Как пишется период в математике

Как записать число в периоде

Простые арифметические операции, такие как вычитание, сложение, умножение и деление, не всегда дают простой результат. Например, при осуществлении деления может выясниться, что частное представляет собой число в периоде, которое необходимо правильно записать.

Как записать число в периоде

Операция деления предполагает участие в ней нескольких основных компонентов. Первый из них — так называемое делимое, то есть число, которое подвергается процедуре деления. Второй — делитель, то есть число, на которое производится деление. Третий — частное, то есть результат операции деления делимого на делитель.

Самым простым вариантом результата, который может получиться при использовании в качестве делимого и делителя двух целых положительных чисел, является еще одно целое положительное число. Например, при делении 6 на 2 частное будет равно 3. Такая ситуация возможна, если делимое является кратным делителю, то есть без остатка делится на него.

Однако существуют и другие варианты, когда осуществить операцию деления без остатка невозможно. В этом случае частным становится нецелое число, которое можно записать в виде комбинации целой и дробной частей. Например, при делении 5 на 2 частное составит 2,5.

Один из вариантов, который может получиться в случае, если делимое не является кратным делителю, представляет собой так называемое число в периоде. Оно может возникнуть в результате деления в том случае, если частное оказывается бесконечно повторяющимся набором цифр. Например, число в периоде может появиться при делении числа 2 на 3. В этой ситуации результат, выраженный в виде десятичной дроби, будет выражен в виде комбинации бесконечного количества цифр 6 после запятой.

Для того чтобы обозначить результат такого деления, был изобретен специальный способ записи чисел в периоде: такое число обозначается помещением повторяющейся цифры в скобки. Например, результат деления 2 на 3 будет записываться с использованием этого способа как 0,(6). Указанный вариант записи применим также в случае, если повторяющейся является только часть числа, получившегося в результате деления.

Например, при делении 5 на 6 результатом будет периодическое число, имеющее вид 0,8(3). Использование этого способа, во-первых, является наиболее эффективным по сравнению с попыткой записать все или часть цифр числа в периоде, во-вторых, обладает большей точностью в сравнении с другим способом передачи таких чисел — округлением, а кроме того, позволяет отличить числа в периоде от точной десятичной дроби с соответствующим значением при сопоставлении величины этих чисел. Так, например, очевидно, что 0,(6) — существенно больше, чем 0,6.

Видео по теме

(Redirected from Periods (ring))

For a more frequently used sense of the word «period» in mathematics, see Periodic function.

In algebraic geometry, a period is a number that can be expressed as an integral of an algebraic function over an algebraic domain. Sums and products of periods remain periods, so the periods form a ring.

Maxim Kontsevich and Don Zagier gave a survey of periods and introduced some conjectures about them.[1] Periods also arise in computing the integrals that arise from Feynman diagrams, and there has been intensive work trying to understand the connections.[2]

Definition[edit]

A real number is a period if it is of the form

{displaystyle int _{P(x,y,z,ldots )geq 0}Q(x,y,z,ldots )mathrm {d} xmathrm {d} ymathrm {d} zldots }

where P is a polynomial and Q a rational function on mathbb {R} ^{n} with rational coefficients. A complex number is a period if its real and imaginary parts are periods.[3]

An alternative definition allows P and Q to be algebraic functions;[4] this looks more general, but is equivalent. The coefficients of the rational functions and polynomials can also be generalised to algebraic numbers because irrational algebraic numbers are expressible in terms of areas of suitable domains.

In the other direction, Q can be restricted to be the constant function 1 or -1, by replacing the integrand with an integral of pm 1 over a region defined by a polynomial in additional variables. In other words, a (nonnegative) period is the volume of a region in mathbb {R} ^{n} defined by a polynomial inequality.

Examples[edit]

Besides the algebraic numbers, the following numbers are known to be periods:

An example of a real number that is not a period is given by Chaitin’s constant Ω. Any other non-computable number also gives an example of a real number that is not a period. Currently there are no natural examples of computable numbers that have been proved not to be periods, however it is possible to construct artificial examples.[5] Plausible candidates for numbers that are not periods include e, 1/π, and Euler–Mascheroni constant γ.

Properties and motivation[edit]

The periods are intended to bridge the gap between the algebraic numbers and the transcendental numbers. The class of algebraic numbers is too narrow to include many common mathematical constants, while the set of transcendental numbers is not countable, and its members are not generally computable.

The set of all periods is countable, and all periods are computable,[6] and in particular definable.

Conjectures[edit]

Many of the constants known to be periods are also given by integrals of transcendental functions. Kontsevich and Zagier note that there «seems to be no universal rule explaining why certain infinite sums or integrals of transcendental functions are periods».

Kontsevich and Zagier conjectured that, if a period is given by two different integrals, then each integral can be transformed into the other using only the linearity of integrals (in both the integrand and the domain), changes of variables, and the Newton–Leibniz formula

int _{a}^{b}f'(x),dx=f(b)-f(a)

(or, more generally, the Stokes formula).

A useful property of algebraic numbers is that equality between two algebraic expressions can be determined algorithmically. The conjecture of Kontsevich and Zagier would imply that equality of periods is also decidable: inequality of computable reals is known recursively enumerable; and conversely if two integrals agree, then an algorithm could confirm so by trying all possible ways to transform one of them into the other one.

It is conjectured that Euler’s number e and Euler–Mascheroni constant γ are not periods.

Generalizations[edit]

The periods can be extended to exponential periods by permitting the integrand Q to be the product of an algebraic function and the exponential function of an algebraic function. This extension includes all algebraic powers of e, the gamma function of rational arguments, and values of Bessel functions.

Kontsevich and Zagier suggest that there are «indications» that periods can be naturally generalized even further, to include Euler’s constant γ. With this inclusion, «all classical constants are periods in the appropriate sense».

See also[edit]

  • Jacobian variety
  • Gauss–Manin connection
  • Mixed motives (math)
  • Tannakian formalism

References[edit]

  • Kontsevich, Maxim; Zagier, Don (2001). «Periods» (PDF). In Engquist, Björn; Schmid, Wilfried (eds.). Mathematics unlimited—2001 and beyond. Berlin, New York City: Springer. pp. 771–808. ISBN 9783540669135. MR 1852188.
  • Marcolli, Matilde (2010). «Feynman integrals and motives». European Congress of Mathematics. Eur. Math. Soc. Zürich. pp. 293–332. arXiv:0907.0321.

Footnotes

  1. ^ Kontsevich & Zagier 2001.
  2. ^ Marcolli 2010.
  3. ^ Kontsevich & Zagier 2001, p. 3.
  4. ^ Weisstein, Eric W. «Periods». WolframMathWorld (Wolfram Research). Retrieved 2019-06-19.
  5. ^ Yoshinaga, Masahiko (2008-05-03). «Periods and elementary real numbers». arXiv:0805.0349 [math.AG].
  6. ^ Tent, Katrin; Ziegler, Martin (2010). «Computable functions of reals» (PDF). Münster Journal of Mathematics. 3: 43–66.

Further reading[edit]

  • Belkale, Prakash; Brosnan, Patrick (2003), «Periods and Igusa local zeta functions», International Mathematics Research Notices, 2003 (49): 2655–2670, doi:10.1155/S107379280313142X, ISSN 1073-7928, MR 2012522
  • Waldschmidt, Michel (2006), «Transcendence of periods: the state of the art» (PDF), Pure and Applied Mathematics Quarterly, 2 (2): 435–463, doi:10.4310/PAMQ.2006.v2.n2.a3, ISSN 1558-8599, MR 2251476

External links[edit]

  • PlanetMath: Period

(Redirected from Periods (ring))

For a more frequently used sense of the word «period» in mathematics, see Periodic function.

In algebraic geometry, a period is a number that can be expressed as an integral of an algebraic function over an algebraic domain. Sums and products of periods remain periods, so the periods form a ring.

Maxim Kontsevich and Don Zagier gave a survey of periods and introduced some conjectures about them.[1] Periods also arise in computing the integrals that arise from Feynman diagrams, and there has been intensive work trying to understand the connections.[2]

Definition[edit]

A real number is a period if it is of the form

{displaystyle int _{P(x,y,z,ldots )geq 0}Q(x,y,z,ldots )mathrm {d} xmathrm {d} ymathrm {d} zldots }

where P is a polynomial and Q a rational function on mathbb {R} ^{n} with rational coefficients. A complex number is a period if its real and imaginary parts are periods.[3]

An alternative definition allows P and Q to be algebraic functions;[4] this looks more general, but is equivalent. The coefficients of the rational functions and polynomials can also be generalised to algebraic numbers because irrational algebraic numbers are expressible in terms of areas of suitable domains.

In the other direction, Q can be restricted to be the constant function 1 or -1, by replacing the integrand with an integral of pm 1 over a region defined by a polynomial in additional variables. In other words, a (nonnegative) period is the volume of a region in mathbb {R} ^{n} defined by a polynomial inequality.

Examples[edit]

Besides the algebraic numbers, the following numbers are known to be periods:

An example of a real number that is not a period is given by Chaitin’s constant Ω. Any other non-computable number also gives an example of a real number that is not a period. Currently there are no natural examples of computable numbers that have been proved not to be periods, however it is possible to construct artificial examples.[5] Plausible candidates for numbers that are not periods include e, 1/π, and Euler–Mascheroni constant γ.

Properties and motivation[edit]

The periods are intended to bridge the gap between the algebraic numbers and the transcendental numbers. The class of algebraic numbers is too narrow to include many common mathematical constants, while the set of transcendental numbers is not countable, and its members are not generally computable.

The set of all periods is countable, and all periods are computable,[6] and in particular definable.

Conjectures[edit]

Many of the constants known to be periods are also given by integrals of transcendental functions. Kontsevich and Zagier note that there «seems to be no universal rule explaining why certain infinite sums or integrals of transcendental functions are periods».

Kontsevich and Zagier conjectured that, if a period is given by two different integrals, then each integral can be transformed into the other using only the linearity of integrals (in both the integrand and the domain), changes of variables, and the Newton–Leibniz formula

int _{a}^{b}f'(x),dx=f(b)-f(a)

(or, more generally, the Stokes formula).

A useful property of algebraic numbers is that equality between two algebraic expressions can be determined algorithmically. The conjecture of Kontsevich and Zagier would imply that equality of periods is also decidable: inequality of computable reals is known recursively enumerable; and conversely if two integrals agree, then an algorithm could confirm so by trying all possible ways to transform one of them into the other one.

It is conjectured that Euler’s number e and Euler–Mascheroni constant γ are not periods.

Generalizations[edit]

The periods can be extended to exponential periods by permitting the integrand Q to be the product of an algebraic function and the exponential function of an algebraic function. This extension includes all algebraic powers of e, the gamma function of rational arguments, and values of Bessel functions.

Kontsevich and Zagier suggest that there are «indications» that periods can be naturally generalized even further, to include Euler’s constant γ. With this inclusion, «all classical constants are periods in the appropriate sense».

See also[edit]

  • Jacobian variety
  • Gauss–Manin connection
  • Mixed motives (math)
  • Tannakian formalism

References[edit]

  • Kontsevich, Maxim; Zagier, Don (2001). «Periods» (PDF). In Engquist, Björn; Schmid, Wilfried (eds.). Mathematics unlimited—2001 and beyond. Berlin, New York City: Springer. pp. 771–808. ISBN 9783540669135. MR 1852188.
  • Marcolli, Matilde (2010). «Feynman integrals and motives». European Congress of Mathematics. Eur. Math. Soc. Zürich. pp. 293–332. arXiv:0907.0321.

Footnotes

  1. ^ Kontsevich & Zagier 2001.
  2. ^ Marcolli 2010.
  3. ^ Kontsevich & Zagier 2001, p. 3.
  4. ^ Weisstein, Eric W. «Periods». WolframMathWorld (Wolfram Research). Retrieved 2019-06-19.
  5. ^ Yoshinaga, Masahiko (2008-05-03). «Periods and elementary real numbers». arXiv:0805.0349 [math.AG].
  6. ^ Tent, Katrin; Ziegler, Martin (2010). «Computable functions of reals» (PDF). Münster Journal of Mathematics. 3: 43–66.

Further reading[edit]

  • Belkale, Prakash; Brosnan, Patrick (2003), «Periods and Igusa local zeta functions», International Mathematics Research Notices, 2003 (49): 2655–2670, doi:10.1155/S107379280313142X, ISSN 1073-7928, MR 2012522
  • Waldschmidt, Michel (2006), «Transcendence of periods: the state of the art» (PDF), Pure and Applied Mathematics Quarterly, 2 (2): 435–463, doi:10.4310/PAMQ.2006.v2.n2.a3, ISSN 1558-8599, MR 2251476

External links[edit]

  • PlanetMath: Period

Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:

0,66666666666666…

0,33333333333333…

0,68181818181818…

Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби и как с ними работать.

Получаем периодическую дробь

Попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в теме деление меньшего числа на большее. Продвинутый уровень.

Итак, делим 1 на 3

23111

Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется вновь и вновь. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет выполняться бесконечно, поэтому разýмнее будет остановиться на достигнутом.

Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять из одной как в нашем примере.

В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают цéлую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).

В нашем примере повторяется цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:

0, (3)

Читается как «ноль целых и три в периоде»


Пример 2. Разделить 5 на 11

23112

Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:

0, (45)

Читается как «ноль целых и сорок пять в периоде»


Пример 3. Разделить 15 на 13

23113

Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:

1, (153846)

Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».


Пример 4. Разделить 471 на 900

23114

В этом примере период начинается не сразу, а после цифр 5 и 2.  Сокращённая запись для данной периодической дроби будет выглядеть так:

0, 52 (3)

Читается как: «ноль целых пятьдесят две сотых и три в периоде».


Виды периодических дробей

Периодические дроби бывают двух видов: чистые и смéшанные.

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:

0, (3)

0, (6)

0, (5)

Видно, что в этих дробях период начинается сразу после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смéшанной. Например, следующие периодические дроби являются смéшанными:

0,52 (3)

0,16 (5)

0,31 (6)

Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.


Избавляемся от хвоста

Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нýжного разряда.

Например, округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:

23115

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33

0, (3) ≈ 0,33


Округлим периодическую дробь 6,31 (6) до разряда тысячных.

Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:

23116

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317

6,31 (6) ≈ 6,317


Перевод чистой периодической дроби в обыкновенную дробь

Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для общего развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.

Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, то такую дробь называют чистой.

Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.

В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.

Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби.

Итак, записываем в числителе период дроби 0, (3) то есть тройку:

23211

А в знаменатель нужно записать некоторое количество девяток. При этом,  количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).

В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:

23212

Полученную дробь 23213 можно сократить на 3, тогда получим следующее:

23214

Получили обыкновенную дробь 23215 .

Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается 23215


 Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.

Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:

23311

А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).

В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:

23312

Полученную дробь  23313  можно сократить эту дробь на 9, тогда получим следующее:

23314

Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается  23315


Перевод смешанной периодической дроби в обыкновенную дробь

Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.

В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

23411

Итак, записываем в числителе разность:

23412

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)

В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:

23413

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

23414

Получили выражение, которое вычисляется легко:

23415

Получили ответ  23416

Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается 23416


Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

23511

Итак, записываем в числителе разность:

23512

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)

В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:

23513

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

   23514

Получили выражение, которое вычисляется легко:

23515

Получили ответ  23516

Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается 23516


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже



ПЕРИОД

ПЕРИОД

функции f(x) — число такое, что при любом (или ) числа х-Т и x+Ттакже принадлежат множеству X и выполняется равенство

Числа + пТ, где п — любое натуральное число, также являются П. функции f(x). У функции f=const на оси или на плоскости любое число будет П.; для функции Дирихле

любое рациональное число будет П. Если функция f(x).имеет период Т, то функция ,

где аи b — постоянные и , имеет период . Если действительная функция f(x). с действительным аргументом непрерывна на X(и не равна тождественно постоянной), то она имеет наименьший период T0>0 и всякий другой действительный П. кратен Т 0. Существуют функции с комплексным аргументом, у к-рых имеются два некратных с мнимым частным П.; таковы, напр., эллиптические функции.

Аналогично определяется П. функции, определенной на нек-рой абелевой группе. А. А. Конюшков.

Математическая энциклопедия. — М.: Советская энциклопедия.
.
1977—1985.

Синонимы:

Полезное

Смотреть что такое «ПЕРИОД» в других словарях:

  • Период — (греч. periodos «обход», «окружность») термин, введенный Аристотелем для обозначения «речи, имеющей в себе самой начало и конец и легко обнимаемой умом». Под П. следует понимать так. обр. большую синтаксическую единицу, сложное предложение или… …   Литературная энциклопедия

  • ПЕРИОД — периода, м. [греч. periodos] (книжн.). 1. Промежуток времени, в течение к–рого заканчивается какой–н. повторяющийся процесс (науч.). Синодический период обращения планеты (время, в течение к–рого планета совершает один полный оборот вокруг… …   Толковый словарь Ушакова

  • Период —     ПЕРИОД (Περιοδος обход, окружность). Этим словом в древней Греции называлась та замкнутая, кольцевая дорога, на которой происходили игры и состязания во время олимпийских празднеств. Этим термином Аристотель стал обозначать особый вид… …   Словарь литературных терминов

  • ПЕРИОД — (греч. periodos путь кругом). 1) промежуток времени между двумя важными историческими событиями. 2) в астрономии то же, что цикл; в арифметике: число цифр, повторяющихся, в том же порядке, бесчисленное множество раз. 3) особенно развитое сложное… …   Словарь иностранных слов русского языка

  • период — а, м. période f. <лат. periodus<гр. periodos обход, круговращение, орбита небесного тела. 1. Промежуток времени, в который протекает та или иная часть общего процесса. БАС 1. Бывают в жизни его периоды во время которых выступает он из… …   Исторический словарь галлицизмов русского языка

  • ПЕРИОД — муж. срок или промежуток времени, продолжительность; время от одного события до другого. История делится на периоды, сроки. Период первозданный период осадочный, сроки образованья земной толщи. | Длительность самого события, действия, состоянья;… …   Толковый словарь Даля

  • ПЕРИОД — (1) промежуток времени, в течение которого начинается, развивается и заканчивается какой либо процесс; наименьший интервал времени, по истечении которого произвольно выбранные мгновенные значения периодической величины повторяются; (2) П. в… …   Большая политехническая энциклопедия

  • Период С — Студийный а …   Википедия

  • ПЕРИОД — срок протекания экономического процесса, действия, плана, договора, гарантии, уплаты долгов, внесения налогов, выполнения работ (гарантийный период, плановый период, период обложения, период окупаемости). Райзберг Б.А., Лозовский Л.Ш.,… …   Экономический словарь

  • период — См …   Словарь синонимов

  • ПЕРИОД — колебаний, наименьший промежуток времени, через который совершающая колебания система возвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Период величина, обратная частоте колебаний. Понятие период… …   Современная энциклопедия

С периодическими функциями мы встречаемся в школьном курсе алгебры. Это функции, все значения которых повторяются через определенный период. Как будто мы копируем часть графика — и повторяем этот паттерн на всей области определения функции. Например, y = sin x, , y = tg x — периодические функции.

Дадим определение периодической функции:

Функция y=f(x) называется периодической, если существует такое число T, не равное нулю, что для любого x из ее области определения f(x + T) = f(x).

Другими словами, это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого фиксированного ненулевого числа T. Число T называется периодом функции. Как правило, говоря о периоде, мы имеем в виду наименьший положительный период функции.

Например, y = sin x, , y = cos x, , y = tg x, , y = ctg x — периодические функции.

Для функций y = sin x и y = cos x период T = 2pi,

Для функций tg x и y = ctg x период T = pi.

Но не только тригонометрические функции являются периодическими. Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задачи:

1. Периодическая функция y = fleft(xright) определена для всех действительных чисел. Ее период равен двум и f(1)=5. Найдите значение выражения 3f(7) - 4 f(-3).

График функции {y = }fleft(xright) может выглядеть, например, вот так:

Отметим точку М (1; 5), принадлежащую графику функции {y = }fleft(xright). Поскольку период функции равен 2, значения функции в точках 3, 5, 7dots 1 + 2k будут также равны пяти. Здесь k — целое число.

Как ведет себя функция {y = }fleft(xright) в других точках — мы не знаем. Но знаем, что ее график состоит из повторяющихся элементов длиной 2, что и нарисовано.

Значения функции {y = }fleft(xright) в точках -3 и 7 равны пяти. Мы получим: 3fleft(7right)4fleft(-3right)=3cdot 5-4cdot 5=-5.

2. График четной периодической функции y = fleft(xright) совпадает с графиком функции zleft(xright)=2(x-1)^2 на отрезке от 0 до 1; период функции y = fleft(xright) равен 2. Постройте график функции y = fleft(xright) и найдите f(4 ).

Построим график функцииzleft(xright)=2(x-1)^2 при xin [0;1].

Поскольку функция y = { f}left({ x}right) четная, ее график симметричен относительно оси ординат. Построим часть графика при xin [-1;0], симметричную части графика от 0 до 1.

Период функции y = fleft(xright) равен 2. Повторим периодически участок длины 2, который уже построен.

Найдем f(4)

f(4)= f (0 + 2cdot 2) = f(0) = 2.

3. Найдите наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}}

Наименьший положительный период функции y={sin x} равен 2pi.

График функции y=sin 3x получается из графика функции y={sin x} сжатием в 3 раза по оси X (смотри тему «Преобразование графиков функций).

Значит, у функции y={sin 3x} частота в 3 раза больше, чем у функции y={sin x}, а наименьший положительный период в 3 раза меньше и равен frac{{rm 2}pi }{{rm 3}}. Значит, на отрезке 2pi укладывается ровно 3 полных волны функции y={sin 3x}.

Рассуждая аналогично, получим, что для функции y={cos 5x} наименьший положительный период равен frac{{rm 2}pi }{{rm 5}}. На отрезке 2pi укладывается ровно 5 полных волн функции y={cos 5x}.

Числа 3 и 5 — взаимно простые. Поэтому наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}} равен 2pi.

4. Период функции fleft(xright) равен 12, а период функции gleft(xright) равен 8. Найдите наименьший положительный период функции zleft(xright)=fleft(xright)+gleft(xright).

По условию, период функции fleft(xright) равен 12. Это значит, что все значения fleft(xright) повторяются через 12, через 24, 36, 48 ... 12n . Если мы выберем любую точку x_0 на графике функции fleft(xright), то через 12, 36, 48dots 12n значение функции будет такое же, как и в точке x_0.

Аналогично, все значения функции gleft(xright) повторяются через 8, 16, 24, 32dots 8k. В этих точках значения gleft(xright) будут такие же, как и в точке x_0.

На каком же расстоянии от точки x_0 расположена точка, в которой значение функции zleft(xright)=fleft(xright)+gleft(xright) такое же, что и в точке x_0? Очевидно, на расстоянии T = 12n = 8k. Это значит, что число T делится и на 12, и на 8, то есть является их наименьшим общим кратным. Значит, T = 24 .

Наименьший положительный период суммы функций равен наименьшему общему кратному периодов слагаемых. 

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Периодические функции» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.01.2023

  • Как пишется периметр треугольника
  • Как пишется периметр прямоугольника
  • Как пишется периметр квадрата
  • Как пишется периметр в математике 2 класс в тетради
  • Как пишется периметр буквой