Как пишется напряжение в физике

«Potential difference» redirects here. For other uses, see Potential.

Voltage
AA AAA AAAA A23 battery comparison-1.jpg

Batteries are sources of voltage in many electric circuits.

Common symbols

V , V , U , U
SI unit volt
In SI base units kg⋅m2⋅s−3⋅A−1

Derivations from
other quantities

Voltage = Energy / charge
Dimension M L2 T−3 I−1

Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a test charge between the two points. In the International System of Units, the derived unit for voltage is named volt.[1]: 166 

The voltage between points can be caused by the build-up of electric charge (e.g., a capacitor), and from an electromotive force (e.g., electromagnetic induction in generator, inductors, and transformers).[2][3] On a macroscopic scale, a potential difference can be caused by electrochemical processes (e.g., cells and batteries), the pressure-induced piezoelectric effect, and the thermoelectric effect.

A voltmeter can be used to measure the voltage between two points in a system. Often a common reference potential such as the ground of the system is used as one of the points. A voltage can represent either a source of energy or the loss, dissipation, or storage of energy.

Definition[edit]

In SI units, work per unit charge is expressed as joules per coulomb, where 1 volt = 1 joule (of work) per 1 coulomb (of charge). The old SI definition for volt used power and current; starting in 1990, the quantum Hall and Josephson effect were used, and recently (2019) fundamental physical constants have been introduced for the definition of all SI units and derived units.[1]: 177f, 197f  Voltage difference is denoted symbolically by Delta V, simplified V,[4] especially in English-speaking countries, or by U internationally,[5] for instance in the context of Ohm’s or Kirchhoff’s circuit laws.

The electrochemical potential is the voltage that can be directly measured with a voltmeter. The Galvani potential that exists in structures with junctions of dissimilar materials is also work per charge but cannot be measured with a voltmeter in the external circuit (see § Galvani potential vs. electrochemical potential).

Voltage is defined so that negatively charged objects are pulled towards higher voltages, while positively charged objects are pulled towards lower voltages. Therefore, the conventional current in a wire or resistor always flows from higher voltage to lower voltage.

Historically, voltage has been referred to using terms like «tension» and «pressure». Even today, the term «tension» is still used, for example within the phrase «high tension» (HT) which is commonly used in thermionic valve (vacuum tube) based electronics.

Definition in electrostatics[edit]

The electric field around the rod exerts a force on the charged pith ball, in an electroscope

In a static field, the work is independent of the path

In electrostatics, the voltage increase from point {displaystyle mathbf {r} _{A}} to some point {displaystyle mathbf {r} _{B}} is given by the change in electrostatic potential {textstyle V} from {displaystyle mathbf {r} _{A}} to {displaystyle mathbf {r} _{B}}. By definition,[6]: 78  this is:

{displaystyle {begin{aligned}Delta V_{AB}&=V(mathbf {r} _{B})-V(mathbf {r} _{A})\&=-int _{mathbf {r} _{0}}^{mathbf {r} _{B}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}-left(-int _{mathbf {r} _{0}}^{mathbf {r} _{A}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}right)\&=-int _{mathbf {r} _{A}}^{mathbf {r} _{B}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}end{aligned}}}

In this case, the voltage increase from point A to point B is equal to the work done per unit charge, against the electric field, to move the charge from A to B without causing any acceleration.[6]: 90–91  Mathematically, this is expressed as the line integral of the electric field along that path. In electrostatics, this line integral is independent of the path taken.[6]: 91 

Under this definition, any circuit where there are time-varying magnetic fields, such as AC circuits, will not have a well-defined voltage between nodes in the circuit, since the electric force is not a conservative force in those cases.[note 1] However, at lower frequencies when the electric and magnetic fields are not rapidly changing, then this can be neglected (see electrostatic approximation).

Generalization to electrodynamics[edit]

The electric potential can be generalized to electrodynamics, so that differences in electric potential between points are well-defined even in the presence of time-varying fields. However, unlike in electrostatics, the electric field can no longer be expressed only in terms of the electric potential.[6]: 417  Furthermore, the potential is no longer uniquely determined up to a constant, and can take significantly different forms depending on the choice of gauge.[note 2][6]: 419–422 

In this general case, some authors[7] use the word «voltage» to refer to the line integral of the electric field, rather than to differences in electric potential. In this case, the voltage rise along some path {mathcal {P}} from {displaystyle mathbf {r} _{A}} to {displaystyle mathbf {r} _{B}} is given by:

{displaystyle Delta V_{AB}=-int _{mathcal {P}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}}

However, in this case the «voltage» between two points depends on the path taken.

Treatment in circuit theory[edit]

In circuit analysis and electrical engineering, lumped element models are used to represent and analyze circuits. These elements are idealized and self-contained circuit elements used to model physical components.[8]

When using a lumped element model, it is assumed that the effects of changing magnetic fields produced by the circuit are suitably contained to each element.[8] Under these assumptions, the electric field in the region exterior to each component is conservative, and voltages between nodes in the circuit are well-defined, where[8]

{displaystyle Delta V_{AB}=-int _{mathbf {r} _{A}}^{mathbf {r} _{B}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}}

as long as the path of integration does not pass through the inside of any component. The above is the same formula used in electrostatics. This integral, with the path of integration being along the test leads, is what a voltmeter will actually measure.[9][note 3]

If uncontained magnetic fields throughout the circuit are not negligible, then their effects can be modelled by adding mutual inductance elements. In the case of a physical inductor though, the ideal lumped representation is often accurate. This is because the external fields of inductors are generally negligible, especially if the inductor has a closed magnetic path. If external fields are negligible, we find that

{displaystyle Delta V_{AB}=-int _{mathrm {exterior} }mathbf {E} cdot mathrm {d} {boldsymbol {ell }}=L{frac {dI}{dt}}}

is path-independent, and there is a well-defined voltage across the inductor’s terminals.[10] This is the reason that measurements with a voltmeter across an inductor are often reasonably independent of the placement of the test leads.

Volt[edit]

Main article: Volt

The volt (symbol: V) is the derived unit for electric potential, voltage, and electromotive force. The volt is named in honour of the Italian physicist Alessandro Volta (1745–1827), who invented the voltaic pile, possibly the first chemical battery.

Hydraulic analogy[edit]

A simple analogy for an electric circuit is water flowing in a closed circuit of pipework, driven by a mechanical pump. This can be called a «water circuit». The potential difference between two points corresponds to the pressure difference between two points. If the pump creates a pressure difference between two points, then water flowing from one point to the other will be able to do work, such as driving a turbine. Similarly, work can be done by an electric current driven by the potential difference provided by a battery. For example, the voltage provided by a sufficiently-charged automobile battery can «push» a large current through the windings of an automobile’s starter motor. If the pump isn’t working, it produces no pressure difference, and the turbine will not rotate. Likewise, if the automobile’s battery is very weak or «dead» (or «flat»), then it will not turn the starter motor.

The hydraulic analogy is a useful way of understanding many electrical concepts. In such a system, the work done to move water is equal to the «pressure drop» (compare p.d.) multiplied by the volume of water moved. Similarly, in an electrical circuit, the work done to move electrons or other charge-carriers is equal to «electrical pressure difference» multiplied by the quantity of electrical charges moved. In relation to «flow», the larger the «pressure difference» between two points (potential difference or water pressure difference), the greater the flow between them (electric current or water flow). (See «electric power».)

Applications[edit]

Specifying a voltage measurement requires explicit or implicit specification of the points across which the voltage is measured. When using a voltmeter to measure voltage, one electrical lead of the voltmeter must be connected to the first point, one to the second point.

A common use of the term «voltage» is in describing the voltage dropped across an electrical device (such as a resistor). The voltage drop across the device can be understood as the difference between measurements at each terminal of the device with respect to a common reference point (or ground). The voltage drop is the difference between the two readings. Two points in an electric circuit that are connected by an ideal conductor without resistance and not within a changing magnetic field have a voltage of zero. Any two points with the same potential may be connected by a conductor and no current will flow between them.

Addition of voltages[edit]

The voltage between A and C is the sum of the voltage between A and B and the voltage between B and C. The various voltages in a circuit can be computed using Kirchhoff’s circuit laws.

When talking about alternating current (AC) there is a difference between instantaneous voltage and average voltage. Instantaneous voltages can be added for direct current (DC) and AC, but average voltages can be meaningfully added only when they apply to signals that all have the same frequency and phase.

Measuring instruments[edit]

Instruments for measuring voltages include the voltmeter, the potentiometer, and the oscilloscope. Analog voltmeters, such as moving-coil instruments, work by measuring the current through a fixed resistor, which, according to Ohm’s Law, is proportional to the voltage across the resistor. The potentiometer works by balancing the unknown voltage against a known voltage in a bridge circuit. The cathode-ray oscilloscope works by amplifying the voltage and using it to deflect an electron beam from a straight path, so that the deflection of the beam is proportional to the voltage.

Typical voltages[edit]

A common voltage for flashlight batteries is 1.5 volts (DC).
A common voltage for automobile batteries is 12 volts (DC).

Common voltages supplied by power companies to consumers are 110 to 120 volts (AC) and 220 to 240 volts (AC). The voltage in electric power transmission lines used to distribute electricity from power stations can be several hundred times greater than consumer voltages, typically 110 to 1200 kV (AC).

The voltage used in overhead lines to power railway locomotives is between 12 kV and 50 kV (AC) or between 0.75 kV and 3 kV (DC).

Galvani potential vs. electrochemical potential[edit]

Inside a conductive material, the energy of an electron is affected not only by the average electric potential but also by the specific thermal and atomic environment that it is in.
When a voltmeter is connected between two different types of metal, it measures not the electrostatic potential difference, but instead something else that is affected by thermodynamics.[11]
The quantity measured by a voltmeter is the negative of the difference of the electrochemical potential of electrons (Fermi level) divided by the electron charge and commonly referred to as the voltage difference, while the pure unadjusted electrostatic potential (not measurable with a voltmeter) is sometimes called Galvani potential.
The terms «voltage» and «electric potential» are ambiguous in that, in practice, they can refer to either of these in different contexts.

History[edit]

The term electromotive force was first used by Volta in a letter to Giovanni Aldini in 1798, and first appeared in a published paper in 1801 in Annales de chimie et de physique.[12]: 408  Volta meant by this a force that was not an electrostatic force, specifically, an electrochemical force.[12]: 405  The term was taken up by Michael Faraday in connection with electromagnetic induction in the 1820s. However, a clear definition of voltage and method of measuring it had not been developed at this time.[13]: 554  Volta distinguished electromotive force (emf) from tension (potential difference): the observed potential difference at the terminals of an electrochemical cell when it was open circuit must exactly balance the emf of the cell so that no current flowed.[12]: 405 

See also[edit]

  • Electric shock
  • Mains electricity by country (list of countries with mains voltage and frequency)
  • Open-circuit voltage
  • Phantom voltage

References[edit]

  1. ^ a b Le Système international d’unités [The International System of Units] (PDF) (in French and English) (9th ed.), International Bureau of Weights and Measures, 2019, ISBN 978-92-822-2272-0
  2. ^ Demetrius T. Paris and F. Kenneth Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York 1969, ISBN 0-07-048470-8, pp. 512, 546
  3. ^ P. Hammond, Electromagnetism for Engineers, p. 135, Pergamon Press 1969 OCLC 854336.
  4. ^ IEV: electric potential
  5. ^ IEV: voltage
  6. ^ a b c d e Griffiths, David J. (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 013805326X.
  7. ^ Moon, Parry; Spencer, Domina Eberle (2013). Foundations of Electrodynamics. Dover Publications. p. 126. ISBN 978-0-486-49703-7.
  8. ^ a b c A. Agarwal & J. Lang (2007). «Course materials for 6.002 Circuits and Electronics» (PDF). MIT OpenCourseWare. Retrieved 4 December 2018.
  9. ^ Bossavit, Alain (January 2008). «What do voltmeters measure?». COMPEL — the International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 27: 9–16. doi:10.1108/03321640810836582 – via ResearchGate.
  10. ^ Feynman, Richard; Leighton, Robert B.; Sands, Matthew. «The Feynman Lectures on Physics Vol. II Ch. 22: AC Circuits». Caltech. Retrieved 2021-10-09.{{cite web}}: CS1 maint: url-status (link)
  11. ^ Bagotskii, Vladimir Sergeevich (2006). Fundamentals of electrochemistry. p. 22. ISBN 978-0-471-70058-6.
  12. ^ a b c Robert N. Varney, Leon H. Fisher, «Electromotive force: Volta’s forgotten concept», American Journal of Physics, vol. 48, iss. 5, pp. 405–408, May 1980.
  13. ^ C. J. Brockman, «The origin of voltaic electricity: The contact vs. chemical theory before the concept of E. M. F. was developed», Journal of Chemical Education, vol. 5, no. 5, pp. 549–555, May 1928

Footnotes[edit]

  1. ^ This follows from the Maxwell-Faraday equation:

    {displaystyle nabla times mathbf {E} =-{frac {partial mathbf {B} }{partial t}}}

    If there are changing magnetic fields in some simply connected region, then the curl of the electric field in that region is non-zero, and as a result the electric field is not conservative. For more, see Conservative force § Mathematical description.

  2. ^ For example, in the Lorenz gauge, the electric potential is a retarded potential, which propagates at the speed of light; whereas in the Coulomb gauge, the potential changes instantaneously when the source charge distribution changes.
  3. ^ This statement makes a few assumptions about the nature of the voltmeter (these are discussed in the cited paper). One of these assumptions is that the current drawn by the voltmeter is negligible.

External links[edit]

Look up voltage in Wiktionary, the free dictionary.

  • Electrical voltage V, current I, resistivity R, impedance Z, wattage P

«Potential difference» redirects here. For other uses, see Potential.

Voltage
AA AAA AAAA A23 battery comparison-1.jpg

Batteries are sources of voltage in many electric circuits.

Common symbols

V , V , U , U
SI unit volt
In SI base units kg⋅m2⋅s−3⋅A−1

Derivations from
other quantities

Voltage = Energy / charge
Dimension M L2 T−3 I−1

Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a test charge between the two points. In the International System of Units, the derived unit for voltage is named volt.[1]: 166 

The voltage between points can be caused by the build-up of electric charge (e.g., a capacitor), and from an electromotive force (e.g., electromagnetic induction in generator, inductors, and transformers).[2][3] On a macroscopic scale, a potential difference can be caused by electrochemical processes (e.g., cells and batteries), the pressure-induced piezoelectric effect, and the thermoelectric effect.

A voltmeter can be used to measure the voltage between two points in a system. Often a common reference potential such as the ground of the system is used as one of the points. A voltage can represent either a source of energy or the loss, dissipation, or storage of energy.

Definition[edit]

In SI units, work per unit charge is expressed as joules per coulomb, where 1 volt = 1 joule (of work) per 1 coulomb (of charge). The old SI definition for volt used power and current; starting in 1990, the quantum Hall and Josephson effect were used, and recently (2019) fundamental physical constants have been introduced for the definition of all SI units and derived units.[1]: 177f, 197f  Voltage difference is denoted symbolically by Delta V, simplified V,[4] especially in English-speaking countries, or by U internationally,[5] for instance in the context of Ohm’s or Kirchhoff’s circuit laws.

The electrochemical potential is the voltage that can be directly measured with a voltmeter. The Galvani potential that exists in structures with junctions of dissimilar materials is also work per charge but cannot be measured with a voltmeter in the external circuit (see § Galvani potential vs. electrochemical potential).

Voltage is defined so that negatively charged objects are pulled towards higher voltages, while positively charged objects are pulled towards lower voltages. Therefore, the conventional current in a wire or resistor always flows from higher voltage to lower voltage.

Historically, voltage has been referred to using terms like «tension» and «pressure». Even today, the term «tension» is still used, for example within the phrase «high tension» (HT) which is commonly used in thermionic valve (vacuum tube) based electronics.

Definition in electrostatics[edit]

The electric field around the rod exerts a force on the charged pith ball, in an electroscope

In a static field, the work is independent of the path

In electrostatics, the voltage increase from point {displaystyle mathbf {r} _{A}} to some point {displaystyle mathbf {r} _{B}} is given by the change in electrostatic potential {textstyle V} from {displaystyle mathbf {r} _{A}} to {displaystyle mathbf {r} _{B}}. By definition,[6]: 78  this is:

{displaystyle {begin{aligned}Delta V_{AB}&=V(mathbf {r} _{B})-V(mathbf {r} _{A})\&=-int _{mathbf {r} _{0}}^{mathbf {r} _{B}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}-left(-int _{mathbf {r} _{0}}^{mathbf {r} _{A}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}right)\&=-int _{mathbf {r} _{A}}^{mathbf {r} _{B}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}end{aligned}}}

In this case, the voltage increase from point A to point B is equal to the work done per unit charge, against the electric field, to move the charge from A to B without causing any acceleration.[6]: 90–91  Mathematically, this is expressed as the line integral of the electric field along that path. In electrostatics, this line integral is independent of the path taken.[6]: 91 

Under this definition, any circuit where there are time-varying magnetic fields, such as AC circuits, will not have a well-defined voltage between nodes in the circuit, since the electric force is not a conservative force in those cases.[note 1] However, at lower frequencies when the electric and magnetic fields are not rapidly changing, then this can be neglected (see electrostatic approximation).

Generalization to electrodynamics[edit]

The electric potential can be generalized to electrodynamics, so that differences in electric potential between points are well-defined even in the presence of time-varying fields. However, unlike in electrostatics, the electric field can no longer be expressed only in terms of the electric potential.[6]: 417  Furthermore, the potential is no longer uniquely determined up to a constant, and can take significantly different forms depending on the choice of gauge.[note 2][6]: 419–422 

In this general case, some authors[7] use the word «voltage» to refer to the line integral of the electric field, rather than to differences in electric potential. In this case, the voltage rise along some path {mathcal {P}} from {displaystyle mathbf {r} _{A}} to {displaystyle mathbf {r} _{B}} is given by:

{displaystyle Delta V_{AB}=-int _{mathcal {P}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}}

However, in this case the «voltage» between two points depends on the path taken.

Treatment in circuit theory[edit]

In circuit analysis and electrical engineering, lumped element models are used to represent and analyze circuits. These elements are idealized and self-contained circuit elements used to model physical components.[8]

When using a lumped element model, it is assumed that the effects of changing magnetic fields produced by the circuit are suitably contained to each element.[8] Under these assumptions, the electric field in the region exterior to each component is conservative, and voltages between nodes in the circuit are well-defined, where[8]

{displaystyle Delta V_{AB}=-int _{mathbf {r} _{A}}^{mathbf {r} _{B}}mathbf {E} cdot mathrm {d} {boldsymbol {ell }}}

as long as the path of integration does not pass through the inside of any component. The above is the same formula used in electrostatics. This integral, with the path of integration being along the test leads, is what a voltmeter will actually measure.[9][note 3]

If uncontained magnetic fields throughout the circuit are not negligible, then their effects can be modelled by adding mutual inductance elements. In the case of a physical inductor though, the ideal lumped representation is often accurate. This is because the external fields of inductors are generally negligible, especially if the inductor has a closed magnetic path. If external fields are negligible, we find that

{displaystyle Delta V_{AB}=-int _{mathrm {exterior} }mathbf {E} cdot mathrm {d} {boldsymbol {ell }}=L{frac {dI}{dt}}}

is path-independent, and there is a well-defined voltage across the inductor’s terminals.[10] This is the reason that measurements with a voltmeter across an inductor are often reasonably independent of the placement of the test leads.

Volt[edit]

Main article: Volt

The volt (symbol: V) is the derived unit for electric potential, voltage, and electromotive force. The volt is named in honour of the Italian physicist Alessandro Volta (1745–1827), who invented the voltaic pile, possibly the first chemical battery.

Hydraulic analogy[edit]

A simple analogy for an electric circuit is water flowing in a closed circuit of pipework, driven by a mechanical pump. This can be called a «water circuit». The potential difference between two points corresponds to the pressure difference between two points. If the pump creates a pressure difference between two points, then water flowing from one point to the other will be able to do work, such as driving a turbine. Similarly, work can be done by an electric current driven by the potential difference provided by a battery. For example, the voltage provided by a sufficiently-charged automobile battery can «push» a large current through the windings of an automobile’s starter motor. If the pump isn’t working, it produces no pressure difference, and the turbine will not rotate. Likewise, if the automobile’s battery is very weak or «dead» (or «flat»), then it will not turn the starter motor.

The hydraulic analogy is a useful way of understanding many electrical concepts. In such a system, the work done to move water is equal to the «pressure drop» (compare p.d.) multiplied by the volume of water moved. Similarly, in an electrical circuit, the work done to move electrons or other charge-carriers is equal to «electrical pressure difference» multiplied by the quantity of electrical charges moved. In relation to «flow», the larger the «pressure difference» between two points (potential difference or water pressure difference), the greater the flow between them (electric current or water flow). (See «electric power».)

Applications[edit]

Specifying a voltage measurement requires explicit or implicit specification of the points across which the voltage is measured. When using a voltmeter to measure voltage, one electrical lead of the voltmeter must be connected to the first point, one to the second point.

A common use of the term «voltage» is in describing the voltage dropped across an electrical device (such as a resistor). The voltage drop across the device can be understood as the difference between measurements at each terminal of the device with respect to a common reference point (or ground). The voltage drop is the difference between the two readings. Two points in an electric circuit that are connected by an ideal conductor without resistance and not within a changing magnetic field have a voltage of zero. Any two points with the same potential may be connected by a conductor and no current will flow between them.

Addition of voltages[edit]

The voltage between A and C is the sum of the voltage between A and B and the voltage between B and C. The various voltages in a circuit can be computed using Kirchhoff’s circuit laws.

When talking about alternating current (AC) there is a difference between instantaneous voltage and average voltage. Instantaneous voltages can be added for direct current (DC) and AC, but average voltages can be meaningfully added only when they apply to signals that all have the same frequency and phase.

Measuring instruments[edit]

Instruments for measuring voltages include the voltmeter, the potentiometer, and the oscilloscope. Analog voltmeters, such as moving-coil instruments, work by measuring the current through a fixed resistor, which, according to Ohm’s Law, is proportional to the voltage across the resistor. The potentiometer works by balancing the unknown voltage against a known voltage in a bridge circuit. The cathode-ray oscilloscope works by amplifying the voltage and using it to deflect an electron beam from a straight path, so that the deflection of the beam is proportional to the voltage.

Typical voltages[edit]

A common voltage for flashlight batteries is 1.5 volts (DC).
A common voltage for automobile batteries is 12 volts (DC).

Common voltages supplied by power companies to consumers are 110 to 120 volts (AC) and 220 to 240 volts (AC). The voltage in electric power transmission lines used to distribute electricity from power stations can be several hundred times greater than consumer voltages, typically 110 to 1200 kV (AC).

The voltage used in overhead lines to power railway locomotives is between 12 kV and 50 kV (AC) or between 0.75 kV and 3 kV (DC).

Galvani potential vs. electrochemical potential[edit]

Inside a conductive material, the energy of an electron is affected not only by the average electric potential but also by the specific thermal and atomic environment that it is in.
When a voltmeter is connected between two different types of metal, it measures not the electrostatic potential difference, but instead something else that is affected by thermodynamics.[11]
The quantity measured by a voltmeter is the negative of the difference of the electrochemical potential of electrons (Fermi level) divided by the electron charge and commonly referred to as the voltage difference, while the pure unadjusted electrostatic potential (not measurable with a voltmeter) is sometimes called Galvani potential.
The terms «voltage» and «electric potential» are ambiguous in that, in practice, they can refer to either of these in different contexts.

History[edit]

The term electromotive force was first used by Volta in a letter to Giovanni Aldini in 1798, and first appeared in a published paper in 1801 in Annales de chimie et de physique.[12]: 408  Volta meant by this a force that was not an electrostatic force, specifically, an electrochemical force.[12]: 405  The term was taken up by Michael Faraday in connection with electromagnetic induction in the 1820s. However, a clear definition of voltage and method of measuring it had not been developed at this time.[13]: 554  Volta distinguished electromotive force (emf) from tension (potential difference): the observed potential difference at the terminals of an electrochemical cell when it was open circuit must exactly balance the emf of the cell so that no current flowed.[12]: 405 

See also[edit]

  • Electric shock
  • Mains electricity by country (list of countries with mains voltage and frequency)
  • Open-circuit voltage
  • Phantom voltage

References[edit]

  1. ^ a b Le Système international d’unités [The International System of Units] (PDF) (in French and English) (9th ed.), International Bureau of Weights and Measures, 2019, ISBN 978-92-822-2272-0
  2. ^ Demetrius T. Paris and F. Kenneth Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York 1969, ISBN 0-07-048470-8, pp. 512, 546
  3. ^ P. Hammond, Electromagnetism for Engineers, p. 135, Pergamon Press 1969 OCLC 854336.
  4. ^ IEV: electric potential
  5. ^ IEV: voltage
  6. ^ a b c d e Griffiths, David J. (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 013805326X.
  7. ^ Moon, Parry; Spencer, Domina Eberle (2013). Foundations of Electrodynamics. Dover Publications. p. 126. ISBN 978-0-486-49703-7.
  8. ^ a b c A. Agarwal & J. Lang (2007). «Course materials for 6.002 Circuits and Electronics» (PDF). MIT OpenCourseWare. Retrieved 4 December 2018.
  9. ^ Bossavit, Alain (January 2008). «What do voltmeters measure?». COMPEL — the International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 27: 9–16. doi:10.1108/03321640810836582 – via ResearchGate.
  10. ^ Feynman, Richard; Leighton, Robert B.; Sands, Matthew. «The Feynman Lectures on Physics Vol. II Ch. 22: AC Circuits». Caltech. Retrieved 2021-10-09.{{cite web}}: CS1 maint: url-status (link)
  11. ^ Bagotskii, Vladimir Sergeevich (2006). Fundamentals of electrochemistry. p. 22. ISBN 978-0-471-70058-6.
  12. ^ a b c Robert N. Varney, Leon H. Fisher, «Electromotive force: Volta’s forgotten concept», American Journal of Physics, vol. 48, iss. 5, pp. 405–408, May 1980.
  13. ^ C. J. Brockman, «The origin of voltaic electricity: The contact vs. chemical theory before the concept of E. M. F. was developed», Journal of Chemical Education, vol. 5, no. 5, pp. 549–555, May 1928

Footnotes[edit]

  1. ^ This follows from the Maxwell-Faraday equation:

    {displaystyle nabla times mathbf {E} =-{frac {partial mathbf {B} }{partial t}}}

    If there are changing magnetic fields in some simply connected region, then the curl of the electric field in that region is non-zero, and as a result the electric field is not conservative. For more, see Conservative force § Mathematical description.

  2. ^ For example, in the Lorenz gauge, the electric potential is a retarded potential, which propagates at the speed of light; whereas in the Coulomb gauge, the potential changes instantaneously when the source charge distribution changes.
  3. ^ This statement makes a few assumptions about the nature of the voltmeter (these are discussed in the cited paper). One of these assumptions is that the current drawn by the voltmeter is negligible.

External links[edit]

Look up voltage in Wiktionary, the free dictionary.

  • Electrical voltage V, current I, resistivity R, impedance Z, wattage P

Одним из самых фундаментальных терминов в электротехнике является термин «электрическое напряжение». В этой статье мы объясним, что это такое и как его рассчитать.

Объяснение простыми словами

Электрическое напряжение U является той самой причиной, которая «заставляет» протекать электрический ток I. Электрическое напряжение всегда возникает, когда заряды разделены друг от друга, то есть все отрицательные заряды на одной стороне, а все положительные — на другой. Если соединить эти две стороны электропроводящим материалом, потечет электрический ток.

Общепринятое определение термина «электрическое напряжение».

Электрическое напряжение (или просто напряжение) — это разность потенциалов между двумя точками в электрическом поле. Это движущая сила для электрического заряда.

Потенциал в электрическом поле — это энергия заряженного тела, не зависящая от его электрического заряда. Для пояснения вы можете посмотреть на сравнение с водяным контуром чуть ниже в статье.

Есть другое определение (из учебника по физике 8 класса):

Напряжение — это физическая велuчuна, характеризующая электрическое поле. Электрическое напряжение между двумя точками электрического поля численно равно работе, совершенной при переносе между ними заряда 1 Кл силами электрического поля.

Сравнение с использованием модели протекания воды.

Хорошей аналогией, которая поможет вам представить себе электрическое напряжение и потенциал, является водяной контур. В этой схеме у вас есть два бассейна на разной высоте, которые соединены трубой. В этой трубе вода может перетекать из верхнего бассейна в нижний. Затем вода перекачивается обратно в верхний бассейн с помощью насоса, как показано на рисунке ниже.

Электрическое напряжение - сравнение с использованием модели протекания воды

Электрическое напряжение — сравнение с использованием модели протекания воды

В своих размышлениях вы теперь легко можете сравнить насос с источником электрического напряжения. Кроме того, поток воды можно сравнить с электрическим током. Насос транспортирует воду из нижнего бассейна в верхний. Оттуда она самостоятельно течет обратно в нижний бассейн. В данном примере насос является приводом для потока. Чем больше разница в высоте, тем сильнее поток. Решающим фактором является потенциальная энергия верхнего бассейна. Вы можете сравнить разность энергий двух бассейнов с разностью электрических потенциалов. Проще говоря, большая разница в высоте соответствует большему электрическому напряжению.

Формула

Формула для электрического напряжения U, согласно закона Ома для участка цепи, имеет вид

U = R * I .

Как видно из этой формулы, если электрическое напряжение остается неизменным, то чем больше электрическое сопротивление (R), тем меньше сила тока (I).

Другая формула для расчета электрического напряжения такова:

U = P / I .

То есть электрическое напряжение U равно мощности деленной на силу тока I.

Единица измерения электрического напряжения

Единицей измерения электрического напряжения в СИ является Вольт, сокращенно В (в честь итальянского учёного А. Вольта).

1 вольт (1 В) — это напряжение между двумя точками электрического поля, при переносе между которыми заряда 1 Кл совершается работа 1 Дж.

[U] = 1 В

Теперь вы можете объяснить смысл надписи 4,5 В или 9 В на круглой или плоской батарейке. Смысл в том, что при переносе с одного полюса источника на другой (через спираль лампочки или другой проводник) заряда 1 Кл силами электрического поля может быть совершена работа соответственно 4,5 Дж или 9 Дж.

В электротехнике напряжение может варьироваться от микровольт (1 мкВ = 1 * 10-6 В) и миливольт (1 мВ = 10-3 В), до киловольт (1 кВ = 1 * 103 В) и мегавольт (1 МВ = 106 В)

Вы можете преобразовать отдельные единицы измерения следующим образом:

1 В = 1000 мВ, 1 мВ = 1000 мкВ, 1 МВ = 1000 кВ, 1 кВ = 1000 В.

Электрическое напряжение в цепи

Для источников напряжения в схемах обычно используется один из следующих символов.

Электрическое напряжение источник напряжения

Источники напряжения и электрическая цепь

Источник напряжения всегда имеет два соединения/полюса. Полюс «плюс» и полюс «минус». Само напряжение обозначено стрелкой напряжения (UQ). Для источников оно всегда отображается от плюса к минусу. 

Электрическое напряжение, падающее на резисторе, также можно обозначить стрелкой напряжения (на схеме обозначена как красная стрелка UR ). Это указывает на техническое направление электрического тока.

Также часто можно услышать термин «напряжение холостого хода» или «напряжение источника». Это выходное напряжение ненагруженного источника, т.е. источника, к которому ничего не подключено. Если цепь замкнута с нагрузкой, то можно измерить только напряжение на полюсах источника.

Электрические напряжения при последовательном и параллельном соединении

У нас уже есть статья о последовательном и параллельном соединении проводников, в котором мы обсуждаем эту тему более подробно. Поэтому здесь мы рассмотрим лишь некоторые основы.

При последовательном соединении компоненты подключаются в ряд.

Электрическое напряжение в цепях с последовательным соединением

Электрическое напряжение при последовательном соединении

Здесь электрическое напряжение источника делится на резисторы. Этот момент также описывается вторым правилом Кирхгофа. Здесь применимо следующее:

UQ = U1 + U2 + U3

то есть напряжение источника равно сумме электрических напряжений на отдельных резисторах. Напряжение источника по-разному распределяется по разным резисторам.

В электрической цепи с параллельным соединением компоненты расположены, соответственно, параллельно друг относительно друга. Это можно увидеть на следующей схеме.

Электрическое напряжение параллельное подключение

Электрическое напряжение в параллельной цепи

Здесь гораздо проще определить электрические напряжения на резисторах, так как при параллельном соединении:

UQ = U1 = U2 = U3

Поэтому электрическое напряжение на резисторах такое же высокое, как и электрическое напряжение источника.

Измерение электрического напряжения

Приборы для измерения напряжения, также называемые вольтметрами, всегда подключаются параллельно потребителю, на котором необходимо измерить электрическое напряжение.

Одним из наиболее часто используемых вольтметров является цифровой мультиметр (DMM), поэтому мы покажем вам процедуру измерения напряжения с помощью DMM. Сначала необходимо установить тип электрического напряжения (DC — постоянный ток или AC — переменный ток).

Для постоянного тока необходимо обратить внимание на правильную полярность, т.е. подключить плюс к положительному полюсу. На следующем этапе необходимо выбрать правильный диапазон измерения. Если вы не можете оценить, насколько велика измеряемая величина, установите наибольший возможный диапазон и двигайтесь от него вниз, пока не найдете нужный. Наконец, вам нужно только «считать» электрическое напряжение прибором.

Примеры типовых значений электрического напряжения

Для некоторых применений соответствующее электрическое напряжение можно найти в таблице ниже.

Светодиод 1,2 — 1,5 В
Зарядное устройство USB 5 В
Напряжение автомобильного аккумулятора 12, 4 — 12,8 В
Напряжение в розетке (среднеквадратичное или действующее значение) 230 В
Высоковольтные линии электропередач (ЛЭП) 60 кВ — 1 МВ

Вы можете видеть, что на высоковольтных линиях присутствует напряжение до мегавольт. Такие большие электрические напряжения используются для того, чтобы уменьшить потери в длинных линиях.

Решающим фактором для потребителя является мощность P, которую можно рассчитать для постоянного напряжения с помощью формулы:

P = U * I

Это означает, что электрический ток I так же важен для потребителя, как и электрическое напряжение. Согласно закону Ома, зависимость между током и напряжением имеет вид:

U = R * I .

Если напряжение остается неизменным, сопротивление определяет величину тока. Чтобы проиллюстрировать это, представьте следующее. У вас есть три разных бассейна, которые заполнены одинаковым количеством воды. Каждый бассейн имеет слив, который различается по сечению, т.е. в одном бассейне сливная труба очень маленькая, а в другом — очень большая.

Постоянное электрическое напряжение можно определить по тому, что все емкости заполнены на одинаковую высоту. Если слив узкий в нижней части, он представляет собой большое сопротивление. Ток здесь может течь только медленно. Если сечение сливной трубы больше, то сопротивление меньше и, соответственно, может протекать больший ток.

Что такое напряжение в электронике и электротехнике? Как его можно трактовать? Обо всем этом мы как раз и поговорим в нашей статье.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий «бокал», заполненный водой.

водобашня

водоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашня

водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

давление на пробку

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил,  давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

Что такое напряжение

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи — нет.

Электрическое напряжение

Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком «минус». Можно даже сказать, что уровень «воды в башне» у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа «блок питания может выдать от 0 и до 30 Вольт». Или говоря детским языком, создать «электрическое давление» на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

источник питания

источник питания постоянного тока

Электрическое напряжение  — это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.

С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный  щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп  — черным или синим.

В электронике, чтобы указать, на каком выводе больше » электрическое давление», а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное «давление», а на минусе — ноль.

Что такое напряжениеЧто такое напряжение

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Формула напряжения

В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.

формула напряжения

формула напряжения

где

A — это работа электрического поля по перемещению заряда по участку цепи, Джоули

q — заряд, Кулон

U — напряжение на участке электрической цепи, Вольты

На практике напряжение на участке цепи выводится через закон Ома.

формула напряжения через сопротивление и силу тока

напряжение из закона Ома

где

I — сила тока, Амперы

R — сопротивление, Омы

Напряжение тока — что это означает?

Этот термин очень часто можно услышать в разговорной речи. Ток, в данном случае, это электрический ток. Получается, напряжение тока — это напряжение электрического тока. Просто у нас так сокращают. Как я уже говорил выше, ток бывает переменным и постоянным. Постоянный ток и постоянное напряжение — это синонимы, как и переменный ток и переменное напряжение. Получается фраза «напряжение тока» говорит нам о том, какое напряжение между двумя точками или проводами в электрической цепи.

Например, на вопрос «какое напряжение тока в розетке» вы можете смело ответить: переменный ток 220 Вольт», а на вопрос «какое напряжение тока тока у автомобильного аккумулятора», вы можете ответить «12 Вольт постоянного тока». Так что не стоит пугаться).

Постоянное и переменное напряжение

Напряжение бывает бывает постоянным и переменным. В разговорной речи часто можно услышать «постоянный ток» и «переменный ток. Постоянный ток и постоянное напряжение — это синонимы, то же что и переменный ток и переменное напряжение.

На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Что такое напряжение

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала «электрическое давление» давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки «Первые шаги в электронике» Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

переменное напряжение

то в другую:

переменное напряжение

переменное напряжение

Так же ведут себя и электроны. В вашей домашней сети 220 В они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто «Гц». Тогда получается, что колебание напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях. В разговорной речи постоянное напряжение называют «постоянкой», а переменное — «переменкой».

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y — это значение напряжения, а ось Х — это время.

нулевое напряжение

осциллограмма нулевого напряжения

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения  — это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.

постоянное напряжение

осциллограмма постоянного напряжения

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.

переменное напряжение

осциллограмма переменного напряжения

Про параметры переменного напряжения можете прочитать в этой статье.

Также отличное объяснение темы можно посмотреть в этом видео.

Похожие статьи по теме

220 Вольт

Делитель напряжения

Как получить нестандартное напряжение

Как измерить ток и напряжение мультиметром?

Электрическое напряжение

Некоторая работа, выполняемая электростатическим полем по перемещению заряда величиной в 1 Кл (один кулон) из точки с малым потенциалом в точку с большим. В физике, в основном, обозначается буквой UU.

Возникновение напряжения

Любое вещество состоит из очень большого числа атомов, которые состоят из ядра, заряд которого положителен, и электронов, вращающихся на его орбите. В основном заряд атома нейтрален, так как суммарный заряд всех электронов, равен суммарному заряду всех протонов. Если забрать из нейтрального атома, некоторое количество электронов, то такой атом будет стремиться найти другие электроны, чтобы компенсировать недостаток отрицательных зарядов.
Если же каким-либо образом увеличить число электронов в атоме, лишние электроны создадут избыток отрицательных зарядов. Так создаются потенциалы — «++» — положительный и «−-» — отрицательный.

Величина потенциала

Показывает с какой силой электроны будут, например, притягиваться к материалу, где есть недостаток электронов. Чем больше потенциал, тем большая сила будет возникать и, соответственно, напряжение.

В момент соединения разноименных потенциалов (плюса с минусом) проводником, возникает явление электрического тока — направленное движение носителей заряда, которые стремятся уменьшить исходную разницу потенциалов. Для того, что бы переместить заряды, электрическое поле производит работу, которая и описывается понятием электрического напряжения.

Напряжение

Физическая величина, описывающая работу, выполняемую электрическим полем по перемещению единичного заряда между двумя точками.

Единица измерения напряжения

Электрическое напряжение измеряют согласно Международной системе СИ в вольтах ВВ. В англоязычных источниках VV. Один вольт выражается в разности потенциалов двух точек электрического поля, силы которого производят работу в 1 ДжДж для перемещения заряда 1 КлКл из одной точки во вторую.

U  =  AqU;=;frac Aq,

где AA – работа, а qq – электрический заряд.

Прибор для измерения величины напряжения — вольтметр.

Напряжение зависит от следующих факторов:

  • Температуры среды
  • Материал из которого сделан проводник
  • Подключенной нагрузки (например, сколько приборов подключено в сеть в помещении).

Разница между переменным и постоянным напряжением

Чтобы разобраться с напряжениями, возьмем для примера – постоянный и переменный электрический ток. Постоянный ток, представляет движение заряженных частиц только в одном направлении. Представьте шоссе, по которому едут много машин в одном направлении. При переменном токе, направление движения частиц меняется очень часто, но остается упорядоченным. Это же самое шоссе, только поток машин постоянно меняет направление движения на противоположное, но движется все вместе.

Если говорить, о постоянном напряжении, то один конец провода всегда «++», а другой «−-». Обычная батарейка, является источником постоянного напряжения. На ней всегда показано, где плюс и минус. При переменном напряжении полярности конца проводника постоянно меняются местами. Физическая величина частота отвечает сколько раз меняется полярность за единицу времени. В обычной сети частота, с которой меняется напряжение и, соответственно, направление тока равно 50 герц, т.е. 50 раз в секунду.

Переменный ток широко используется, если необходимо передать энергию на большие расстояния при минимальных потерях.

Советуем прочитать статью про электрический ток.

Тест по теме «Электрическое напряжение»

Пробовали ли вы когда-нибудь надувать воздушные шарики на время? Один надувает быстро, а другой за это же время надувает гораздо меньше. Без сомнения, первый совершает большую работу, чем второй.

шарики.jpg

Рис. (1). Надувание шара

С источниками напряжения происходит точно так же. Чтобы обеспечить движение частиц в проводнике, надо совершить работу. И эту работу совершает источник. Работу источника характеризует напряжение. Чем оно больше, тем большую работу совершает источник, тем ярче будет гореть лампочка в цепи (при других одинаковых условиях).

fizika1.gif

Рис. (2). Лампа в цепи

Напряжение равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.

U=Aq

, где (U) — напряжение, (A) — работа электрического поля, (q) — заряд.

Обрати внимание!

Единица измерения напряжения в системе СИ — [(U)] = (1) B (вольт).

(1) вольт равен электрическому напряжению на участке цепи, где при протекании заряда, равного (1) Кл, совершается работа, равная (1) Дж: (1) В (= 1) Дж/1 Кл.

Все видели надпись на домашних бытовых приборах «(220) В». Она означает, что на участке цепи совершается работа (220) Дж по перемещению заряда (1) Кл.

Кроме вольта, применяют дольные и кратные ему единицы — милливольт и киловольт.

(1) мВ (= 0,001) В, (1) кВ (= 1000) В или (1) В (= 1000) мВ, (1) В (= 0,001) кВ.

Для измерения напряжения используют прибор, который называется вольтметр.

Обозначаются все вольтметры латинской буквой (V), которая наносится на циферблат приборов и используется в схематическом изображении прибора.

v.png

Рис. (3). Обозначение вольтметра

В школьных условиях используются вольтметры, изображённые на рисунке:

L8.jpg L6.jpg

Рис. (4). Вольтметры

Основными элементами вольтметра являются корпус, шкала, стрелка и клеммы. Клеммы обычно подписаны плюсом или минусом и для наглядности выделены разными цветами: красный — плюс, черный (синий) — минус. Сделано это с той целью, чтобы заведомо правильно подключать клеммы прибора к соответствующим проводам, подключённым к источнику.

Обрати внимание!

В отличие от амперметра, который включается в разрыв цепи последовательно, вольтметр включается в цепь параллельно.

вотльтметр.svg

Рис. (5). Электроцепь с подключенным вольтметром и амперметром

Включая вольтметр в цепь постоянного тока, необходимо соблюдать полярность.

Сборку электрической цепи лучше начинать со всех элементов, кроме вольтметра, а его уже подключать в самом конце.

Вольтметры делятся на приборы постоянного тока и переменного тока.

Если прибор предназначен для цепей переменного тока, то на циферблате принято изображать волнистую линию. Если прибор предназначен для цепей постоянного тока, то линия будет прямой.

Таблица (1). Вольтметры

Рис. (6). Вольтметр постоянного тока

Рис. (7). Вольтметр переменного тока

L21.jpg

M7.jpg

L14.jpg

M14.jpg

Можно обратить внимание на клеммы прибора. Если указана полярность («(+)» и «(-)»), то это прибор для измерения постоянного напряжения.

Иногда используют буквы (AC/DC). В переводе с английского (AC) (alternating current) — переменный ток, а (DC) (direct current) — постоянный ток.
В цепь переменного тока включается вольтметр для измерения переменного тока. Он полярности не имеет.

вольтметр1.svg

Рис. (8). Электроцепь с переменным источником тока

Обрати внимание!

Для измерения напряжения можно использовать и мультиметр.

Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.

16_2.jpg

Рис. (9). Мультиметр

Следует помнить, что высокое напряжение опасно.

Что будет с человеком, который окажется рядом с упавшим оголённым кабелем, находящимся под высоким напряжением?

Так как земля является проводником электрического тока, вокруг упавшего оголённого кабеля, находящегося под напряжением, может возникнуть опасное для человека шаговое напряжение.

При попадании под шаговое напряжение даже небольшого значения возникают непроизвольные судорожные сокращения мышц ног. Обычно человеку удаётся в такой ситуации своевременно выйти из опасной зоны.

Обрати внимание!

Однако нельзя выбегать оттуда огромными шагами, шаговое напряжение при этом только увеличится! Выходить надо обязательно быстро, но очень мелкими шагами или скачками на одной ноге!

Существует много знаков, предупреждающих о высоком напряжении. Вот некоторые из них.

voltage.png images.jpg

dang_hi_volt_proof.jpg images (1).jpg

Рис. (10). Предупреждающие об опасности знаки

Источники:

Рис. 5. Электроцепь с подключенным вольтметром и амперметром. © ЯКласс.
Рис. 8. Электроцепь с переменным источником тока. © ЯКласс.

Единица измерения напряжения


Единица измерения напряжения

4.2

Средняя оценка: 4.2

Всего получено оценок: 83.

4.2

Средняя оценка: 4.2

Всего получено оценок: 83.

Напряжение — это физическая величина, позволяющая вычислить работу, совершаемую заряженными частицами под действием электрического поля. Электрический ток, образованный упорядоченным потоком зарядов в проводнике, совершает работу, например, разогревает нить накаливания электрической лампы. Единица измерения работы — джоуль.

На что похоже электрическое напряжение

Для наглядности можно сравнить электрический ток в проводнике с потоком воды в трубе за счет разности высот. Поток воды будет тем больше, чем больше перепад высоты, который создает напор (аналог напряжения) в трубе. Работа, совершенная водой, будет зависеть от ее массы и высоты, с которой произошло ее падение. Объем воды, прошедший через сечение трубы за определенное время, можно сравнить с величиной заряда, который прошел через проводник. Аналогично, работа тока будет пропорциональна величине протекшего заряда и напряжению электрического поля на участке цепи.

Итак, если в цепи нет напряжения, то не будет и электрического тока, так же, как и в замкнутом озере, где вода расположена на одном уровне, не будет никаких течений.

Примеры приборов, в которых работу совершает электрический ток

Рис. 1. Примеры приборов, в которых работу совершает электрический ток.

Определение электрического напряжения

Работа A, совершенная электрическим полем по перемещению электрического заряда q, равна:

$ A = { q*U } $ (1)

где величина U называется электрическим напряжением. Если электрический заряд равняется 1 Кл (кулону), то согласно формулы (1) напряжение будет в точности равно работе по перемещению единичного заряда.

Единица измерения напряжения

Единица напряжения называется вольт. Эта физическая величина получила свое название в честь выдающегося итальянского физика Алессандро Вольта, изучавшего природу электрических явлений.

Портрет Алессандро Вольта

Рис. 2. Портрет Алессандро Вольта.

Алессандро Вольта первым придумал и изготовил источник постоянного тока, прототип сегодняшних “батареек”, которыми люди повсеместно пользуются в быту и на производстве. Источником зарядов были химические реакции. Свое изобретение Вольта назвал гальваническим элементом в честь своего коллеги, замечательного ученого Луиджи Гальвани.

В международной интернациональной системе единиц СИ вольт обозначается заглавной латинской буквой V, а в нашей стране для этого используется буква русского алфавита В.

Воспользовавшись формулой (1) и размерностями величин для работы (Джоуль) и заряда (Кулон), получим размерность для единицы напряжения:

$$ [В] = { [Дж]over [Kл] } $$

На практике, для удобства, кроме вольта часто используются кратные единицы, когда напряжение либо много меньше одного вольта, либо много больше:

  • Микровольт: 1 мкВ=0,000001 В;
  • Милливольт: 1 мВ=0,001 В;
  • Киловольт: 1 кВ=1000 В.

Примеры разных величин напряжения: автомобильный аккумулятор - 12 В, электродвигатели - 380 В, ЛЭП - 500  кВ, молния - 1000 000 В

Рис. 3. Примеры разных величин напряжения: автомобильный аккумулятор – 12 В, электродвигатели – 380 В, ЛЭП – 500 кВ, молния – 1000 000 В.

Заключение

Что мы узнали?

Итак, мы узнали, что напряжением называется величина, характеризующая способность электрического поля совершать работу, создавая электрический ток в проводниках. Единица измерения напряжения в системе СИ — вольт. Если напряжение на участке цепи равно 1 В, то работа по перемещению заряда величиной 1 Кл будет равна 1 Дж.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 83.


А какая ваша оценка?

  • Как пишется направо вместе или отдельно
  • Как пишется направление на рентген грудной клетки
  • Как пишется направление на медосмотр от организации
  • Как пишется наполненный водой
  • Как пишется наполеоновские планы