≈ 1,197857 × 10100

Используя официально принятую в России, США и в ряде других стран систему именования больших чисел, гугол можно назвать десять дуотригинтиллионов, этимология которого связана с латинским числительным 32 и означает, что необходимо (32 + 1) раз взять по 3 нуля — окончание «иллион».
Если использовать длинную шкалу, то гугол можно назвать десять седециллиардов.

Применение

Термин «гугол» не имеет серьёзного теоретического и практического значения. Казнер предложил его для того, чтобы проиллюстрировать разницу между невообразимо большим числом и бесконечностью, и с этой целью термин иногда используется при обучении математике.

Гугол больше, чем количество атомов в известной нам части Вселенной, которых, по разным оценкам, насчитывается от 1079 до 1081[3], что также ограничивает его применение.

Название компании Google является искажённым написанием слова «гугол» (англ. googol)[4]. Создатели известной поисковой машины хотели использовать термин «googol» в качестве названия, но при регистрации выяснилось, что такой домен уже занят. Многие интернет-сервисы компании Google имеют в обратной зоне DNS записи, оканчивающиеся суффиксом «1e100.net», что является вариантом написания числа «гугол» в экспоненциальной нотации (единица, умноженная на 10 в степени 100).

Слово «гугол» было ответом на призовой вопрос на 1 млн фунтов стерлингов 10 сентября 2001 года в британской телеигре «Who Wants to Be a Millionaire?». Ответ был дан верно, но участника позже уличили в мошенничестве[5].

Примечания

  1. Что такое число гугл?. russia-west.ru. Дата обращения: 7 января 2017. Архивировано 7 января 2017 года.
  2. Количество различных целых делителей для степени 10 (считая, в том числе, единицу и само число делителями) подсчитывается по формуле (степень + 1)2, что, в случае гугола, равняется (100+1)2 = 1012 = 10201.
  3. Mass, Size, and Density of the Universe Архивная копия от 3 января 2012 на Wayback Machine // National Solar Observatory, 21 мая 2001
  4. David A. Vise. The Google Story. (англ.)
  5. Телевикторина: четвёртый арест. Би-би-си. Дата обращения: 3 октября 2008. Архивировано 19 марта 2012 года.


Эта страница в последний раз была отредактирована 2 января 2023 в 19:10.

Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.

Гу́гол (от англ. googol) — число, в десятичной системе счисления изображаемое единицей со 100 нулями:

10100 = 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.

История термина

В 1938 году американский математик Эдвард Казнер гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта, предложил назвать это число «гугол» (googol). В 1940 году Эдвард Казнер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» («New Names in Mathematics»), где и рассказал любителям математики о числе гугол.

Гугол как число

Как и все степени 10, гугол имеет только два простых делителя — 2 и 5. Общее количество целых делителей числа гугол превосходит 10 тыс.[1]

Двоичное представление гугола состоит из 333 бит, из которых последние 100 цифр — нули:

0001 0010 0100 1001 1010 1101 0010 0101 1001 0100 1100 0011 0111 1100 1110 1011 0000 1011 0010 0111 1000 0100 1100 0100 1100 1110 0000 1011 1111 0011 1000 1010 1100 1110 0100 0000 1000 1110 0010 0001 0001 1010 0111 1100 1010 1010 1011 0010 0100 0011 0000 1000 1010 1000 0010 1110 1000 1111 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00002

Запись в 16-ричной системе гугола состоит из 84 символов, из которых последние 25 цифр — нули:

1249 AD25 94C3 7CEB 0B27 84C4 CE0B F38A CE40 8E21 1A7C AAB2 4308 A82E 8F10 0000 0000 0000 0000 0000 000016

Гугол можно примерно оценить сверху как факториал 70, который превышает гугол примерно на 20 %:

70! = 11 978 571 669 969 891 796 072 783 721 689 098 736 458 938 142 546 425 857 555 362 864 628 009 582 789 845 319 680 000 000 000 000 000 ≈ 1,197857 × 10100

Используя официально принятую в России, США, Украине и ряде других стран систему именования больших чисел, гугол можно назвать десять дуотригинтиллионов, этимология которого связана с латинским числом 32 и означает, что необходимо (32 + 1) раз взять по 3 нуля — окончание «иллион».

Применение

Термин «гугол» не имеет серьёзного теоретического и практического значения. Казнер предложил его для того, чтобы проиллюстрировать разницу между невообразимо большим числом и бесконечностью, и с этой целью термин иногда используется при обучении математике.

Гугол больше, чем количество частиц в известной нам части Вселенной, которых, по разным оценкам, насчитывается от 1079 до 1081[2], что также ограничивает его применение.

Интересные факты

  • Название компании Google является искажённым написанием слова «гугол» (googol).[3]
  • Многие интернет-сервисы компании Google имеют в обратной зоне DNS записи, оканчивающиеся суффиксом «1e100.net», что является вариантом написания числа «гугол» в экспоненциальной нотации (единица, умноженная на 10 в степени 100).
  • Слово «гугол» было ответом на призовой вопрос на 1 млн фунтов стерлингов 10 сентября 2001 года в британской версии телеигры «Кто хочет стать миллионером?». Ответ был дан верно, но участника позже уличили в мошенничестве.[4]

Примечания

  1. Количество различных целых делителей для степени 10 (считая, в том числе, единицу и само число делителями) подсчитывается по формуле (степень + 1)2, что, в случае гугола, равняется (100+1)2 = 1012 = 10201.
  2. Mass, Size, and Density of the Universe // National Solar Observatory, 21 мая 2001
  3. См.: David A. Vise. The Google Story.
  4. Телевикторина: четвёртый арест. Би-би-си. Архивировано из первоисточника 22 августа 2011.
 Просмотр этого шаблона Числа с собственными именами
Вещественные Пи • Золотое сечение • Серебряное сечение • e (число Эйлера) • Постоянная Эйлера — Маскерони • Постоянные Фейгенбаума • Постоянная Гельфонда • Константа Бруна • Постоянная Каталана • Постоянная Апери
Натуральные Чёртова дюжина • Число зверя • Число Рамануджана — Харди • Число Грэма • Число Скьюза • Число Мозера
Степени десяти Мириада • Гугол • Асанкхейя • Гуголплекс
Степени тысячи Тысяча • Миллион • Миллиард • Биллион • Триллион • Квадриллион • … • Центиллион
Степени двенадцати Дюжина • Гросс • Масса

Сколько нулей в числе гугол?

Гуго́л (или десять дуотригинтиллионов, или десять седециллиардов) — да, ударение именно на втором слоге, хотя наш мозг, привычный к «гуглу», зачастую не может воспроизвести это слово, как надо, — это единица со ста нулями. В общем-то, очень много. Чтобы не рисовать здесь сто нулей, можно для ясности выразиться короче: гугол — это десять в сотой степени.

Это число практически не используется нигде, ибо оно огромно. Изначально Казнер предложил его затем, чтобы наглядно изобразить разницу между гигантскими числами и бесконечностью.

Это не совсем скажем так научное число, просто не совсем применимое на практике однако само по себе в нём 100 нулей, однако достаточно точно сказать сколько в нём нулей невозможно и существую разные версии, сколько же на самом деле нулей в этом числе.

Давайте для начала проясним, что такое «число гугол». Предлагаю прочитать небольшую подборку фото текстов, которые, я уверена, откроют для вас множество неизвестных ранее фактов.

текст при наведении

текст при наведении

текст при наведении

текст при наведении

Отвечая на выше поставленный вопрос, говорю: в числе гугол 100 нулей.

Я в этом числе насчитал 7 нулей. Если конечно предыдущий ответ есть то самое число. Давайте рассмотрим его внимательно:

543-0-842879-0-2-0-347876234-0-0-52723346983453487-0-2348998­ 723127541239-0-872348475

Насколько я знаю но могу ошибаться — их бесконечное множество.

Число имеет 100 нулей )

Можете проверить решив задачку )))

текст при наведении

А вот пример числа из этой области:

это пятьдесят четыре довигинтиллиона триста восемь унвигинтиллионов четыреста двадцать восемь вигинтиллионов семьсот девяносто новемдециллионов двести три октодециллиона четыреста семьдесят восемь септендециллионов семьсот шестьдесят два сексдециллиона триста сорок квиндециллионов пятьдесят два кваттуордециллиона семьсот двадцать три тредециллиона триста сорок шесть дуодециллионов девятьсот восемьдесят три ундециллиона четыреста пятьдесят три дециллиона четыреста восемьдесят семь нониллионов двадцать три октиллиона четыреста восемьдесят девять септиллионов девятьсот восемьдесят семь секстиллионов двести тридцать один квинтиллион двести семьдесят пять квадриллионов четыреста двенадцать триллионов триста девяносто миллиардов восемьсот семьдесят два миллиона триста сорок восемь тысяч четыреста семьдесят пять

10 самых больших и важных чисел

Дети часто задают вопрос: «Какое число самое большое?». Этот вопрос — важный шаг в процессе перехода в мир абстрактных понятий. Ответ, конечно, прост: числа, скорее всего, бесконечны, но есть определенный порог, за которым числа становятся настолько большими, что в них нет смысла, кроме того, что технически они могут существовать. Давайте возьмем десятку гигантских чисел, известных нам, но ограничимся крайне важными понятиями в мире чисел.

Десять в восьмидесятой степени — 1 с 80 нулями — это довольно массивное число, обозначающее примерное число элементарных частиц в известной вселенной, и, говоря элементарные частицы, мы не имеем в виду микроскопические частицы — мы говорим о куда меньших вещах вроде кварков и лептонов — о субатомных частицах. Это число в США и современной Великобритании называют «сто квинквавигинтиллионов». Вроде бы, несложно понять, что это число обозначает количество мельчайших частиц в нашей Вселенной, однако это самое маленькое и простое число в нашем списке.

Один гугол

Слово гугол, несколько измененное, стало часто используемым в современности, благодаря популярной поисковой системе. У этого числа есть интересная история — достаточно просто погуглить. Термин был придуман Милтоном Сироттой в 1938 году, когда ему было 9 лет. И хотя это относительно абстрактное число, и его существование объясняется необходимостью технического существования, ему все-таки нашли применение.

Алексис Лемер поставил мировой рекорд, рассчитав корень тринадцати из стозначного числа. Гугол — это стозначное число, число с сотней нулей. Также предполагается, что от одного до полутора гугол лет с момента Большого Взрыва взорвется самая массивная черная дыра. И тогда Вселенная вступит в так называемую «темную эпоху» — конец той научной вселенной, какой мы ее знаем.

8,5 х 10^185

Длина Планка — это очень маленькая длина, примерно 1,616199 x 10-35, или 0,00000000000000000000000000000616199 метра. В дюймовом кубе этих длин примерно с гугол. Длина и объем Планка играют важную роль в отраслях квантовой физике — например, теории струн — поскольку позволяют производить вычисления на самых мельчайших масштабах. Во вселенной примерно 8,5 x 10^185 объемов Планка. Это достаточно большое число, и ему все же нет практического применения, но оно остается достаточно простым в нашем списке.

2^43,112,609 – 1

Третье по величине число в этом списке — это число всех планковых объемов во Вселенной, и в нем 185 цифр. А в этом числе почти 13 миллионов цифр. Чем это число важно? Это самое большое из известных сегодня простых чисел. Его обнаружили в августе 2008 года в ходе Great Internet Messene Prime Search (GIMPS).

Гуголплекс

Вы наверняка слышали это слово, хотя бы в фильме «Назад в будущее», когда доктор Эммет Браун бормотал «она одна на миллион, одна на миллиард, одна на гуголплекс». Что такое гуголплекс? Помните длину гугола? Единица и сто нулей. А гуголплекс — это десять в степени гугол. Это больше, чем число всех частиц в известной нам части вселенной.

Вы можете отметить, что можно возводить десять в степень гуголплекс и будет еще больше, и так далее, и окажетесь совершенно правы.

Числа Скьюза

Число Скьюза — это верхний предел для математической задачи π(x) > Li(x), хоть и просто выглядящей, но крайне сложной на самом деле. По существу, число Скьюза доказывает, что число x существует и нарушает это правило, если предположить, что гипотеза Римана верна, а число x меньше, чем 10^10^10^36, первое число Скьюза. Даже первое число Скьюза больше гуголплекса. Есть также и самое большое число Скьюза: x меньше, чем 10^10^10^963.

Время возвращения Пуанкаре

Это очень сложная вещь, но основная концепция относительно проста: при наличии достаточного времени, все возможно. Теорема Пуанкаре о возвращении предполагает количество времени, которого было бы достаточно для того, чтобы однажды вся Вселенная вернулась в свое нынешнее состояние, вызванное случайными квантовыми флуктуациями. Короче, «история повторится». Предполагается, что это займет 10^10^10^10^10^1,1 лет.

Число Грэма

В 80-х годах это число попало в Книгу рекордов Гиннесса как самое массивное конечное число, когда-либо использованное в математических доказательствах. Оно было выведено Роном Грэмом как верхний предел для проблем теории Рамси о многоцветных гиперкубах. Число настолько большое, что для его записи используется стрелочная нотация Кнута (метод записи больших чисел) и собственное уравнение Грэма. Метод Кнута и принцип работы стрелок сложно объяснить, но вы можете представить себе это так. 3↑3 превращается в 3^3 или 27, 3↑↑3 превращается в 3^3^3 или 7,625,597,484,987. Вы можете добавить еще одну стрелку к 3↑↑↑3 и выйти на 7,5 триллионов уровней. Само по себе это число значительно больше, чем время возвращения Пуанкаре, поскольку вы можете добавить бесконечное число стрелок, и каждая стрелка будет невероятно увеличивать число.

Число Грэма выглядит так: G=f64(4), где f(n)=3↑^n3. Лучший способ его представить — разложить по полочкам. Первый слой — это 3↑↑↑↑3, что уже невероятно много. Следующий слой — это множество стрелок между тройками. Возьмите эти стрелки и поместите между следующими тройками. Это умножается в 64 раза. Даже сам Грэм не знает первое число, но последние десять вот: 2464195387. Вся наблюдаемая вселенная слишком мала, чтобы вместить в себя обыкновенную десятичную запись числа Грэма.

∞. Бесконечность

Это число известно всем и каждому, оно часто используется для преувеличений — как какой-нибудь «многоллион». Однако это число намного сложнее, чем большинство может представить, и если вы могли представить числа, идущие до этого пункта, именно это число очень странное и противоречивое. Согласно правилам бесконечности, есть бесконечное число нечетных и четных чисел в бесконечности, однако только половина от всех чисел может быть четной. Бесконечность плюс один равна бесконечности, бесконечность минус один равна бесконечности, бесконечность плюс бесконечность равна бесконечности, деленная пополам — тоже бесконечность, бесконечность минус бесконечность — никто не знает, бесконечность, деленная на бесконечность, будет, скорее всего, 1.

Ученые полагают, что в известной вселенной около 10^80 субатомных частиц, но это только известная вселенная. Некоторые предполагают, что вселенная бесконечна. Если это так, то математически достоверно, что есть другая Земля где-то там, где каждый атом складывается таким же образом, как и мы, и наша Земля. Шанс того, что копия Земли существует, невероятно мал, но в бесконечной вселенной это не только может произойти, но и бесконечно много раз.

В бесконечность верят не все. Израильский профессор математики Дорон Зильбергер утверждает, что по его мнению, числа не будут продолжаться вечно, и найдется настолько большое число, что когда вы добавите к нему единицу, вы придете к нулю. И хотя это число едва ли когда будет обнаружено и едва ли кто сможет его вообразить, бесконечность является важной частью математической философии.

Гугол

Гу́гол (от англ.  googol ) — число, в десятичной системе счисления изображаемое единицей со 100 нулями:

Содержание

История термина

В 1938 году американский математик Эдвард Казнер гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта, предложил назвать это число «гугол» (googol). В 1940 году Эдвард Казнер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» («New Names in Mathematics»), где и рассказал любителям математики о числе гугол.

Гугол как число

Как и все степени 10, гугол имеет только два простых делителя — 2 и 5. Общее количество целых делителей числа гугол превосходит 10 тыс. [1]

Двоичное представление гугола состоит из 333 бит, из которых последние 100 цифр — нули:

0001 0010 0100 1001 1010 1101 0010 0101 1001 0100 1100 0011 0111 1100 1110 1011 0000 1011 0010 0111 1000 0100 1100 0100 1100 1110 0000 1011 1111 0011 1000 1010 1100 1110 0100 0000 1000 1110 0010 0001 0001 1010 0111 1100 1010 1010 1011 0010 0100 0011 0000 1000 1010 1000 0010 1110 1000 1111 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00002

Запись в 16-ричной системе гугола состоит из 84 символов, из которых последние 25 цифр — нули:

1249 AD25 94C3 7CEB 0B27 84C4 CE0B F38A CE40 8E21 1A7C AAB2 4308 A82E 8F10 0000 0000 0000 0000 0000 000016

Гугол можно примерно оценить сверху как факториал 70, который превышает гугол примерно на 20 %:

70! = 11 978 571 669 969 891 796 072 783 721 689 098 736 458 938 142 546 425 857 555 362 864 628 009 582 789 845 319 680 000 000 000 000 000 ≈ 1,197857 × 10 100

Используя официально принятую в России, США, Украине и ряде других стран систему именования больших чисел, гугол можно назвать десять дуотригинтиллионов, этимология которого связана с латинским числом 32 и означает, что необходимо (32 + 1) раз взять по 3 нуля — окончание «иллион».

Применение

Термин «гугол» не имеет серьёзного теоретического и практического значения. Казнер предложил его для того, чтобы проиллюстрировать разницу между невообразимо большим числом и бесконечностью, и с этой целью термин иногда используется при обучении математике.

Гугол больше, чем количество частиц в известной нам части Вселенной, которых, по разным оценкам, насчитывается от 10 79 до 10 81 [2] , что также ограничивает его применение.

Интересные факты

  • Название компании Google является искажённым написанием слова «гугол» (googol). [3]
  • Многие интернет-сервисы компании Google имеют в обратной зоне DNS записи, оканчивающиеся суффиксом «1e100.net», что является вариантом написания числа «гугол» в экспоненциальной нотации (единица, умноженная на 10 в степени 100).
  • Слово «гугол» было ответом на призовой вопрос на 1 млн фунтов стерлингов 10 сентября2001 года в британской версии телеигры «Кто хочет стать миллионером?». Ответ был дан верно, но участника позже уличили в мошенничестве. [4]

Примечания

  1. Количество различных целых делителей для степени 10 (считая, в том числе, единицу и само число делителями) подсчитывается по формуле (степень + 1) 2 , что, в случае гугола, равняется (100+1) 2 = 101 2 = 10201.
  2. Mass, Size, and Density of the Universe // National Solar Observatory, 21 мая 2001
  3. См.: David A. Vise. The Google Story.
  4. Телевикторина: четвёртый арест. Би-би-си. Архивировано из первоисточника 22 августа 2011.
    Числа с собственными именами
Вещественные Пи • Золотое сечение • Серебряное сечение • e (число Эйлера) • Постоянная Эйлера — Маскерони • Постоянные Фейгенбаума • Постоянная Гельфонда • Константа Бруна • Постоянная Каталана • Постоянная Апери
Натуральные Чёртова дюжина • Число зверя • Число Рамануджана — Харди • Число Грэма • Число Скьюза • Число Мозера
Степени десяти Мириада • Гугол • Асанкхейя • Гуголплекс
Степени тысячи Тысяча • Миллион • Миллиард • Биллион • Триллион • Квадриллион • … • Центиллион
Степени двенадцати Дюжина • Гросс • Масса
  • Числа с собственными именами
  • Большие числа

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Гугол» в других словарях:

Гугол комплекс — Гуголплекс (от англ. googolplex) число, изображаемое единицей с гуголом нулей, 1010100. или 1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 Как и гугол,… … Википедия

Милтон Сиротта — Это статья о числе. См. также статью о англ. googol) число, в десятичной системе счисления изображаемое единицей со 100 нулями: 10100 = 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 … Википедия

Гуголплекс — (от англ. googolplex) число, равное десяти в степени гугол: 1010100 или 1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000. Как и гугол, термин… … Википедия

Именные названия степеней тысячи — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (13 мая 2011) … Википедия

Гоголь-моголь — Гоголь моголь  десерт, основные компоненты которого  взбитый яичный желток с сахаром. Существует множество вариаций этого напитка: с добавлением вина, ванилина, рома, хлеба, мёда, фруктовых и ягодных соков. Часто используется как леч … Википедия

Дециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Додециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Квинтиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Нониллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Октиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.
Дуглас Рэй

Продолжаем нашу рубрику САМОГО САМОГО. Сегодня у нас числа …

Каждого рано или поздно мучает вопрос, а какое же самое большое число. На вопрос ребенка можно ответить миллион. А что дальше? Триллион. А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности.

А если же задаться вопросом: какое самое большое число существует, и какое у него собственное название?

Сейчас мы все узнаем …

Существуют две системы наименования чисел — американская и английская.

Американская система постороена довольно просто. Все названия больших чисел строятся так: в начале идет латинское порядковое числительное, а в конце к ней добавляется суффикс -иллион. Исключение составляет название «миллион» которое является названием числа тысяча (лат. mille) и увеличительного суффикса -иллион (см. таблицу). Так получаются числа  — триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион. Американская система используется в США, Канаде, Франции и России. Узнать количество нулей в числе, записанном по американской системе, можно по простой формуле 3·x+3 (где x —  латинское числительное).

Английская система наименования наиболее распространена в мире. Ей пользуются, например, в Великобритании и Испании, а также в большинстве бывших английских и испанских колоний. Названия чисел в этой системе строятся так: так: к латинскому числительному добавляют суффикс -иллион, следущее число (в 1000 раз большее) строится по принципу —  то же самое латинское числительное, но суффикс — -иллиард. То есть после триллиона в английской системе идёт триллиард, а только затем квадриллион, за которым следует квадриллиард и т.д. Таким образом, квадриллион по английской и американской системам  — это совсем разные числа! Узнать количество нулей в числе, записанном по английской системе и оканчивающегося суффиксом -иллион, можно по формуле 6·x+3 (где x —  латинское числительное) и по формуле  6·x+6 для чисел, оканчивающихся на -иллиард.

Из английской системы в русский язык перешло только число миллиард (10 9), которое всё же было бы правильнее называть так, как его называют американцы  — биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! ;-)   Кстати, иногда в русском языке употребляют и слово триллиард (можете сами в этом   убедиться, запустив поиск в Гугле или Яндексе) и означает оно, судя по всему, 1000 триллионов, т.е. квадриллион.

Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.

Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33:

И вот, теперь возникает вопрос, а что дальше. Что там за дециллионом? В принципе, можно, конечно же, при помощи объединения приставок породить такие монстры, как: андецилион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион и новемдециллион, но это уже будут составные названия, а нам были интересны именно собственные названия чисел. Поэтому собственных имён по этой системе, помимо указанных выше, ещё можно получить лишь всего три  — вигинтиллион (от лат. viginti — двадцать), центиллион (от лат. centum — сто) и миллеиллион (от лат. mille — тысяча). Больше тысячи собственных названий для чисел у римлян не имелось (все числа больше тысячи у них были составными). Например, миллион (1 000 000) римляне называли decies centena milia, то есть «десять сотен тысяч».  А теперь, собственно, таблица:

Таким образом, по подобной системе числа больше, чем 10 3003, у которого было бы собственное, несоставное название получить невозможно! Но тем не менее числа больше миллеиллиона известны — это те самые внесистемные числа. Расскажем, наконец-то, о них.

Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.

Насчёт происхождения этого числа существуют разные мнения. Одни считают, что оно возникло в Египте, другие же полагают, что оно родилось лишь в Античной Греции. Как бы то ни было на самом деле, но известность мириада получила именно благодаря грекам. Мириада являлось названием для 10 000, а для чисел больше десяти тысяч названий не было. Однако в заметке «Псаммит» (т.е. исчисление песка) Архимед показал, как можно систематически строить и называть сколь угодно большие числа. В частности, размещая в маковом зерне 10 000 (мириада) песчинок, он находит, что во Вселенной (шар диаметром в мириаду диаметров Земли) поместилось бы (в наших обозначениях) не более чем 1063песчинок. Любопытно, что современные подсчеты количества атомов в видимой Вселенной приводят к числу 1067 (всего в мириаду раз больше). Названия чисел Архимед предложил такие:
1 мириада = 104.
1 ди-мириада = мириада мириад = 108.
1 три-мириада = ди-мириада ди-мириад = 1016.
1 тетра-мириада = три-мириада три-мириад = 1032.
и т.д.

Гугол (от англ. googol) — это число десять в сотой степени, то есть единица со ста нулями. О «гуголе» впервые написал в 1938 году в статье «New Names in Mathematics» в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать «гуголом» большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google. Обратите внимание, что «Google» — это торговая марка, а googol — число.


Эдвард Каснер (Edward Kasner).

В интернете вы часто можете встретить упоминание, что Гугол самое большое число в мире — но это не так …

В известном буддийском трактате Джайна-сутры, относящегося к 100 г. до н.э., встречается число асанкхейя (от кит. асэнци — неисчислимый), равное 10 140. Считается, что этому числу равно количество космических циклов, необходимых для обретения нирваны.

Гуголплекс (англ. googolplex) — число также придуманное Каснером со своим племянником и означающее единицу с гуголом нулей, то есть 10 10100. Вот как сам Каснер описывает это «открытие»:

Words of wisdom are spoken by children at least as often as by scientists. The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «Googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination (1940) by Kasner and James R. Newman.

Еще большее, чем гуголплекс число  — число Скьюза (Skewes’ number) было предложено Скьюзом в 1933 году (Skewes. J. London Math. Soc. 8, 277-283, 1933.) при доказательстве гипотезы Риманна, касающейся простых чисел. Оно означает e в степени  e в степениe в степени 79, то есть eee79. Позднее, Риел (te Riele, H. J. J. «On the Sign of the Difference П(x)-Li(x).» Math. Comput. 48, 323-328, 1987) свел число Скьюза к  ee27/4, что приблизительно равно 8,185·10 370. Понятное дело, что раз значение числа Скьюза зависит от числа e, то оно не целое, поэтому рассматривать мы его не будем, иначе пришлось бы вспомнить другие ненатуральные числа —  число пи, число e, и т.п.

Но надо заметить, что существует второе число Скьюза, которое в математике обозначается как Sk2, которое ещё больше, чем первое число Скьюза (Sk1). Второе число Скьюза, было введённо Дж. Скьюзом в той же статье для обозначения числа, для которого гипотеза Риманна не справедлива. Sk2 равно 101010103, то есть 1010101000 .

Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например,  посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел — это нотации Кнута, Конвея, Стейнхауза и др.

Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур — треугольника, квадрата и круга:

Стейнхауз придумал два новых сверхбольших числа. Он назвал число Мега, а число Мегистон.

Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:

Таким образом, по нотации Мозера стейнхаузовский мега записывается как 2[5], а мегистон как 10[5]. Кроме того, Лео Мозер предложил называть многоугольник с числом сторон равным меге —  мегагоном. И предложил число «2 в Мегагоне», то есть 2[2[5]]. Это число стало известным как число Мозера (Moser’s number) или просто как мозер.

Но и мозер не самое большое число. Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма (Graham’s number), впервые использованная в 1977 года в доказательстве одной оценки в теории Рамсея. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году.

К сожалению, число записанное в нотации Кнута нельзя перевести в запись по системе Мозера. Поэтому придётся объяснить и эту систему. В принципе в ней тоже нет ничего сложного. Дональд Кнут (да, да, это тот самый Кнут, который написал «Искусство программирования» и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:

В общем виде это выглядит так:

Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Грэм предложил, так называемые G-числа:

  1. G1 = 3..3, где число стрелок сверхстепени равно 33.
  2. G2 = ..3, где число стрелок сверхстепени равно G1.
  3. G3..3, где число стрелок сверхстепени равно G2.
  4. G63..3, где число стрелок сверхстепени равно G62.

Число G63 стало называться числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом и занесёно даже в «Книгу рекордов Гинесса». А, вот тут лежит доказательство, что число Грэма больше числа Мозера.

P.S. Чтобы принести великую пользу всему человечеству и прославиться в веках, я решил сам придумать и назвать самое большое число. Это число будет называться стасплекс и оно равно числу G100. Запомните его, и когда ваши дети будут спрашивать какое самое большое в мире число, говорите им, что это число называется стасплекс

Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма + 1. Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что можно разумно и понятно  объяснить.

[источники]

источники
http://ctac.livejournal.com/23807.html
http://www.uznayvse.ru/interesting-facts/samoe-bolshoe-chislo.html
 http://www.vokrugsveta.ru/quiz/310/  

А вот знаете, что я вам еще напомню про числа ? Вот например существует число «ФИ» , а вот волшебные ЧЕТЫРЕ ЧЕТВЕРКИ. Я вам еще рассказывал вот про такое удивительное число Шенона, а так же вот циклическое число и ЧИСЛО ЗВЕРЯ. Ну и еще к нашей теме можно отнести закон Бенфорда и такое известие, что оказывается великая теорема Ферма ДОКАЗАНА

Гугол (от англ. googol) — число, равное единице со ста нулями (или, эквивалентно, десяти в сотой степени). В честь этого числа получила название гугология. Гугол можно примерно оценить сверху как факториал 70, который превышает гугол примерно на 20 %:

70! = 11 978 571 669 969 891 796 072 783 721 689 098 736 458 938 142 546 425 857 555 362 864 628 009 582 789 845 319 680 000 000 000 000 000

История

В 1938 году известный американский математик Эдвард Казнер гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта, предложил назвать это число «гугол» (googol). В 1940 году Эдвард Казнер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» («New Names in Mathematics»), где и рассказал любителям математики о числе гугол. Создатели известной поисковой машины хотели использовать термин «googol» в качестве названия, но при регистрации выяснилось, что такой домен уже занят. Но от названия отказываться не хотели, в результате из термина «выбросили» одну «o» — так получилось ныне всем известное название поисковика «Google».

Написание со всеми нулями

Гугол = 10100 = 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.

Написание в других вариантах

Гугол также можно назвать, как десять дуотригинтиллионов (10×1099).

В двоичной системе записывается так:

0001 0010 0100 1001 1010 1101 0010 0101 1001 0100 1100 0011 0111 1100 1110 1011 0000 1011 0010 0111 1000 0100 1100 0100 1100 1110 0000 1011 1111 0011 1000 1010 1100 1110 0100 0000 1000 1110 0010 0001 0001 1010 0111 1100 1010 1010 1011 0010 0100 0011 0000 1000 1010 1000 0010 1110 1000 1111 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

В 16-ричной системе выглядит так:

1249 AD25 94C3 7CEB 0B27 84C4 CE0B F38A CE40 8E21 1A7C AAB2 4308 A82E 8F10 0000 0000 0000 0000 0000 0000

В Римской записи выглядит так:

(временно неизвестно)

В Египетской записи выглядит так:

(временно неизвестно)

В математике

Сумма цифр числа 10100 = 1

Произведение цифр числа 10100 = 0

Квадрат числа 10100 =10200

Куб числа 10100 = 10300

Квадратный корень из числа 10100 = 1050

Царица наук. Что это за числа – гросс и гугол?

Каждый человек умеет считать по порядку и привык к обычным числам: один , два, три, и так далее. Но в математику существуют и другие интересные числа, например, гросс и гугол. Вы знаете, что это за числа? Если нет, то потратьте минутку Вашего времени и познакомьтесь с ними, прочитав данную статью.

Древнее Двуречье или Древний Шумер. Именно там возникла двенадцатиричная система счисления. Как же считали древние шумеры? Они считали одной рукой, перебирая большим пальцем фаланги остальных пальцев. Итого – 12 фаланг.

Такая система счета быстро распространилась и долго оставалась основной в Европе. До настоящего времени существуют: унция (дробь 1/12), пенни = 1/12 фунта, дюйм = 1/12 фута. Год разбит на 12 месяцев. Сервиз на 6,12 персон. В коробке 6,8,12 цветных карандашей.

Так вот, если в десятичной системе счисления следующий за десяткой разряд – это число 100, а в двенадцатиричной системе счисления следующий за дюжиной разряд – это число 144. Это число и называется гросс.

Посмотрим в сторону больших чисел. Что такое миллион, миллиард, триллион – это знают все. А дальше? Какие числа дальше? Тысяча триллионов называется квадриллион, потом квинтиллион, секстиллион, септиллион, октиллион, нониллион, дециллион. Каждая единица содержит тысячу предыдущих.

Такие большие числа в обыденной жизни и не нужны. Они возникают, в основном, в астрономии. Но в то же время физики подсчитали, что количество атомов во всей Вселенной не может быть больше числа, выражаемого единицей со ста нулями. Вот такое число: единица и сто нулей называется гугол. Ну, а если хочется его написать, то тогда вот так:

10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.

Название числу придумал племянник математика Эдварда Каснера Милтон Сирота. Это было в 1938 году. Постепенно название вошло в оборот и стало популярным в научных кругах.

По одной из версий именно название числа “гугол” дал свое название всемирному Интернет- сервису Google (гугл).

Спасибо за прочтение. Если Вам было интересно, то ставьте лайк. Если было очень интересно – подписывайтесь.

Источник статьи: http://zen.yandex.ru/media/id/5a630d2c9b403c5442578563/carica-nauk-chto-eto-za-chisla-gross-i-gugol-5bedbe9494a22000aa26231d

Гугл число как пишется

Wikimedia Foundation . 2010 .

Смотреть что такое “Гугол” в других словарях:

Гугол комплекс — Гуголплекс (от англ. googolplex) число, изображаемое единицей с гуголом нулей, 1010100. или 1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 Как и гугол,… … Википедия

Милтон Сиротта — Это статья о числе. См. также статью о англ. googol) число, в десятичной системе счисления изображаемое единицей со 100 нулями: 10100 = 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 … Википедия

Гуголплекс — (от англ. googolplex) число, равное десяти в степени гугол: 1010100 или 1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000. Как и гугол, термин… … Википедия

Именные названия степеней тысячи — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (13 мая 2011) … Википедия

Гоголь-моголь — Гоголь моголь десерт, основные компоненты которого взбитый яичный желток с сахаром. Существует множество вариаций этого напитка: с добавлением вина, ванилина, рома, хлеба, мёда, фруктовых и ягодных соков. Часто используется как леч … Википедия

Дециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Додециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Квинтиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Нониллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Октиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/5196

Вы знаете сколько нулей содержит число Гугол?

Если вы когда-нибудь задавались вопросом, какое число следует после триллиона, читайте дальше. Например, Вы знаете, сколько нулей в вигинтилии?

Больше, чем триллион

Цифра ноль играет очень важную роль, когда пишешь очень большие числа. Это помогает отслеживать эти кратные 10, потому что чем больше число, тем больше нулей необходимо.

В приведенной ниже таблице первый столбец содержит название числа, второй – число нулей, которые следуют за начальной цифрой, в то время как третий-количество групп из трех нулей, которые вам нужно будет записать в каждом числе.

название число нулей группы из 3 нулей

миллион 6 2(1 000 000)

миллиард 9 3(1 000 000 000)

триллион 12 4(1 000 000 000 000)

дуодециллион 39 13

тредециллион 42 14

кватро-дециллион 45 15

квиндециллион 48 16

сексдециллион 51 17

септедециллион 54 18

октодециллион 57 19

новемдециллион 60 20

вигинтиллион 63 21

сантиллион 303 101

Все эти нули

Таблица, как и вышеприведенная, может быть полезна при перечислении названий всех последующих чисел в зависимости от того, сколько у них нулей. Но это может быть действительно ошеломляющим, чтобы увидеть, как выглядят некоторые из этих чисел.

Ниже приведен список, включая все нули, для чисел до decillion. Для сравнения, это немного больше, чем половина чисел, перечисленных в таблице выше.

Десять: 10 (1 ноль)
сто: 100 (2 нуля)
тыс.: 1000 (3 нулями)
десять тысяч 10,000 (4 нуля)
сто тысяч 100,000 (5 нулей)
1,000,000 миллион (6 нулей)
1,000,000,000 миллиарда (9 нулей)
1,000,000,000,000 триллион (12 нулей)
квадриллион 1,000,000,000,000,000 (15 нулей)
квинтиллион 1,000,000,000,000,000,000 (18 нулей)
секстиллионов 1,000,000,000,000,000,000,000 (21 нулей)
септиллионов 1,000,000,000,000,000,000,000,000 (24 нулей)
Октиллиона 1,000,000,000,000,000,000,000,000,000 (27 нулей)
Нониллионов 1,000,000,000,000,000,000,000,000,000,000 (30 нулей)
Decillion 1,000,000,000,000,000,000,000,000,000,000 (33 нуля)

Нули, сгруппированные в наборы из трех

За исключением относительно небольшого числа, имена для наборов из нулей предназначена для группировки из тре нулей. Вы пишете числа с запятыми, разделяющими наборы из трех нулей, чтобы было легче читать и понимать значение. Например, вы пишете один миллион как 1 000 000, а не 1000000.

В качестве другого примера гораздо проще вспомнить, что триллион записывается с четырьмя наборами из трех нулей, чем считать 12 отдельных нулей. Хотя вы можете подумать, что один из них довольно прост, просто подождите, пока вам не придется считать 27 нулей для октиллиона или 303 нуля для сантиллиона.

Это то, что вы будете благодарны, что вы только должны помнить девять и 101 набор из трех нулей, соответственно.

Числа с очень большим колличеством нулей

Число Гугол (термин Милтона СироттЫ) имеет 100 нулей после 1. Сиротта придумал название для числа, когда ему было всего 9 лет. Вот как выглядит число, включая все необходимые нули:

Вы думаете, что это большое число? Как насчет гуголплекс , что 1 и гугол нулей.

Googolplex настолько велик, что он еще не имеет никакого значимого использования. Число больше, чем количество атомов во Вселенной.

Миллион и миллиард: американская и британская система

В Соединенных Штатах, а также во всем мире в области науки и финансов миллиард составляет 1000 миллионов, что записывается как 1, а затем 9 нулей.

Это также называется ” короткая шкала.”

Существует также “длинная шкала”, который используется во Франции и ранее использовался в Соединенном Королевстве, в котором миллиард означает 1 миллион миллионов. Согласно этому определению миллиард, число записывается с 1, за которым следуют 12 нулей. Краткие и длинные шкалы были описаны французским математиком Женевьевой Гитель в 1975 году.

Источник статьи: http://zen.yandex.ru/media/id/5aa3d271fd96b12989bcd6d3/vy-znaete-skolko-nulei-soderjit-chislo-gugol-5b9e287d7e60b200aa1ad618

Насколько велико число “Гуголплекс”?

Привет, любители математики!

Ставьте лайки, если было хоть немного интересно!

Возможно ли представить себе число, которое можно было бы охарактеризовать, как бесконечно-огромное? Если захотеть, то, в принципе можно.

Многие наверняка слышал про гугол . Это десять в сотой степени или единица со ста нулями . Это число “придумал” Эдвард Казнер – математик и космолог, когда размышлял над очень большими числами. Точнее, название числу дал его девятилетний племянник, когда Казнер спросил его, как бы он назвал число с сотней нулей.

Ну и что? Спросите Вы. Можно еще хоть триста нулей дописать. Это правда, но у математиков своим приколы. Гугол, значит гугол.

Чтобы Вам было понятнее, насколько это число велико, то математики специально для Вас посчитали, сколько песчинок поместится в видимой части Вселенной и получили такое число:

Как видите, гугол больше. Надеюсь, теперь понятно, насколько число не маленькое.

Но математикам очень плохо спится по ночам и они придумали нечто гораздо большее чем гугол, но такое же элегантное – это гуголплекс.

Если Вам трудно понять это число, то для примера, гугол в такой форме будет иметь вот такую запись:

Число огромно настолько, что количество нулей после единицы Вы не сможете записать, даже если будете писать по нулю на каждой частице во Вселенной.

Есть в гуголплексе кое-что удивительное.

Представьте, что Вселенная гуголплекс метров от края до края. Если улететь в такой Вселенной достаточно далеко, то начнете замечать повторения и в том числе, копии самого себя!

Кто-то когда-то подсчитал, что примерно в одном кубическом метре может уместиться около:

. всевозможных квантовых состояний, т.е. все возможные наборы частиц и их комбинаций уместятся в этот объем и в один куб можете поместиться Вы, если постараться.

И чтобы встретить своего полного двойника, достаточно удалиться на расстояние – 10 в степени десять в степени семьдесят .

Как видите, число хоть и не бесконечное, но настолько огромное, что его невозможно вообразить.

Статья создавалась в ознакомительных целях и не несет никакой смысловой нагрузки.

Подписывайтесь на мой канал и ставьте лайки, если было интересно!

Источник статьи: http://zen.yandex.ru/media/tehno_chtivo/naskolko-veliko-chislo-gugolpleks-5da8c45d97b5d400b337cc12

  • Как пишется число грэма
  • Как пишется число восемнадцатое правильно
  • Как пишется число в периоде
  • Как пишется число в квадрате
  • Как пишется число 45 арабскими цифрами