Как пишется переменный ток

Alternating current (green curve). The horizontal axis measures time (it also represents zero voltage/current) ; the vertical, current or voltage.

Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. A common source of DC power is a battery cell in a flashlight. The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage.[1][2]

The usual waveform of alternating current in most electric power circuits is a sine wave, whose positive half-period corresponds with positive direction of the current and vice versa. In certain applications, like guitar amplifiers, different waveforms are used, such as triangular waves or square waves. Audio and radio signals carried on electrical wires are also examples of alternating current. These types of alternating current carry information such as sound (audio) or images (video) sometimes carried by modulation of an AC carrier signal. These currents typically alternate at higher frequencies than those used in power transmission.

Transmission, distribution, and domestic power supply[edit]

A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step down transformer , C=consumers.

Electrical energy is distributed as alternating current because AC voltage may be increased or decreased with a transformer. This allows the power to be transmitted through power lines efficiently at high voltage, which reduces the energy lost as heat due to resistance of the wire, and transformed to a lower, safer, voltage for use. Use of a higher voltage leads to significantly more efficient transmission of power. The power losses ({displaystyle P_{rm {w}}}) in the wire are a product of the square of the current ( I ) and the resistance (R) of the wire, described by the formula:

{displaystyle P_{rm {w}}=I^{2}R,.}

This means that when transmitting a fixed power on a given wire, if the current is halved (i.e. the voltage is doubled), the power loss due to the wire’s resistance will be reduced to one quarter.

The power transmitted is equal to the product of the current and the voltage (assuming no phase difference); that is,

{displaystyle P_{rm {t}}=IV,.}

Consequently, power transmitted at a higher voltage requires less loss-producing current than for the same power at a lower voltage. Power is often transmitted at hundreds of kilovolts on pylons, and transformed down to tens of kilovolts to be transmitted on lower level lines, and finally transformed down to 100 V – 240 V for domestic use.

Three-phase high-voltage transmission lines use alternating currents to distribute power over long distances between electric generation plants and consumers. The lines in the picture are located in eastern Utah.

High voltages have disadvantages, such as the increased insulation required, and generally increased difficulty in their safe handling. In a power plant, energy is generated at a convenient voltage for the design of a generator, and then stepped up to a high voltage for transmission. Near the loads, the transmission voltage is stepped down to the voltages used by equipment. Consumer voltages vary somewhat depending on the country and size of load, but generally motors and lighting are built to use up to a few hundred volts between phases. The voltage delivered to equipment such as lighting and motor loads is standardized, with an allowable range of voltage over which equipment is expected to operate. Standard power utilization voltages and percentage tolerance vary in the different mains power systems found in the world. High-voltage direct-current (HVDC) electric power transmission systems have become more viable as technology has provided efficient means of changing the voltage of DC power. Transmission with high voltage direct current was not feasible in the early days of electric power transmission, as there was then no economically viable way to step down the voltage of DC for end user applications such as lighting incandescent bulbs.

Three-phase electrical generation is very common. The simplest way is to use three separate coils in the generator stator, physically offset by an angle of 120° (one-third of a complete 360° phase) to each other. Three current waveforms are produced that are equal in magnitude and 120° out of phase to each other. If coils are added opposite to these (60° spacing), they generate the same phases with reverse polarity and so can be simply wired together. In practice, higher «pole orders» are commonly used. For example, a 12-pole machine would have 36 coils (10° spacing). The advantage is that lower rotational speeds can be used to generate the same frequency. For example, a 2-pole machine running at 3600 rpm and a 12-pole machine running at 600 rpm produce the same frequency; the lower speed is preferable for larger machines. If the load on a three-phase system is balanced equally among the phases, no current flows through the neutral point. Even in the worst-case unbalanced (linear) load, the neutral current will not exceed the highest of the phase currents. Non-linear loads (e.g. the switch-mode power supplies widely used) may require an oversized neutral bus and neutral conductor in the upstream distribution panel to handle harmonics. Harmonics can cause neutral conductor current levels to exceed that of one or all phase conductors.

For three-phase at utilization voltages a four-wire system is often used. When stepping down three-phase, a transformer with a Delta (3-wire) primary and a Star (4-wire, center-earthed) secondary is often used so there is no need for a neutral on the supply side. For smaller customers (just how small varies by country and age of the installation) only a single phase and neutral, or two phases and neutral, are taken to the property. For larger installations all three phases and neutral are taken to the main distribution panel. From the three-phase main panel, both single and three-phase circuits may lead off. Three-wire single-phase systems, with a single center-tapped transformer giving two live conductors, is a common distribution scheme for residential and small commercial buildings in North America. This arrangement is sometimes incorrectly referred to as «two phase». A similar method is used for a different reason on construction sites in the UK. Small power tools and lighting are supposed to be supplied by a local center-tapped transformer with a voltage of 55 V between each power conductor and earth. This significantly reduces the risk of electric shock in the event that one of the live conductors becomes exposed through an equipment fault whilst still allowing a reasonable voltage of 110 V between the two conductors for running the tools.

A third wire, called the bond (or earth) wire, is often connected between non-current-carrying metal enclosures and earth ground. This conductor provides protection from electric shock due to accidental contact of circuit conductors with the metal chassis of portable appliances and tools. Bonding all non-current-carrying metal parts into one complete system ensures there is always a low electrical impedance path to ground sufficient to carry any fault current for as long as it takes for the system to clear the fault. This low impedance path allows the maximum amount of fault current, causing the overcurrent protection device (breakers, fuses) to trip or burn out as quickly as possible, bringing the electrical system to a safe state. All bond wires are bonded to ground at the main service panel, as is the neutral/identified conductor if present.

AC power supply frequencies[edit]

The frequency of the electrical system varies by country and sometimes within a country; most electric power is generated at either 50 or 60 Hertz. Some countries have a mixture of 50 Hz and 60 Hz supplies, notably electricity power transmission in Japan. A low frequency eases the design of electric motors, particularly for hoisting, crushing and rolling applications, and commutator-type traction motors for applications such as railways. However, low frequency also causes noticeable flicker in arc lamps and incandescent light bulbs. The use of lower frequencies also provided the advantage of lower transmission losses, which are proportional to frequency. The original Niagara Falls generators were built to produce 25 Hz power, as a compromise between low frequency for traction and heavy induction motors, while still allowing incandescent lighting to operate (although with noticeable flicker). Most of the 25 Hz residential and commercial customers for Niagara Falls power were converted to 60 Hz by the late 1950s, although some[which?] 25 Hz industrial customers still existed as of the start of the 21st century. 16.7 Hz power (formerly 16 2/3 Hz) is still used in some European rail systems, such as in Austria, Germany, Norway, Sweden and Switzerland. Off-shore, military, textile industry, marine, aircraft, and spacecraft applications sometimes use 400 Hz, for benefits of reduced weight of apparatus or higher motor speeds. Computer mainframe systems were often powered by 400 Hz or 415 Hz for benefits of ripple reduction while using smaller internal AC to DC conversion units.[citation needed]

Effects at high frequencies[edit]

A direct current flows uniformly throughout the cross-section of a homogeneous electrically conducting wire. An alternating current of any frequency is forced away from the wire’s center, toward its outer surface. This is because an alternating current (which is the result of the acceleration of electric charge) creates electromagnetic waves (a phenomenon known as electromagnetic radiation). Electric conductors are not conducive to electromagnetic waves (a perfect electric conductor prohibits all electromagnetic waves within its boundary), so a wire that is made of a non-perfect conductor (a conductor with finite, rather than infinite, electrical conductivity) pushes the alternating current, along with their associated electromagnetic fields, away from the wire’s center. The phenomenon of alternating current being pushed away from the center of the conductor is called skin effect, and a direct current does not exhibit this effect, since a direct current does not create electromagnetic waves.

At very high frequencies, the current no longer flows in the wire, but effectively flows on the surface of the wire, within a thickness of a few skin depths. The skin depth is the thickness at which the current density is reduced by 63% (a reduction of one neper). Even at relatively low frequencies used for power transmission (50 Hz – 60 Hz), non-uniform distribution of current still occurs in sufficiently thick conductors. For example, the skin depth of a copper conductor is approximately 8.57 mm at 60 Hz, so high current conductors are usually hollow to reduce their mass and cost. Since the current tends to flow in the periphery of conductors, the effective cross-section of the conductor is reduced. This increases the effective AC resistance of the conductor, since resistance is inversely proportional to the cross-sectional area. The AC resistance is often many times higher than the DC resistance, causing a much higher energy loss due to ohmic heating (also called I2R loss).

Techniques for reducing AC resistance[edit]

For low to medium frequencies, conductors can be divided into stranded wires, each insulated from the others, with the relative positions of individual strands specially arranged within the conductor bundle. Wire constructed using this technique is called Litz wire. This measure helps to partially mitigate skin effect by forcing more equal current throughout the total cross section of the stranded conductors. Litz wire is used for making high-Q inductors, reducing losses in flexible conductors carrying very high currents at lower frequencies, and in the windings of devices carrying higher radio frequency current (up to hundreds of kilohertz), such as switch-mode power supplies and radio frequency transformers.

Techniques for reducing radiation loss[edit]

As written above, an alternating current is made of electric charge under periodic acceleration, which causes radiation of electromagnetic waves. Energy that is radiated is lost. Depending on the frequency, different techniques are used to minimize the loss due to radiation.

Twisted pairs[edit]

At frequencies up to about 1 GHz, pairs of wires are twisted together in a cable, forming a twisted pair. This reduces losses from electromagnetic radiation and inductive coupling. A twisted pair must be used with a balanced signalling system, so that the two wires carry equal but opposite currents. Each wire in a twisted pair radiates a signal, but it is effectively cancelled by radiation from the other wire, resulting in almost no radiation loss.

Coaxial cables[edit]

Coaxial cables are commonly used at audio frequencies and above for convenience. A coaxial cable has a conductive wire inside a conductive tube, separated by a dielectric layer. The current flowing on the surface of the inner conductor is equal and opposite to the current flowing on the inner surface of the outer tube. The electromagnetic field is thus completely contained within the tube, and (ideally) no energy is lost to radiation or coupling outside the tube. Coaxial cables have acceptably small losses for frequencies up to about 5 GHz. For microwave frequencies greater than 5 GHz, the losses (due mainly to the dielectric separating the inner and outer tubes being a non-ideal insulator) become too large, making waveguides a more efficient medium for transmitting energy. Coaxial cables often use a perforated dielectric layer to separate the inner and outer conductors in order to minimize the power dissipated by the dielectric.

Waveguides[edit]

Waveguides are similar to coaxial cables, as both consist of tubes, with the biggest difference being that waveguides have no inner conductor. Waveguides can have any arbitrary cross section, but rectangular cross sections are the most common. Because waveguides do not have an inner conductor to carry a return current, waveguides cannot deliver energy by means of an electric current, but rather by means of a guided electromagnetic field. Although surface currents do flow on the inner walls of the waveguides, those surface currents do not carry power. Power is carried by the guided electromagnetic fields. The surface currents are set up by the guided electromagnetic fields and have the effect of keeping the fields inside the waveguide and preventing leakage of the fields to the space outside the waveguide. Waveguides have dimensions comparable to the wavelength of the alternating current to be transmitted, so they are feasible only at microwave frequencies. In addition to this mechanical feasibility, electrical resistance of the non-ideal metals forming the walls of the waveguide causes dissipation of power (surface currents flowing on lossy conductors dissipate power). At higher frequencies, the power lost to this dissipation becomes unacceptably large.

Fiber optics[edit]

At frequencies greater than 200 GHz, waveguide dimensions become impractically small, and the ohmic losses in the waveguide walls become large. Instead, fiber optics, which are a form of dielectric waveguides, can be used. For such frequencies, the concepts of voltages and currents are no longer used.

Mathematics of AC voltages[edit]

A sinusoidal alternating voltage.

  1. Peak, also amplitude,
  2. Peak-to-peak,
  3. Effective value,
  4. Period

A sine wave, over one cycle (360°). The dashed line represents the root mean square (RMS) value at about 0.707.

Alternating currents are accompanied (or caused) by alternating voltages. An AC voltage v can be described mathematically as a function of time by the following equation:

{displaystyle v(t)=V_{text{peak}}sin(omega t)},

where

The peak-to-peak value of an AC voltage is defined as the difference between its positive peak and its negative peak. Since the maximum value of sin(x) is +1 and the minimum value is −1, an AC voltage swings between {displaystyle +V_{text{peak}}} and {displaystyle -V_{text{peak}}}. The peak-to-peak voltage, usually written as {displaystyle V_{text{pp}}} or {displaystyle V_{text{P-P}}}, is therefore {displaystyle V_{text{peak}}-(-V_{text{peak}})=2V_{text{peak}}}.

Power[edit]

The relationship between voltage and the power delivered is:

p(t)={frac {v^{2}(t)}{R}}

where R represents a load resistance.

Rather than using instantaneous power, p(t), it is more practical to use a time averaged power (where the averaging is performed over any integer number of cycles). Therefore, AC voltage is often expressed as a root mean square (RMS) value, written as {displaystyle V_{text{rms}}}, because

{displaystyle P_{text{time averaged}}={frac {{V_{text{rms}}}^{2}}{R}}.}
Power oscillation
{displaystyle {begin{aligned}v(t)&=V_{text{peak}}sin(omega t)\i(t)&={frac {v(t)}{R}}={frac {V_{text{peak}}}{R}}sin(omega t)\P(t)&=v(t)i(t)={frac {(V_{text{peak}})^{2}}{R}}sin ^{2}(omega t)end{aligned}}}

Root mean square voltage[edit]

Below an AC waveform (with no DC component) is assumed.

The RMS voltage is the square root of the mean over one cycle of the square of the instantaneous voltage.

Examples of alternating current[edit]

To illustrate these concepts, consider a 230 V AC mains supply used in many countries around the world. It is so called because its root mean square value is 230 V. This means that the time-averaged power delivered is equivalent to the power delivered by a DC voltage of 230 V. To determine the peak voltage (amplitude), we can rearrange the above equation to:

{displaystyle V_{text{peak}}={sqrt {2}} V_{text{rms}}.}

For 230 V AC, the peak voltage {displaystyle V_{text{peak}}} is therefore {displaystyle 230{text{ V}}times {sqrt {2}}}, which is about 325 V. During the course of one cycle the voltage rises from zero to 325 V, falls through zero to −325 V, and returns to zero.

Information transmission[edit]

Alternating current is used to transmit information, as in the cases of telephone and cable television. Information signals are carried over a wide range of AC frequencies. POTS telephone signals have a frequency of about 3 kHz, close to the baseband audio frequency. Cable television and other cable-transmitted information currents may alternate at frequencies of tens to thousands of megahertz. These frequencies are similar to the electromagnetic wave frequencies often used to transmit the same types of information over the air.

History[edit]

The first alternator to produce alternating current was a dynamo electric generator based on Michael Faraday’s principles constructed by the French instrument maker Hippolyte Pixii in 1832.[3] Pixii later added a commutator to his device to produce the (then) more commonly used direct current. The earliest recorded practical application of alternating current is by Guillaume Duchenne, inventor and developer of electrotherapy. In 1855, he announced that AC was superior to direct current for electrotherapeutic triggering of muscle contractions.[4] Alternating current technology was developed further by the Hungarian Ganz Works company (1870s), and in the 1880s: Sebastian Ziani de Ferranti, Lucien Gaulard, and Galileo Ferraris.

In 1876, Russian engineer Pavel Yablochkov invented a lighting system where sets of induction coils were installed along a high voltage AC line. Instead of changing voltage, the primary windings transferred power to the secondary windings which were connected to one or several ‘electric candles’ (arc lamps) of his own design,[5][6] used to keep the failure of one lamp from disabling the entire circuit.[5] In 1878, the Ganz factory, Budapest, Hungary, began manufacturing equipment for electric lighting and, by 1883, had installed over fifty systems in Austria-Hungary. Their AC systems used arc and incandescent lamps, generators, and other equipment.[7]

Transformers[edit]

Alternating current systems can use transformers to change voltage from low to high level and back, allowing generation and consumption at low voltages but transmission, possibly over great distances, at high voltage, with savings in the cost of conductors and energy losses. A bipolar open-core power transformer developed by Lucien Gaulard and John Dixon Gibbs was demonstrated in London in 1881, and attracted the interest of Westinghouse. They also exhibited the invention in Turin in 1884. However these early induction coils with open magnetic circuits are inefficient at transferring power to loads. Until about 1880, the paradigm for AC power transmission from a high voltage supply to a low voltage load was a series circuit. Open-core transformers with a ratio near 1:1 were connected with their primaries in series to allow use of a high voltage for transmission while presenting a low voltage to the lamps. The inherent flaw in this method was that turning off a single lamp (or other electric device) affected the voltage supplied to all others on the same circuit. Many adjustable transformer designs were introduced to compensate for this problematic characteristic of the series circuit, including those employing methods of adjusting the core or bypassing the magnetic flux around part of a coil.[8] The direct current systems did not have these drawbacks, giving it significant advantages over early AC systems.

Pioneers[edit]

The prototype of the ZBD transformer on display at the Széchenyi István Memorial Exhibition, Nagycenk in Hungary

In the autumn of 1884, Károly Zipernowsky, Ottó Bláthy and Miksa Déri (ZBD), three engineers associated with the Ganz Works of Budapest, determined that open-core devices were impractical, as they were incapable of reliably regulating voltage.[9] In their joint 1885 patent applications for novel transformers (later called ZBD transformers), they described two designs with closed magnetic circuits where copper windings were either wound around a ring core of iron wires or else surrounded by a core of iron wires.[8] In both designs, the magnetic flux linking the primary and secondary windings traveled almost entirely within the confines of the iron core, with no intentional path through air (see toroidal cores). The new transformers were 3.4 times more efficient than the open-core bipolar devices of Gaulard and Gibbs.[10] The Ganz factory in 1884 shipped the world’s first five high-efficiency AC transformers.[11] This first unit had been manufactured to the following specifications: 1,400 W, 40 Hz, 120:72 V, 11.6:19.4 A, ratio 1.67:1, one-phase, shell form.[11]

The ZBD patents included two other major interrelated innovations: one concerning the use of parallel connected, instead of series connected, utilization loads, the other concerning the ability to have high turns ratio transformers such that the supply network voltage could be much higher (initially 1400 V to 2000 V) than the voltage of utilization loads (100 V initially preferred).[12][13] When employed in parallel connected electric distribution systems, closed-core transformers finally made it technically and economically feasible to provide electric power for lighting in homes, businesses and public spaces.[14][15] Bláthy had suggested the use of closed cores, Zipernowsky had suggested the use of parallel shunt connections, and Déri had performed the experiments;[16]
The other essential milestone was the introduction of ‘voltage source, voltage intensive’ (VSVI) systems’[17] by the invention of constant voltage generators in 1885.[18] In early 1885, the three engineers also eliminated the problem of eddy current losses with the invention of the lamination of electromagnetic cores.[19] Ottó Bláthy also invented the first AC electricity meter.[20][21][22][23]

The AC power system was developed and adopted rapidly after 1886 due to its ability to distribute electricity efficiently over long distances, overcoming the limitations of the direct current system. In 1886, the ZBD engineers designed the world’s first power station that used AC generators to power a parallel-connected common electrical network, the steam-powered Rome-Cerchi power plant.[24] The reliability of the AC technology received impetus after the Ganz Works electrified a large European metropolis: Rome in 1886.[24]

In the UK, Sebastian de Ferranti, who had been developing AC generators and transformers in London since 1882, redesigned the AC system at the Grosvenor Gallery power station in 1886 for the London Electric Supply Corporation (LESCo) including alternators of his own design and transformer designs similar to Gaulard and Gibbs.[25] In 1890, he designed their power station at Deptford[26] and converted the Grosvenor Gallery station across the Thames into an electrical substation, showing the way to integrate older plants into a universal AC supply system.[27]

In the U.S., William Stanley, Jr. designed one of the first practical devices to transfer AC power efficiently between isolated circuits. Using pairs of coils wound on a common iron core, his design, called an induction coil, was an early transformer. Stanley also worked on engineering and adapting European designs such as the Gaulard and Gibbs transformer for US entrepreneur George Westinghouse who started building AC systems in 1886. The spread of Westinghouse and other AC systems triggered a push back in late 1887 by Thomas Edison (a proponent of direct current) who attempted to discredit alternating current as too dangerous in a public campaign called the «war of the currents». In 1888, alternating current systems gained further viability with introduction of a functional AC motor, something these systems had lacked up till then. The design, an induction motor, was independently invented by Galileo Ferraris and Nikola Tesla (with Tesla’s design being licensed by Westinghouse in the US). This design was further developed into the modern practical three-phase form by Mikhail Dolivo-Dobrovolsky, Charles Eugene Lancelot Brown,[28] and Jonas Wenström.

The Ames Hydroelectric Generating Plant and the original Niagara Falls Adams Power Plant were among the first hydroelectric alternating current power plants. The first long distance transmission of single-phase electricity was from a hydroelectric generating plant in Oregon at Willamette Falls which in 1890 sent power fourteen miles downriver to downtown Portland for street lighting.[29] In 1891, a second transmission system was installed in Telluride Colorado.[30] The San Antonio Canyon Generator was the third commercial single-phase hydroelectric AC power plant in the United States to provide long-distance electricity. It was completed on December 31, 1892, by Almarian William Decker to provide power to the city of Pomona, California, which was 14 miles away. In 1893, he designed the first commercial three-phase power plant in the United States using alternating current—the hydroelectric Mill Creek No. 1 Hydroelectric Plant near Redlands, California. Decker’s design incorporated 10 kV three-phase transmission and established the standards for the complete system of generation, transmission and motors used today. The Jaruga Hydroelectric Power Plant in Croatia was set in operation on 28 August 1895. The two generators (42 Hz, 550 kW each) and the transformers were produced and installed by the Hungarian company Ganz. The transmission line from the power plant to the City of Šibenik was 11.5 kilometers (7.1 mi) long on wooden towers, and the municipal distribution grid 3000 V/110 V included six transforming stations. Alternating current circuit theory developed rapidly in the latter part of the 19th and early 20th century. Notable contributors to the theoretical basis of alternating current calculations include Charles Steinmetz, Oliver Heaviside, and many others.[31][32] Calculations in unbalanced three-phase systems were simplified by the symmetrical components methods discussed by Charles LeGeyt Fortescue in 1918.

See also[edit]

  • AC power
  • Electrical wiring
  • Heavy-duty power plugs
  • Hertz
  • Mains electricity by country
  • AC power plugs and sockets
  • Utility frequency
  • War of the currents
  • AC/DC receiver design

References[edit]

  1. ^ N. N. Bhargava & D. C. Kulshreshtha (1983). Basic Electronics & Linear Circuits. Tata McGraw-Hill Education. p. 90. ISBN 978-0-07-451965-3.
  2. ^ National Electric Light Association (1915). Electrical meterman’s handbook. Trow Press. p. 81.
  3. ^ «Pixii Machine invented by Hippolyte Pixii, National High Magnetic Field Laboratory». Archived from the original on 2008-09-07. Retrieved 2012-03-23.
  4. ^ Licht, Sidney Herman (1967). «History of Electrotherapy». Therapeutic Electricity and Ultraviolet Radiation (2 ed.). New Haven. pp. 1–70. ISBN 9780853240631.
  5. ^ a b «Stanley Transformer». Los Alamos National Laboratory; University of Florida. Archived from the original on 2009-01-19. Retrieved Jan 9, 2009.
  6. ^ De Fonveille, W. (Jan 22, 1880). «Gas and Electricity in Paris». Nature. 21 (534): 283. Bibcode:1880Natur..21..282D. doi:10.1038/021282b0. Retrieved Jan 9, 2009.
  7. ^ Hughes, Thomas P. (1993). Networks of Power: Electrification in Western Society, 1880–1930. Baltimore: The Johns Hopkins University Press. p. 96. ISBN 0-8018-2873-2. Retrieved Sep 9, 2009.
  8. ^ a b Uppenborn, F. J. (1889). History of the Transformer. London: E. & F. N. Spon. pp. 35–41.
  9. ^ Hughes (1993), p. 95.
  10. ^ Jeszenszky, Sándor. «Electrostatics and Electrodynamics at Pest University in the Mid-19th Century» (PDF). University of Pavia. Archived (PDF) from the original on 2022-10-09. Retrieved Mar 3, 2012.
  11. ^ a b Halacsy, A. A.; Von Fuchs, G. H. (April 1961). «Transformer Invented 75 Years Ago». IEEE Transactions of the American Institute of Electrical Engineers. 80 (3): 121–125. doi:10.1109/AIEEPAS.1961.4500994. S2CID 51632693.
  12. ^ «Hungarian Inventors and Their Inventions». Institute for Developing Alternative Energy in Latin America. Archived from the original on 2012-03-22. Retrieved Mar 3, 2012.
  13. ^ «Bláthy, Ottó Titusz». Budapest University of Technology and Economics, National Technical Information Centre and Library. Retrieved Feb 29, 2012.
  14. ^ «Bláthy, Ottó Titusz (1860–1939)». Hungarian Patent Office. Retrieved Jan 29, 2004.
  15. ^ Zipernowsky, K.; Déri, M.; Bláthy, O.T. «Induction Coil» (PDF). U.S. Patent 352 105, issued Nov. 2, 1886. Archived (PDF) from the original on 2022-10-09. Retrieved July 8, 2009.
  16. ^ Smil, Vaclav (2005). Creating the Twentieth Century: Technical Innovations of 1867–1914 and Their Lasting Impact. Oxford: Oxford University Press. p. 71. ISBN 978-0-19-803774-3. ZBD transformer.
  17. ^ American Society for Engineering Education. Conference – 1995: Annual Conference Proceedings, Volume 2, (PAGE: 1848)
  18. ^ Hughes (1993), p. 96.
  19. ^ Electrical Society of Cornell University (1896). Proceedings of the Electrical Society of Cornell University. Andrus & Church. p. 39.
  20. ^ Eugenii Katz. «Blathy». People.clarkson.edu. Archived from the original on June 25, 2008. Retrieved 2009-08-04.
  21. ^ Ricks, G.W.D. (March 1896). «Electricity Supply Meters». Journal of the Institution of Electrical Engineers. 25 (120): 57–77. doi:10.1049/jiee-1.1896.0005. Student paper read on January 24, 1896, at the Students’ Meeting.
  22. ^ The Electrician, Volume 50. 1923
  23. ^ Official gazette of the United States Patent Office: Volume 50. (1890)
  24. ^ a b «Ottó Bláthy, Miksa Déri, Károly Zipernowsky». IEC Techline. Archived from the original on September 30, 2007. Retrieved Apr 16, 2010.
  25. ^ Hughes (1993), p. 98.
  26. ^ «Ferranti Timeline». Museum of Science and Industry (Manchester). Archived from the original on 2015-10-03. Retrieved February 22, 2012.
  27. ^ Hughes (1993), p. 208.
  28. ^ Heertje, Arnold; Perlman, Mark (1990). Evolving Technology and Market Structure: Studies in Schumpeterian Economics. p. 138. ISBN 9780472101924.
  29. ^ «Electric Transmission of Power». General Electric Review. XVIII. 1915.
  30. ^ «Electric Transmission of Power». General Electric. XVIII. 1915.
  31. ^ Grattan-Guinness, I. (September 19, 2003). Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. JHU Press. ISBN 978-0-8018-7397-3 – via Google Books.
  32. ^ Suzuki, Jeff (August 27, 2009). Mathematics in Historical Context. MAA. ISBN 978-0-88385-570-6 – via Google Books.

Further reading[edit]

  • Willam A. Meyers, History and Reflections on the Way Things Were: Mill Creek Power Plant – Making History with AC, IEEE Power Engineering Review, February 1997, pp. 22–24

External links[edit]

  • «AC/DC: What’s the Difference?«. Edison’s Miracle of Light, American Experience. (PBS)
  • «AC/DC: Inside the AC Generator Archived 2014-12-28 at the Wayback Machine«. Edison’s Miracle of Light, American Experience. (PBS)
  • Kuphaldt, Tony R., «Lessons In Electric Circuits : Volume II – AC«. March 8, 2003. (Design Science License)
  • Professor Mark Csele’s tour of the 25 Hz Rankine generating station
  • Blalock, Thomas J., «The Frequency Changer Era: Interconnecting Systems of Varying Cycles«. The history of various frequencies and interconversion schemes in the US at the beginning of the 20th century
  • AC Power History and Timeline

Alternating current (green curve). The horizontal axis measures time (it also represents zero voltage/current) ; the vertical, current or voltage.

Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. A common source of DC power is a battery cell in a flashlight. The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage.[1][2]

The usual waveform of alternating current in most electric power circuits is a sine wave, whose positive half-period corresponds with positive direction of the current and vice versa. In certain applications, like guitar amplifiers, different waveforms are used, such as triangular waves or square waves. Audio and radio signals carried on electrical wires are also examples of alternating current. These types of alternating current carry information such as sound (audio) or images (video) sometimes carried by modulation of an AC carrier signal. These currents typically alternate at higher frequencies than those used in power transmission.

Transmission, distribution, and domestic power supply[edit]

A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step down transformer , C=consumers.

Electrical energy is distributed as alternating current because AC voltage may be increased or decreased with a transformer. This allows the power to be transmitted through power lines efficiently at high voltage, which reduces the energy lost as heat due to resistance of the wire, and transformed to a lower, safer, voltage for use. Use of a higher voltage leads to significantly more efficient transmission of power. The power losses ({displaystyle P_{rm {w}}}) in the wire are a product of the square of the current ( I ) and the resistance (R) of the wire, described by the formula:

{displaystyle P_{rm {w}}=I^{2}R,.}

This means that when transmitting a fixed power on a given wire, if the current is halved (i.e. the voltage is doubled), the power loss due to the wire’s resistance will be reduced to one quarter.

The power transmitted is equal to the product of the current and the voltage (assuming no phase difference); that is,

{displaystyle P_{rm {t}}=IV,.}

Consequently, power transmitted at a higher voltage requires less loss-producing current than for the same power at a lower voltage. Power is often transmitted at hundreds of kilovolts on pylons, and transformed down to tens of kilovolts to be transmitted on lower level lines, and finally transformed down to 100 V – 240 V for domestic use.

Three-phase high-voltage transmission lines use alternating currents to distribute power over long distances between electric generation plants and consumers. The lines in the picture are located in eastern Utah.

High voltages have disadvantages, such as the increased insulation required, and generally increased difficulty in their safe handling. In a power plant, energy is generated at a convenient voltage for the design of a generator, and then stepped up to a high voltage for transmission. Near the loads, the transmission voltage is stepped down to the voltages used by equipment. Consumer voltages vary somewhat depending on the country and size of load, but generally motors and lighting are built to use up to a few hundred volts between phases. The voltage delivered to equipment such as lighting and motor loads is standardized, with an allowable range of voltage over which equipment is expected to operate. Standard power utilization voltages and percentage tolerance vary in the different mains power systems found in the world. High-voltage direct-current (HVDC) electric power transmission systems have become more viable as technology has provided efficient means of changing the voltage of DC power. Transmission with high voltage direct current was not feasible in the early days of electric power transmission, as there was then no economically viable way to step down the voltage of DC for end user applications such as lighting incandescent bulbs.

Three-phase electrical generation is very common. The simplest way is to use three separate coils in the generator stator, physically offset by an angle of 120° (one-third of a complete 360° phase) to each other. Three current waveforms are produced that are equal in magnitude and 120° out of phase to each other. If coils are added opposite to these (60° spacing), they generate the same phases with reverse polarity and so can be simply wired together. In practice, higher «pole orders» are commonly used. For example, a 12-pole machine would have 36 coils (10° spacing). The advantage is that lower rotational speeds can be used to generate the same frequency. For example, a 2-pole machine running at 3600 rpm and a 12-pole machine running at 600 rpm produce the same frequency; the lower speed is preferable for larger machines. If the load on a three-phase system is balanced equally among the phases, no current flows through the neutral point. Even in the worst-case unbalanced (linear) load, the neutral current will not exceed the highest of the phase currents. Non-linear loads (e.g. the switch-mode power supplies widely used) may require an oversized neutral bus and neutral conductor in the upstream distribution panel to handle harmonics. Harmonics can cause neutral conductor current levels to exceed that of one or all phase conductors.

For three-phase at utilization voltages a four-wire system is often used. When stepping down three-phase, a transformer with a Delta (3-wire) primary and a Star (4-wire, center-earthed) secondary is often used so there is no need for a neutral on the supply side. For smaller customers (just how small varies by country and age of the installation) only a single phase and neutral, or two phases and neutral, are taken to the property. For larger installations all three phases and neutral are taken to the main distribution panel. From the three-phase main panel, both single and three-phase circuits may lead off. Three-wire single-phase systems, with a single center-tapped transformer giving two live conductors, is a common distribution scheme for residential and small commercial buildings in North America. This arrangement is sometimes incorrectly referred to as «two phase». A similar method is used for a different reason on construction sites in the UK. Small power tools and lighting are supposed to be supplied by a local center-tapped transformer with a voltage of 55 V between each power conductor and earth. This significantly reduces the risk of electric shock in the event that one of the live conductors becomes exposed through an equipment fault whilst still allowing a reasonable voltage of 110 V between the two conductors for running the tools.

A third wire, called the bond (or earth) wire, is often connected between non-current-carrying metal enclosures and earth ground. This conductor provides protection from electric shock due to accidental contact of circuit conductors with the metal chassis of portable appliances and tools. Bonding all non-current-carrying metal parts into one complete system ensures there is always a low electrical impedance path to ground sufficient to carry any fault current for as long as it takes for the system to clear the fault. This low impedance path allows the maximum amount of fault current, causing the overcurrent protection device (breakers, fuses) to trip or burn out as quickly as possible, bringing the electrical system to a safe state. All bond wires are bonded to ground at the main service panel, as is the neutral/identified conductor if present.

AC power supply frequencies[edit]

The frequency of the electrical system varies by country and sometimes within a country; most electric power is generated at either 50 or 60 Hertz. Some countries have a mixture of 50 Hz and 60 Hz supplies, notably electricity power transmission in Japan. A low frequency eases the design of electric motors, particularly for hoisting, crushing and rolling applications, and commutator-type traction motors for applications such as railways. However, low frequency also causes noticeable flicker in arc lamps and incandescent light bulbs. The use of lower frequencies also provided the advantage of lower transmission losses, which are proportional to frequency. The original Niagara Falls generators were built to produce 25 Hz power, as a compromise between low frequency for traction and heavy induction motors, while still allowing incandescent lighting to operate (although with noticeable flicker). Most of the 25 Hz residential and commercial customers for Niagara Falls power were converted to 60 Hz by the late 1950s, although some[which?] 25 Hz industrial customers still existed as of the start of the 21st century. 16.7 Hz power (formerly 16 2/3 Hz) is still used in some European rail systems, such as in Austria, Germany, Norway, Sweden and Switzerland. Off-shore, military, textile industry, marine, aircraft, and spacecraft applications sometimes use 400 Hz, for benefits of reduced weight of apparatus or higher motor speeds. Computer mainframe systems were often powered by 400 Hz or 415 Hz for benefits of ripple reduction while using smaller internal AC to DC conversion units.[citation needed]

Effects at high frequencies[edit]

A direct current flows uniformly throughout the cross-section of a homogeneous electrically conducting wire. An alternating current of any frequency is forced away from the wire’s center, toward its outer surface. This is because an alternating current (which is the result of the acceleration of electric charge) creates electromagnetic waves (a phenomenon known as electromagnetic radiation). Electric conductors are not conducive to electromagnetic waves (a perfect electric conductor prohibits all electromagnetic waves within its boundary), so a wire that is made of a non-perfect conductor (a conductor with finite, rather than infinite, electrical conductivity) pushes the alternating current, along with their associated electromagnetic fields, away from the wire’s center. The phenomenon of alternating current being pushed away from the center of the conductor is called skin effect, and a direct current does not exhibit this effect, since a direct current does not create electromagnetic waves.

At very high frequencies, the current no longer flows in the wire, but effectively flows on the surface of the wire, within a thickness of a few skin depths. The skin depth is the thickness at which the current density is reduced by 63% (a reduction of one neper). Even at relatively low frequencies used for power transmission (50 Hz – 60 Hz), non-uniform distribution of current still occurs in sufficiently thick conductors. For example, the skin depth of a copper conductor is approximately 8.57 mm at 60 Hz, so high current conductors are usually hollow to reduce their mass and cost. Since the current tends to flow in the periphery of conductors, the effective cross-section of the conductor is reduced. This increases the effective AC resistance of the conductor, since resistance is inversely proportional to the cross-sectional area. The AC resistance is often many times higher than the DC resistance, causing a much higher energy loss due to ohmic heating (also called I2R loss).

Techniques for reducing AC resistance[edit]

For low to medium frequencies, conductors can be divided into stranded wires, each insulated from the others, with the relative positions of individual strands specially arranged within the conductor bundle. Wire constructed using this technique is called Litz wire. This measure helps to partially mitigate skin effect by forcing more equal current throughout the total cross section of the stranded conductors. Litz wire is used for making high-Q inductors, reducing losses in flexible conductors carrying very high currents at lower frequencies, and in the windings of devices carrying higher radio frequency current (up to hundreds of kilohertz), such as switch-mode power supplies and radio frequency transformers.

Techniques for reducing radiation loss[edit]

As written above, an alternating current is made of electric charge under periodic acceleration, which causes radiation of electromagnetic waves. Energy that is radiated is lost. Depending on the frequency, different techniques are used to minimize the loss due to radiation.

Twisted pairs[edit]

At frequencies up to about 1 GHz, pairs of wires are twisted together in a cable, forming a twisted pair. This reduces losses from electromagnetic radiation and inductive coupling. A twisted pair must be used with a balanced signalling system, so that the two wires carry equal but opposite currents. Each wire in a twisted pair radiates a signal, but it is effectively cancelled by radiation from the other wire, resulting in almost no radiation loss.

Coaxial cables[edit]

Coaxial cables are commonly used at audio frequencies and above for convenience. A coaxial cable has a conductive wire inside a conductive tube, separated by a dielectric layer. The current flowing on the surface of the inner conductor is equal and opposite to the current flowing on the inner surface of the outer tube. The electromagnetic field is thus completely contained within the tube, and (ideally) no energy is lost to radiation or coupling outside the tube. Coaxial cables have acceptably small losses for frequencies up to about 5 GHz. For microwave frequencies greater than 5 GHz, the losses (due mainly to the dielectric separating the inner and outer tubes being a non-ideal insulator) become too large, making waveguides a more efficient medium for transmitting energy. Coaxial cables often use a perforated dielectric layer to separate the inner and outer conductors in order to minimize the power dissipated by the dielectric.

Waveguides[edit]

Waveguides are similar to coaxial cables, as both consist of tubes, with the biggest difference being that waveguides have no inner conductor. Waveguides can have any arbitrary cross section, but rectangular cross sections are the most common. Because waveguides do not have an inner conductor to carry a return current, waveguides cannot deliver energy by means of an electric current, but rather by means of a guided electromagnetic field. Although surface currents do flow on the inner walls of the waveguides, those surface currents do not carry power. Power is carried by the guided electromagnetic fields. The surface currents are set up by the guided electromagnetic fields and have the effect of keeping the fields inside the waveguide and preventing leakage of the fields to the space outside the waveguide. Waveguides have dimensions comparable to the wavelength of the alternating current to be transmitted, so they are feasible only at microwave frequencies. In addition to this mechanical feasibility, electrical resistance of the non-ideal metals forming the walls of the waveguide causes dissipation of power (surface currents flowing on lossy conductors dissipate power). At higher frequencies, the power lost to this dissipation becomes unacceptably large.

Fiber optics[edit]

At frequencies greater than 200 GHz, waveguide dimensions become impractically small, and the ohmic losses in the waveguide walls become large. Instead, fiber optics, which are a form of dielectric waveguides, can be used. For such frequencies, the concepts of voltages and currents are no longer used.

Mathematics of AC voltages[edit]

A sinusoidal alternating voltage.

  1. Peak, also amplitude,
  2. Peak-to-peak,
  3. Effective value,
  4. Period

A sine wave, over one cycle (360°). The dashed line represents the root mean square (RMS) value at about 0.707.

Alternating currents are accompanied (or caused) by alternating voltages. An AC voltage v can be described mathematically as a function of time by the following equation:

{displaystyle v(t)=V_{text{peak}}sin(omega t)},

where

The peak-to-peak value of an AC voltage is defined as the difference between its positive peak and its negative peak. Since the maximum value of sin(x) is +1 and the minimum value is −1, an AC voltage swings between {displaystyle +V_{text{peak}}} and {displaystyle -V_{text{peak}}}. The peak-to-peak voltage, usually written as {displaystyle V_{text{pp}}} or {displaystyle V_{text{P-P}}}, is therefore {displaystyle V_{text{peak}}-(-V_{text{peak}})=2V_{text{peak}}}.

Power[edit]

The relationship between voltage and the power delivered is:

p(t)={frac {v^{2}(t)}{R}}

where R represents a load resistance.

Rather than using instantaneous power, p(t), it is more practical to use a time averaged power (where the averaging is performed over any integer number of cycles). Therefore, AC voltage is often expressed as a root mean square (RMS) value, written as {displaystyle V_{text{rms}}}, because

{displaystyle P_{text{time averaged}}={frac {{V_{text{rms}}}^{2}}{R}}.}
Power oscillation
{displaystyle {begin{aligned}v(t)&=V_{text{peak}}sin(omega t)\i(t)&={frac {v(t)}{R}}={frac {V_{text{peak}}}{R}}sin(omega t)\P(t)&=v(t)i(t)={frac {(V_{text{peak}})^{2}}{R}}sin ^{2}(omega t)end{aligned}}}

Root mean square voltage[edit]

Below an AC waveform (with no DC component) is assumed.

The RMS voltage is the square root of the mean over one cycle of the square of the instantaneous voltage.

Examples of alternating current[edit]

To illustrate these concepts, consider a 230 V AC mains supply used in many countries around the world. It is so called because its root mean square value is 230 V. This means that the time-averaged power delivered is equivalent to the power delivered by a DC voltage of 230 V. To determine the peak voltage (amplitude), we can rearrange the above equation to:

{displaystyle V_{text{peak}}={sqrt {2}} V_{text{rms}}.}

For 230 V AC, the peak voltage {displaystyle V_{text{peak}}} is therefore {displaystyle 230{text{ V}}times {sqrt {2}}}, which is about 325 V. During the course of one cycle the voltage rises from zero to 325 V, falls through zero to −325 V, and returns to zero.

Information transmission[edit]

Alternating current is used to transmit information, as in the cases of telephone and cable television. Information signals are carried over a wide range of AC frequencies. POTS telephone signals have a frequency of about 3 kHz, close to the baseband audio frequency. Cable television and other cable-transmitted information currents may alternate at frequencies of tens to thousands of megahertz. These frequencies are similar to the electromagnetic wave frequencies often used to transmit the same types of information over the air.

History[edit]

The first alternator to produce alternating current was a dynamo electric generator based on Michael Faraday’s principles constructed by the French instrument maker Hippolyte Pixii in 1832.[3] Pixii later added a commutator to his device to produce the (then) more commonly used direct current. The earliest recorded practical application of alternating current is by Guillaume Duchenne, inventor and developer of electrotherapy. In 1855, he announced that AC was superior to direct current for electrotherapeutic triggering of muscle contractions.[4] Alternating current technology was developed further by the Hungarian Ganz Works company (1870s), and in the 1880s: Sebastian Ziani de Ferranti, Lucien Gaulard, and Galileo Ferraris.

In 1876, Russian engineer Pavel Yablochkov invented a lighting system where sets of induction coils were installed along a high voltage AC line. Instead of changing voltage, the primary windings transferred power to the secondary windings which were connected to one or several ‘electric candles’ (arc lamps) of his own design,[5][6] used to keep the failure of one lamp from disabling the entire circuit.[5] In 1878, the Ganz factory, Budapest, Hungary, began manufacturing equipment for electric lighting and, by 1883, had installed over fifty systems in Austria-Hungary. Their AC systems used arc and incandescent lamps, generators, and other equipment.[7]

Transformers[edit]

Alternating current systems can use transformers to change voltage from low to high level and back, allowing generation and consumption at low voltages but transmission, possibly over great distances, at high voltage, with savings in the cost of conductors and energy losses. A bipolar open-core power transformer developed by Lucien Gaulard and John Dixon Gibbs was demonstrated in London in 1881, and attracted the interest of Westinghouse. They also exhibited the invention in Turin in 1884. However these early induction coils with open magnetic circuits are inefficient at transferring power to loads. Until about 1880, the paradigm for AC power transmission from a high voltage supply to a low voltage load was a series circuit. Open-core transformers with a ratio near 1:1 were connected with their primaries in series to allow use of a high voltage for transmission while presenting a low voltage to the lamps. The inherent flaw in this method was that turning off a single lamp (or other electric device) affected the voltage supplied to all others on the same circuit. Many adjustable transformer designs were introduced to compensate for this problematic characteristic of the series circuit, including those employing methods of adjusting the core or bypassing the magnetic flux around part of a coil.[8] The direct current systems did not have these drawbacks, giving it significant advantages over early AC systems.

Pioneers[edit]

The prototype of the ZBD transformer on display at the Széchenyi István Memorial Exhibition, Nagycenk in Hungary

In the autumn of 1884, Károly Zipernowsky, Ottó Bláthy and Miksa Déri (ZBD), three engineers associated with the Ganz Works of Budapest, determined that open-core devices were impractical, as they were incapable of reliably regulating voltage.[9] In their joint 1885 patent applications for novel transformers (later called ZBD transformers), they described two designs with closed magnetic circuits where copper windings were either wound around a ring core of iron wires or else surrounded by a core of iron wires.[8] In both designs, the magnetic flux linking the primary and secondary windings traveled almost entirely within the confines of the iron core, with no intentional path through air (see toroidal cores). The new transformers were 3.4 times more efficient than the open-core bipolar devices of Gaulard and Gibbs.[10] The Ganz factory in 1884 shipped the world’s first five high-efficiency AC transformers.[11] This first unit had been manufactured to the following specifications: 1,400 W, 40 Hz, 120:72 V, 11.6:19.4 A, ratio 1.67:1, one-phase, shell form.[11]

The ZBD patents included two other major interrelated innovations: one concerning the use of parallel connected, instead of series connected, utilization loads, the other concerning the ability to have high turns ratio transformers such that the supply network voltage could be much higher (initially 1400 V to 2000 V) than the voltage of utilization loads (100 V initially preferred).[12][13] When employed in parallel connected electric distribution systems, closed-core transformers finally made it technically and economically feasible to provide electric power for lighting in homes, businesses and public spaces.[14][15] Bláthy had suggested the use of closed cores, Zipernowsky had suggested the use of parallel shunt connections, and Déri had performed the experiments;[16]
The other essential milestone was the introduction of ‘voltage source, voltage intensive’ (VSVI) systems’[17] by the invention of constant voltage generators in 1885.[18] In early 1885, the three engineers also eliminated the problem of eddy current losses with the invention of the lamination of electromagnetic cores.[19] Ottó Bláthy also invented the first AC electricity meter.[20][21][22][23]

The AC power system was developed and adopted rapidly after 1886 due to its ability to distribute electricity efficiently over long distances, overcoming the limitations of the direct current system. In 1886, the ZBD engineers designed the world’s first power station that used AC generators to power a parallel-connected common electrical network, the steam-powered Rome-Cerchi power plant.[24] The reliability of the AC technology received impetus after the Ganz Works electrified a large European metropolis: Rome in 1886.[24]

In the UK, Sebastian de Ferranti, who had been developing AC generators and transformers in London since 1882, redesigned the AC system at the Grosvenor Gallery power station in 1886 for the London Electric Supply Corporation (LESCo) including alternators of his own design and transformer designs similar to Gaulard and Gibbs.[25] In 1890, he designed their power station at Deptford[26] and converted the Grosvenor Gallery station across the Thames into an electrical substation, showing the way to integrate older plants into a universal AC supply system.[27]

In the U.S., William Stanley, Jr. designed one of the first practical devices to transfer AC power efficiently between isolated circuits. Using pairs of coils wound on a common iron core, his design, called an induction coil, was an early transformer. Stanley also worked on engineering and adapting European designs such as the Gaulard and Gibbs transformer for US entrepreneur George Westinghouse who started building AC systems in 1886. The spread of Westinghouse and other AC systems triggered a push back in late 1887 by Thomas Edison (a proponent of direct current) who attempted to discredit alternating current as too dangerous in a public campaign called the «war of the currents». In 1888, alternating current systems gained further viability with introduction of a functional AC motor, something these systems had lacked up till then. The design, an induction motor, was independently invented by Galileo Ferraris and Nikola Tesla (with Tesla’s design being licensed by Westinghouse in the US). This design was further developed into the modern practical three-phase form by Mikhail Dolivo-Dobrovolsky, Charles Eugene Lancelot Brown,[28] and Jonas Wenström.

The Ames Hydroelectric Generating Plant and the original Niagara Falls Adams Power Plant were among the first hydroelectric alternating current power plants. The first long distance transmission of single-phase electricity was from a hydroelectric generating plant in Oregon at Willamette Falls which in 1890 sent power fourteen miles downriver to downtown Portland for street lighting.[29] In 1891, a second transmission system was installed in Telluride Colorado.[30] The San Antonio Canyon Generator was the third commercial single-phase hydroelectric AC power plant in the United States to provide long-distance electricity. It was completed on December 31, 1892, by Almarian William Decker to provide power to the city of Pomona, California, which was 14 miles away. In 1893, he designed the first commercial three-phase power plant in the United States using alternating current—the hydroelectric Mill Creek No. 1 Hydroelectric Plant near Redlands, California. Decker’s design incorporated 10 kV three-phase transmission and established the standards for the complete system of generation, transmission and motors used today. The Jaruga Hydroelectric Power Plant in Croatia was set in operation on 28 August 1895. The two generators (42 Hz, 550 kW each) and the transformers were produced and installed by the Hungarian company Ganz. The transmission line from the power plant to the City of Šibenik was 11.5 kilometers (7.1 mi) long on wooden towers, and the municipal distribution grid 3000 V/110 V included six transforming stations. Alternating current circuit theory developed rapidly in the latter part of the 19th and early 20th century. Notable contributors to the theoretical basis of alternating current calculations include Charles Steinmetz, Oliver Heaviside, and many others.[31][32] Calculations in unbalanced three-phase systems were simplified by the symmetrical components methods discussed by Charles LeGeyt Fortescue in 1918.

See also[edit]

  • AC power
  • Electrical wiring
  • Heavy-duty power plugs
  • Hertz
  • Mains electricity by country
  • AC power plugs and sockets
  • Utility frequency
  • War of the currents
  • AC/DC receiver design

References[edit]

  1. ^ N. N. Bhargava & D. C. Kulshreshtha (1983). Basic Electronics & Linear Circuits. Tata McGraw-Hill Education. p. 90. ISBN 978-0-07-451965-3.
  2. ^ National Electric Light Association (1915). Electrical meterman’s handbook. Trow Press. p. 81.
  3. ^ «Pixii Machine invented by Hippolyte Pixii, National High Magnetic Field Laboratory». Archived from the original on 2008-09-07. Retrieved 2012-03-23.
  4. ^ Licht, Sidney Herman (1967). «History of Electrotherapy». Therapeutic Electricity and Ultraviolet Radiation (2 ed.). New Haven. pp. 1–70. ISBN 9780853240631.
  5. ^ a b «Stanley Transformer». Los Alamos National Laboratory; University of Florida. Archived from the original on 2009-01-19. Retrieved Jan 9, 2009.
  6. ^ De Fonveille, W. (Jan 22, 1880). «Gas and Electricity in Paris». Nature. 21 (534): 283. Bibcode:1880Natur..21..282D. doi:10.1038/021282b0. Retrieved Jan 9, 2009.
  7. ^ Hughes, Thomas P. (1993). Networks of Power: Electrification in Western Society, 1880–1930. Baltimore: The Johns Hopkins University Press. p. 96. ISBN 0-8018-2873-2. Retrieved Sep 9, 2009.
  8. ^ a b Uppenborn, F. J. (1889). History of the Transformer. London: E. & F. N. Spon. pp. 35–41.
  9. ^ Hughes (1993), p. 95.
  10. ^ Jeszenszky, Sándor. «Electrostatics and Electrodynamics at Pest University in the Mid-19th Century» (PDF). University of Pavia. Archived (PDF) from the original on 2022-10-09. Retrieved Mar 3, 2012.
  11. ^ a b Halacsy, A. A.; Von Fuchs, G. H. (April 1961). «Transformer Invented 75 Years Ago». IEEE Transactions of the American Institute of Electrical Engineers. 80 (3): 121–125. doi:10.1109/AIEEPAS.1961.4500994. S2CID 51632693.
  12. ^ «Hungarian Inventors and Their Inventions». Institute for Developing Alternative Energy in Latin America. Archived from the original on 2012-03-22. Retrieved Mar 3, 2012.
  13. ^ «Bláthy, Ottó Titusz». Budapest University of Technology and Economics, National Technical Information Centre and Library. Retrieved Feb 29, 2012.
  14. ^ «Bláthy, Ottó Titusz (1860–1939)». Hungarian Patent Office. Retrieved Jan 29, 2004.
  15. ^ Zipernowsky, K.; Déri, M.; Bláthy, O.T. «Induction Coil» (PDF). U.S. Patent 352 105, issued Nov. 2, 1886. Archived (PDF) from the original on 2022-10-09. Retrieved July 8, 2009.
  16. ^ Smil, Vaclav (2005). Creating the Twentieth Century: Technical Innovations of 1867–1914 and Their Lasting Impact. Oxford: Oxford University Press. p. 71. ISBN 978-0-19-803774-3. ZBD transformer.
  17. ^ American Society for Engineering Education. Conference – 1995: Annual Conference Proceedings, Volume 2, (PAGE: 1848)
  18. ^ Hughes (1993), p. 96.
  19. ^ Electrical Society of Cornell University (1896). Proceedings of the Electrical Society of Cornell University. Andrus & Church. p. 39.
  20. ^ Eugenii Katz. «Blathy». People.clarkson.edu. Archived from the original on June 25, 2008. Retrieved 2009-08-04.
  21. ^ Ricks, G.W.D. (March 1896). «Electricity Supply Meters». Journal of the Institution of Electrical Engineers. 25 (120): 57–77. doi:10.1049/jiee-1.1896.0005. Student paper read on January 24, 1896, at the Students’ Meeting.
  22. ^ The Electrician, Volume 50. 1923
  23. ^ Official gazette of the United States Patent Office: Volume 50. (1890)
  24. ^ a b «Ottó Bláthy, Miksa Déri, Károly Zipernowsky». IEC Techline. Archived from the original on September 30, 2007. Retrieved Apr 16, 2010.
  25. ^ Hughes (1993), p. 98.
  26. ^ «Ferranti Timeline». Museum of Science and Industry (Manchester). Archived from the original on 2015-10-03. Retrieved February 22, 2012.
  27. ^ Hughes (1993), p. 208.
  28. ^ Heertje, Arnold; Perlman, Mark (1990). Evolving Technology and Market Structure: Studies in Schumpeterian Economics. p. 138. ISBN 9780472101924.
  29. ^ «Electric Transmission of Power». General Electric Review. XVIII. 1915.
  30. ^ «Electric Transmission of Power». General Electric. XVIII. 1915.
  31. ^ Grattan-Guinness, I. (September 19, 2003). Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. JHU Press. ISBN 978-0-8018-7397-3 – via Google Books.
  32. ^ Suzuki, Jeff (August 27, 2009). Mathematics in Historical Context. MAA. ISBN 978-0-88385-570-6 – via Google Books.

Further reading[edit]

  • Willam A. Meyers, History and Reflections on the Way Things Were: Mill Creek Power Plant – Making History with AC, IEEE Power Engineering Review, February 1997, pp. 22–24

External links[edit]

  • «AC/DC: What’s the Difference?«. Edison’s Miracle of Light, American Experience. (PBS)
  • «AC/DC: Inside the AC Generator Archived 2014-12-28 at the Wayback Machine«. Edison’s Miracle of Light, American Experience. (PBS)
  • Kuphaldt, Tony R., «Lessons In Electric Circuits : Volume II – AC«. March 8, 2003. (Design Science License)
  • Professor Mark Csele’s tour of the 25 Hz Rankine generating station
  • Blalock, Thomas J., «The Frequency Changer Era: Interconnecting Systems of Varying Cycles«. The history of various frequencies and interconversion schemes in the US at the beginning of the 20th century
  • AC Power History and Timeline
  • Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

  • Условие квазистационарности

  • Резистор в цепи переменного тока

  • Конденсатор в цепи переменного тока

  • Катушка в цепи переменного тока

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток — это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

А сейчас мы рассмотрим простейшие цепи переменного тока. Будем подключать к источнику переменного напряжения поочерёдно: резистор сопротивлением R, конденсатор ёмкости C и катушку индуктивности L. Изучив поведение этих элементов, мы в следующем листке «Переменный ток. 2» подключим их одновременно и исследуем прохождение переменного тока через колебательный контур, обладающий сопротивлением.

Напряжение на клеммах источника меняется по закону:

U = U_0 sin omega t. (1)

Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным.

Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус — принципиально от этого ничего не изменится.

Текущее значение напряжения U(t) в момент времени t называется мгновенным значением напряжения.

к оглавлению ▴

Условие квазистационарности

В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи — на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

Возьмём, к примеру, переменное напряжение частоты nu = 50 Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: T = 1/ nu = 0,02 с.

Взаимодействие между зарядами передаётся со скоростью света: c = 3 cdot 10^8 м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

cT = 6 cdot 106 м = 6000 км.

Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой omega. Период колебаний равен T = 2 pi/ omega, и за это время взаимодействие между зарядами передаётся на расстояние cT. Пусть l — длина цепи. Мы можем пренебречь временем распространения взаимодействия, если l много меньше cT:

l ll cT. (2)

Неравенство (2) называется условием квазистационарности. При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным.

В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока I во всех последовательно включённых элементах цепи будет принимать одинаковое значение — своё в каждый момент времени. Оно называется мгновенным значением силы тока.

к оглавлению ▴

Резистор в цепи переменного тока

Простейшая цепь переменного тока получится, если к источнику переменного напряжения U = U_0 sin omega t подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) R, называемый также активным сопротивлением (рис. 1)

Рис. 1. Резистор в цепи переменного тока

Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

I = frac{displaystyle U}{displaystyle R vphantom{1^a}} = frac{displaystyle U_0}{displaystyle R vphantom{1^a}} sin omega t.

Таким образом, сила тока в резисторе также меняется по закону синуса:

I = I_0 sin omega t.

Амплитуда тока I_0 равна отношению амплитуды напряжения U_0 к сопротивлению R:

I_0 = frac{displaystyle U_0}{displaystyle R vphantom{1^a}}.

Мы видим, что сила тока через резистор и напряжение на нём меняются «синхронно», точнее говоря — синфазно (рис. 2).

Рис. 2. Ток через резистор совпадает по фазе с напряжением

Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

к оглавлению ▴

Конденсатор в цепи переменного тока

Постоянный ток через конденсатор не течёт — для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

Рассмотрим конденсатор ёмкости C, подключённый к источнику синусоидального напряжения (рис. 3). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.

Рис. 3. Конденсатор в цепи переменного тока

Как и ранее, обозначим через q заряд той пластины конденсатора, на которую течёт положительный ток — в данном случае это будет правая пластина. Тогда знак величины q совпадает со знаком напряжения U. Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство dot{q} = I.

Напряжение на конденсаторе равно напряжению источника:

frac{displaystyle q}{displaystyle C vphantom{1^a}} = U = U_0 sin omega t.

Отсюда

q = CU_0 sin omega t.

Дифференцируя это равенство по времени, находим силу тока через конденсатор:

I = dot{q} = CU_0 omega cos omega t. (3)

Графики тока и напряжения представлены на рис. 4. Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на pi/2 больше фазы напряжения (ток опережает по фазе напряжение на pi/2).

Рис. 4. Ток через конденсатор опережает по фазе напряжение на pi/2

Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

cos varphi = sin left ( varphi + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}}  right ).

Используя её, получим из (3):

I = CU_0 omegasin left ( omega t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}}  right ).

И теперь мы чётко видим, что фаза тока больше фазы напряжения на pi/2.

Для амплитуды силы тока имеем:

I_0 = CU_0 omega = frac{displaystyle U_0}{displaystyle 1/left ( omega C right ) vphantom{1^a}}.

Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

I_0 = frac{displaystyle U_0}{displaystyle X_C vphantom{1^a}},

где

X_C = frac{displaystyle 1}{displaystyle omega C vphantom{1^a}}.

Величина X_C называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

1. Чем больше частота колебаний (при фиксированной ёмкости C), тем за меньшее время по цепи проходит заряд CU_0; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При omega rightarrow infty ёмкостное сопротивление стремится к нулю: X_C rightarrow 0. Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при omega rightarrow 0 имеем X_C rightarrow infty. Это неудивительно: случай omega = 0 отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд CU_0 проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока — по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

к оглавлению ▴

Катушка в цепи переменного тока

Теперь подключим к нашему источнику переменного напряжения катушку индуктивности L (рис. 5). Активное сопротивление катушки считается равным нулю.

Рис. 5. Катушка в цепи переменного тока

Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле vec{E_B}, которое, оказывается, в точности уравновешивает кулоновское поле vec{E} движущихся зарядов:

vec{E} + vec{E_B} = vec{0}. (4)

Работа кулоновского поля vec{E} по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение U. Аналогичная работа вихревого поля — это ЭДС индукции mathcal E_i.

Поэтому из (4) получаем:

U + mathcal E_i = 0. (5)

Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность I^2R равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

Вспоминая закон Фарадея mathcal E_i = -L dot{I}, переписываем соотношение (5):

U - L dot{I} = 0,

откуда

dot{I} = frac{displaystyle U}{displaystyle L vphantom{1^a}} = frac{displaystyle U_0}{displaystyle L vphantom{1^a}} sin omega t. (6)

Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6). Сообразить это нетрудно (продифференцируйте и проверьте!):

I = -frac{displaystyle U_0}{displaystyle omega L vphantom{1^a}} cos omega t. (7)

Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6.

Рис. 6. Ток через катушку отстаёт по фазе от напряжения на pi/2

Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на pi/2.

Определить сдвиг фаз можно и с помощью формулы приведения:

sin left ( varphi  -frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = -cos varphi.

Получаем:

I = frac{displaystyle U_0}{displaystyle omega L vphantom{1^a}} sin left ( omega t -frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ).

Непосредственно видим, что фаза силы тока меньше фазы напряжения на pi/2.

Амплитуда силы тока через катушку равна:

I_0 = frac{displaystyle U_0}{displaystyle omega L vphantom{1^a}}.

Это можно записать в виде, аналогичном закону Ома:

I_0 = frac{displaystyle U_0}{displaystyle X_L vphantom{1^a}},

где

X_L = omega L.

Величина X_L называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).

Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.

1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что X_L будет больше.

2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При omega rightarrow  infty имеем X_L rightarrow  infty, т. е. высокочастотный ток практически не проходит через катушку.

Наоборот, при omega = 0 имеем X_L = 0. Для постоянного тока катушка является коротким замыканием цепи.

И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.

Резистор, конденсатор и катушка, рассмотренные пока что по отдельности, теперь соберутся вместе в колебательный контур, подключённый к источнику переменного напряжения. Читайте следующий листок — «Переменный ток. 2».

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Переменный ток. 1» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.01.2023

Переме́нный ток, AC (англ. alternating current — переменный ток) — электрический ток, который периодически изменяется по модулю и направлению.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.

В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.

Содержание

  • 1 Преимущества сетей переменного тока
  • 2 Генерирование переменного тока
  • 3 Стандарты частоты
  • 4 Электрификация ПТ
  • 5 Ссылки
  • 6 См. также

Преимущества сетей переменного тока

  • Напряжение в сетях переменного тока легко преобразуется от одного уровня к другому путем применения трансформатора.
  • Асинхронные электродвигатели переменного тока проще и надежнее двигателей постоянного тока. (90% вырабатываемой электроэнергии потребляется асинхронными электродвигателями[источник не указан 1115 дней]).
  • Возможность передачи на более длинные расстояния, нежели постоянный.

Генерирование переменного тока

Преобразователь постоянного тока в переменный.

Переменный ток получают путем вращения рамки в магнитном поле. Принцип действия — явление электромагнитной индукции (появление индукционного тока в замкнутом контуре при изменении магнитного потока). В генераторах переменного тока вращается якорь из магнита (электромагнита) с несколькими полюсами (2, 4, 6 и т. д.), а с обмоток статора снимается переменное напряжение.

Стандарты частоты

В большинстве стран применяются частоты 50 или 60 Гц (60 — этот вариант принят в США) В некоторых странах, например, в Японии, используются оба стандарта. Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария).

В текстильной промышленности, авиации, метрополитене и военной технике для снижения веса устройств или с целью повышения частот вращения могут применять частоту 400 Гц (однако, чаще всего — метрополитены электрифицированы по системе постоянного тока), а в морском флоте 500 Гц.

Электрификация ПТ

В России и СНГ около половины всех ЖД работает на переменном токе частотой 50Гц.[источник не указан 345 дней]

Ссылки

  • Что такое переменный ток и чем он отличается от тока постоянного
  • Переменный ток

См. также

  • Электрический ток
  • Постоянный ток
  • Действующее значение переменного тока
  • Трёхфазный ток
  • Реактивное сопротивление
  • Токи высокой частоты
  • Векторная диаграмма

Переменный электрический ток и значение частоты

Электричество существует в природе повсеместно: это и грозовые молнии, и электрохимическая коррозия металлов (ржавление), а также деятельность мозга и нервных окончаний живых существ – примеров можно привести множество.
Человечество поставило электрические силы себе на службу не так уж давно — всего двести лет назад, хотя было знакомо с электромагнитными явлениями с глубокой древности.
Зато на сегодняшний день подавляющее большинство современной техники, осветительных и отопительных систем работают на электричестве.

Так что же мы знаем о нём?

Содержание

  1. Что такое электрический ток и напряжение
  2. Источники электрического тока.
  3. Механический
  4. Химический
  5. Тепловой
  6. Световой
  7. Источники электрической энергии.
  8. В чем отличия переменного тока.
  9. Постоянный ток.
  10. Переменный ток.
  11. Частота тока.
  12. Преобразование переменного тока
  13. Преобразование тока в переменный
  14. Где используется и в чем преимущества переменного тока.
  15. Почему в сети переменное напряжение
  16. Обозначения на электроприборах и схемах.
  17. Как обозначается постоянный ток.
  18. Как обозначается переменный ток.

Что такое электрический ток и напряжение

На заре исследования электричества учёные сравнивали его с неким течением эфира, и они были не так уж далеки от истины потому, что это поток частиц, возникающий из-за разницы поля потенциалов на концах цепи.

Переменный электрический ток и значение частоты

В общем под ними понимаются не только электроны, как это принято считать.
Любые частицы, обладающие более положительным или отрицательным зарядом по сравнению с остальными, могут создавать электричество (например, катионы или анионы в электролитах).
Цепью является замкнутая система, содержащая заряженные атомы. Чаще всего для создания электрических цепей используются металлы, которые благодаря уникальному атомному строению имеют большое количество свободных электронов.

Существуют токи следующих видов:

  • Постоянный – его ещё иногда называют прямым (когда вся сумма частицы с течением времени движется в одном направлении);
  • Переменный – его иногда называют попеременным (когда движение  систематически меняет направление).

Величина, которая показывает какое количество заряда прошло через поперечное сечение проводника за единицу времени, называется силой тока (I) и выражается в амперах (А) (названа так в честь французского учёного Ампера).

Напряжение(U) – это слово означает движущую силу ( эдс ) , которая подталкивает электроны двигаться в определённом направлении, и которая возникает из-за разницы потенциалов на концах цепи. Оно выражается в вольтах (В).

Проше говоря, для «чайников» напряжение можно представить в виде атмосферных явлений в двух соприкасающихся областях.
Простой пример: температура воздуха в Новгороде выше нуля, а в соседнем Твери уже начались первые заморозки.
Из-за разных давлений, связанных с температурным расширением воздуха, ветер будет дуть из Твери в Новгород.
В данном примере представьте разницу атмосферных давлений как разницу потенциалов – это и есть напряжение.
А любой ветер – электричество. Чем сильнее контраст температур в двух областях в которых расположены города (суммы количества зарядов на двух концах цепи), тем более сильный ветер (ток) будет дуть из одного направления в другое, и наоборот.

Направление движения электронов в цепи изменяется при помощи прикладываемого напряжения, поэтому существует два вида напряжений (в зависимости от того, какой ток они создают):

  • Постоянное напряжение (возникает при создании постоянного отличия потенциалов на двух концах цепи);
  • Переменное напряжение (возникает, если периодически менять полярность потенциалы на концах цепи).

Согласно формуле задач для расчета, напряжение и ток подчинены закону Ома:

Переменный электрический ток и значение частоты

где I – это сила тока в амперах, U – напряжение в вольтах, R – сопротивление цепи (единица измерения Ом).

Из такой формулы видно, что ток прямо зависит от напряжения источника.

Единственное, что его ограничивает – это сопротивление, которое оказывают статичные атомы среды (например, металла) движению заряженных электронов – то есть сопротивление проводника.

Источники электрического тока.

Рассмотрим получение постоянного и переменного тока в зависимости от метода получения:

Механический

В начале XIX века Майкл Фарадей каким-то чудом открыл удивительную способность магнита при движении через катушку с проводом возбуждать в ней магнитную индукцию.

Переменный электрический ток и значение частоты

При вращении магнита внутри катушки индуктивности в право, лево или верх, низ его магнитное поле как бы тянет за собой электроны, которые начинают активно перемещаться в замкнутом проводнике.
Основное получение в настоящее время переменного электрического тока приходится на долю электромагнитного механического возбуждения.

Химический

Основан на возникновении движения электронов в следствие химических реакций.

Тепловой

Помимо электромагнитной катушки в начале XIX века было совершено ещё одно очень важное открытие: Томас Зеебек обнаружил, что электричество может возникать в сочетании двух проводников (термопаре) при их непосредственном нагреве.

Световой

Основан на явлении фотоэффекта – способности некоторых материалов под действием световых волн испускать заряженные электроны.
Например, при облучении светом полупроводников возникает внутренний фотоэффект – испускаемые электроны остаются внутри полупроводника, повышая тем самым его проводимость. При соединении полупроводников (различия проводимости которых обозначаются буквами n и p) в диод, внутренний фотоэффект пропорционально приводит к возникновению движения электронов из места с большой концентрацией в область с их недостатком.

Источники электрической энергии.

Человечество использует все возможные источники электрической энергии. Как ток постоянный, так и переменный находят активное применение в повседневной жизни.

Химический метод получения применяют при создании аккумуляторов и батареек.

Таким способом может получаться только постоянный электрический ток.

Переменный электрический ток и значение частоты

На основе термопар были созданы устройства — теплогенераторы.

Они способны получить электричество из энергии термальных вод.

С изобретением диодов стало возможным собирать эффективные солнечные батареи, которые работают на внутреннем фотоэффекте.
Ну и, наконец, подавляющее большинство тепло- и гидроэлектростанций, приливных электростанций, ветрогенераторов, атомных электростанций работают по принципу вращения магнита в катушке индуктивности — отличается только способ изменения индукции и приведение магнита в движение.

Получаемый при этом ток является изменяющимся.

В чем отличия переменного тока.

Давайте рассмотрим, чем отличается практически переменный ток от постоянного.
Как уже упоминалось выше, основное отличие заключаются в направлении движения зарядов.

Постоянный ток.

Постоянное напряжение характерно для электрохимических реакций, которые возникают в гальваническом элементе (батарейка, аккумулятор).

Батарейки и аккумуляторы применяется в большинстве автономных бытовых приборов.

В случае возникновения постоянного напряжения движение электронов не будет изменяться со временем.
Величина напряжения в каждый момент времени  одинакова и составляет максимум из возможных в зависимости от заряда.
Постоянный электрический ток менее опасен для человека, поскольку за счёт своей природы оказывает меньшее воздействие на нервы и сердце живых существ.

Переменный электрический ток и значение частоты

Переменный ток.

Что такое по сути переменный ток уже упоминалось выше – это явление синусоидального (то есть происходящего через равные промежутки времени) изменения силы и направления движения заряженных частиц во времени.
Эта работа чем-то напоминает качели: движение набирает силу сначала в одном направлении, затем плавно сдаёт назад, затухает и снова усиливается уже в обратном направлении.
Если отобразить на графике зависимость сила и напряжение переменного тока от времени – то получится синусоида относительно оси абсцис.

Постоянный ток выглядит на этом графике как ровная линия.

Переменный электрический ток и значение частоты

В случае переменного тока напряжение сети в каждый момент времени может отличаться: изменяться от максимального до значения, которое равно нулю, и наоборот.

Это свойство позволяет использовать меньшее сечение проводника для прокладки электрических сетей переменного тока.

Также переменный электрический ток более опасен для человека. Он вызывает большую возбудимость нервных окончаний, и удар периодическим током может остановить сердце.

Частота тока.

Известно, что одной из важных характеристик переменного тока является частота ( скорость ), с которой оно изменяет своё направление. Определение частоты звучит так: это число полных колебаний переменного тока за одну секунду. В нашей сети используется частота 50 герц ( гц )

Переменный электрический ток и значение частоты

Это значит, что за одну секунду полярность и амплитуда напряжения меняется 50 раз.
В данном случае 1/50 секунды – это так называемый период (T) – время, за которое происходит полный такт изменения полярности напряжения.

Ещё одно отличие переменного тока: у постоянного частота отсутствует, поскольку он не изменяет свои характеристики во времени.

Преобразование переменного тока

Преобразование от переменного тока к постоянному стало возможным с появлением первых диодов – полупроводниковых элементов, способных проводить его только в одну сторону.

Приборы на основе диодов считаются выпрямителями, а сам процесс преобразования из синусоидального в постоянный – выпрямлением.

Проходя через диод, утрачивается способность изменять значения силы тока и напряжения на противоположную полярность, но при этом остаётся эффект пульсации – как если бы от синусоиды отсекли нижнюю (отрицательную) часть и подставили её к верхней части (положительной).

Переменный электрический ток и значение частоты

Получается не совсем ровный ток, а пульсирующий, изменяющий во времени свою силу.
Напомним, что график зависимости силы и напряжения постоянного тока от времени выглядит, как прямая линия.

Чтобы сгладить эффект пульсации, существуют специальные фильтры, используемые в цепи (например, конденсаторы большой емкости).

Конденсатор забирает на себя уменьшение и увеличение напряжения токов по амплитуде.

Это позволяет приблизить график синусоидального изменения к линии и сделать его среднее напряжение более стабильным.

Преобразование тока в переменный

Процесс преобразование постоянного тока в синусоидальное может называться инвертированием.

Приборы, которые преобразуют постоянный ток в переменный – это инверторы.

Принцип работы прибора заключается в попеременном изменении порядка подключения полюсов цепи источника ( U ип ) к цепи потребителя.
То есть, чтобы соединить переменный и постоянный ток, необходимо периодически менять полярность подключения источника переменного и постоянного тока.

Переменный электрический ток и значение частоты

На рисунке инвертор показан как  точки (1-2, 3-4), которые соединяют источник тока с потребителем.
В какой-то момент времени порядок соединения последовательно изменяется (1-2, 4-3) – данная манипуляция заставит электричество изменить направление своего движения.
Осуществляя переключение клемм с определённой частотой, можно регулировать параметры получаемого периодического напряжения.

При движении изменяется угол поворота радиус-вектора относительно его начального положения, а это и есть фаза переменного тока.

Где используется и в чем преимущества переменного тока.

Постоянный ток может использоваться в большинстве бытовых приборов благодаря ряду преимуществ:

  • Этот ток не создаёт реактивное сопротивление в цепи (сопротивление, которое является вредным, поскольку расходует мощность генератора, но при этом не производит полезную работу);
  • В цепях постоянного тока задействована вся площадь поперечного сечения проводника, поскольку постоянное электричество характеризуется равномерным движением зарядов.

То есть использование постоянного тока ведёт к уменьшению мощностных потерь.

Однако переменное напряжение обладает важным преимуществом, в связи с чем и заслужил главенствующее место в доставке электроэнергии на дальние расстояния:

  • Напряжением переменного тока легче управлять за счёт электромагнитной природы его возникновения.

Используя трансформаторы, учёные сделали понижение напряжения линии высоковольтной передачи до напряжения потребителя достаточно простым действием.
Это позволило передавать электроэнергию высокой мощности на дальние расстояния.

Почему в сети переменное напряжение

Передача энергии от источника к потребителю связана с потерями мощности.

Мощность – так называемая переменная величина, и её можно определить поскольку она зависит от силы тока и равна:

Переменный электрический ток и значение частоты

то есть чем меньше сила тока, тем меньше потери мощности при транспортировке.
Однако производитель не может произвольно уменьшать силу тока без компенсации, ведь потребителю необходимо доставить нужный объём мощности для бытовых нужд. Чтобы сохранить небольшую силу тока (I) и высокую мощность (Р), нужен значительный скачок напряжения сети (U) в соответствии с формулой мощности:

Переменный электрический ток и значение частоты

Благодаря этим зависимостям величины мощности от силы тока человечество получило возможность существенно сократить потери мощности электроэнергии при передаче на большие расстояния путём повышения напряжения сети.

Разность потенциалов высоковольтных линий электропередачи может достигать 1150 кВ – такая разность делает передачу мощности для промышленных предприятий по проводам максимально эффективной с минимальными потерями.

Однако возникает существенная проблема: высокое напряжение нужно как-то снизить, чтобы раздать потребителю электроэнергии из обычной розетки дома.

Проще всего снижать или повышать разность потенциалов с помощью использования трансформатора.

Электромагнитное поле высоковольтных линий возбуждает в трансформаторных катушках индуктивности более низкое переменное напряжение, которое мы уже используем в бытовых целях.

Именно благодаря возможности легко управлять переменным напряжением для передачи электрической энергии на большое расстояние была выбрана такая схема.

Обозначения на электроприборах и схемах.

Общемировая практика стандартизации технической документации привела к тому, что за определёнными техническими решениями и явлениями закрепились конкретные обозначения. Так существует обозначение и для постоянного и переменного тока.

Как обозначается постоянный ток.

За стандартное обозначение постоянного тока выбрана английская маркировка DC – Direct Current (если переводить дословно, это означает «прямой ток»).

На схемах он должен представлять собой сочетание сплошной и пунктирной линий.

Переменный электрический ток и значение частоты

Как обозначается переменный ток.

Стандартное обозначение представляет собой английскую аббревиатуру AC – Alternating Current (дословно это означает «переменный ток»). На схемах переменный ток должен обозначаться в виде волнистой линии.

Переменный электрический ток и значение частоты

После неё обычно указывается напряжение сети.

Характеристика Обозначение Единица измерения Описание
Напряжение U вольт Мгновенное
Амплитудное
Фазное значение
Линейное значение
Действующее значение
Период Т секунда Время полного колебания по фазе
Частота f герц Число колебаний за один период времени (секунду)

Стандартизация обозначений позволяет людям с россии, сша и стран всего мира обмениваться технической документацией, исследованиями, чертежами в понятном, общедоступном формате.

Читайте наши статьи и задавайте вопросы.

Что такое переменный ток и переменное напряжение?

Ток бывает двух основных видов — постоянный и переменный. Чтобы разобраться с этими терминами, необходимо вспомнить, что ток — это упорядоченное движение электронов. И вот когда эти электроны все время движутся в одном и том же направлении, то такой ток называется постоянным. Но под понятием упорядоченное движение следует также понимать то что в один момент электроны движутся в одном направлении а во второй момент — в обратном и так без остановки. Вот такой ток уже называется переменным. Если говорят о постоянном и переменном напряжении, то имеется в виду что у постоянного напряжения + и — всегда «находятся на одном месте».

Примером постоянного напряжения может послужить обыкновенная батарейка, на её корпусе вы всегда найдете обозначения + и -. А у переменного + и — меняются через некоторой отрезок времени. Следственно постоянное напряжение создает постоянный ток, и соответственно переменное напряжение — переменный ток. Примером переменного напряжения может послужить обыкновенная электросеть. Постоянный ток обозначается одной прямой линией, а переменный одной волнистой линией.

Я думаю, вам не раз приходилось видеть надписи 220В, перед которой стоит горизонтальная волнистая линия. Это и есть обозначение переменного тока.

Обратите внимание на то, что устройства, в который используется постоянный ток, в подавляющем количестве, не допускают чтобы при подключения к ним питания контакты + и — перепутались между собой, поскольку если их перепутать то прибор может попросту «сгореть». А вот для переменного напряжения это уже не актуально, припустим, вы включаете в розетку… да что угодно, и не важно какой именно стороной вставить вилку в розетку, прибор все ровно будет работать. Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц. Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз.

Графики
Что такое переменный ток и переменное напряжение

Для того чтобы представить, как именно происходит изменение полярности переменного напряжения необходимо разбираться в графиках, которые показывают напряжение в разные моменты времени. Давайте посмотрим на график, демонстрирующий постоянное напряжение (он слева). Припустим, что этот график показывает напряжение на контактах лампочки фонарика.

Начиная с точки 0 и до точки «а» график показывает, что напряжение равно нулю. Или другими словами говоря его там вообще нет (фонарик выключен). В момент времени «а» (в нашем варианте на контактах лампочки) появляется напряжение равное U1, которое остается без изменений в течении времени от «а» до «б» (фонарик включен). В момент времени «б» Напряжение снова пропадает (стает равным нулю). Если посмотреть на второй график, который отображает переменное напряжение, то думаю, несложно разобраться что именно происходит с переменным напряжением в разные моменты времени. В нулевой точке оно равно нулю. На протяжении времени от «0″ до «а» напряжение плавно возрастает до значения U1 и в этот же момент начинает спадать. В результате чего в момент времени «б» достигает нулевой отметки. Но как видно на графике, напряжение продолжает падать и становится отрицательным. В точке «г» достигает минимума, и снова начинает возрастать. Это явление повторяется на протяжении существования напряжения (пока свет не отключат :-) . Следует заметить, что переменное напряжение может быть не только такой формы. Оно может быть, например, прямоугольной или практически любой другой формы. Теперь еще раз взгляните на этих два графика, и вспомните, как обозначается постоянный и переменный ток (напряжение).

По материалам сайта: http://radio-electro.narod.ru/kurs/2peremen.htm

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Содержание

  • 1 Что такое электрический ток и напряжение
    • 1.1 Что такое переменный ток
    • 1.2 Что такое постоянный ток
  • 2 Источники электрического тока
  • 3 Преобразование переменного тока в постоянный
  • 4 Где используется и в чём преимущества переменного и постоянного тока
  • 5 Обозначения на электроприборах и схемах
  • 6 Почему переменный ток используется чаще

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров.  Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам.  В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

  • Как пишется перекати поле слитно или через дефис
  • Как пишется перейдем или передем
  • Как пишется перезакрепление слитно или раздельно
  • Как пишется пережег или пережог правильно
  • Как пишется передо мной слитно или раздельно правильно слово