Как пишется сбой программы

СБОЙ, сбо́я, мн. сбои́, сбоёв, м. 1. Спец. Действие по глаг. сбить (во 2 и 3 знач.) и сбиться (в 1 и 2 знач.). Сбой пил. Сбой концов рельса. Сбой ткацкого рисунка.

Все значения слова «сбой»

ПРОГРА́ММА, -ы, ж. 1. Содержание и план предстоящей деятельности, работ и т. п. Программа развития индустрии.

Все значения слова «программа»

  • Появления галлюцинаций, например, когда поставляемая нашему сознанию информация не приходит из органов чувств, а порождается самим мозгом, потому что произошёл сбой программ нейронной сети.

  • На практике встречаются ситуации, когда ошибка возникает однократно, а после перезагрузки или просто завершения давшей сбой программы компьютер продолжает работать совершенно нормально.

  • Картина на экранах внешнего обзора могла свести с ума самого опытного пилота, а бортовой компьютер по-прежнему бессильно моргал красными индикаторами сбоя программ.

  • (все предложения)
  • сбой системы
  • программный сбой
  • системный сбой
  • вероятность сбоя
  • в результате сбоя
  • (ещё синонимы…)
  • глюк
  • перебой
  • неполадки
  • гормон
  • система
  • (ещё ассоциации…)
  • ввод
  • компьютер
  • ток-шоу
  • НТВ
  • обновление
  • (ещё ассоциации…)
  • серьёзные сбои
  • сбой системы
  • причина сбоя
  • сбой произошёл
  • давать сбой
  • (полная таблица сочетаемости…)
  • по полной программе
  • программа обучения
  • в рамках программы
  • программа работает
  • запустить программу
  • (полная таблица сочетаемости…)
  • Разбор по составу слова «сбой»
  • Разбор по составу слова «программа»
  • Как правильно пишется слово «сбой»
  • Как правильно пишется слово «программа»

На чтение 1 мин.

Значение слова «Сбой»

процесс действия по значению глагола: сбивать (разговорное)

— голова, ноги и внутренности заколотого на мясо животного

— перебой в движении, работе из-за неисправности

— скачок или несколько скачков во время бега на рыси (в конном спорте)

— неровное биение сердца; перебой (разговорное)

— заминка в беге при переходе лошади на скачку

Содержание

  1. Транскрипция слова
  2. MFA Международная транскрипция
  3. Цветовая схема слова

Транскрипция слова

[збо́й’]

MFA Международная транскрипция

[zboɪ̯]

с [з] согласный, звонкий парный, твердый парный
б [б] согласный, звонкий парный, твердый парный
о [́о] гласный, ударный
й [й’] согласный, звонкий непарный (сонорный), мягкий непарный

Букв: 4 Звуков: 4

Цветовая схема слова

сбой

Как произносится слово «Сбой»

Тег audio не поддерживается вашим браузером.

Как правильно пишется «Сбой»

сбо́й

сбой, сбо́я, мн. сбо́и, -ев и сбои́, -ёв

Как правильно перенести «Сбой»

сбой

Часть речи

Часть речи слова «сбой» — Имя существительное

Морфологические признаки.

сбой (именительный падеж, единственного числа)

Постоянные признаки:

  • нарицательное
  • неодушевлённое
  • мужской
  • 2-e склонение

Непостоянные признаки:

  • именительный падеж
  • единственного числа

Может относится к разным членам предложения.

Склонение слова «Сбой»

Падеж Единственное число Множественное число
Именительный
Кто? Что?
сбо́й сбои́
Родительный
Кого? Чего?
сбо́я сбоёв
Дательный
Кому? Чему?
сбо́ю сбоя́м
Винительный (неод.)
Кого? Что?
сбо́й сбои́
Творительный
Кем? Чем?
сбо́ем сбоя́ми
Предложный
О ком? О чём?
сбо́е сбоя́х

Разбор по составу слова «Сбой»

Состав слова «сбой»:

приставка[с], корень[бой], нулевое окончание[  ]

Проверьте свои знания русского языка

Категория: Русский язык

Каким бывает «сбой»;

Синонимы к слову «сбой»

Ассоциации к слову «сбой»

Предложения со словом «сбой»

  • Неужели чуть дала сбой иммунная система моей души, и я, как вич-инфицированный, теперь беззащитен перед раньше безвредным вирусом?

    Александр Давыдов, Бумажный герой. Философичные повести А. К., 2015

  • В мозгу происходит сбой программы – и в организме много чего нарушается.

    Татьяна Трофименко, Депрессия без правил, 2012

  • Потом происходит какой-то сбой, и спустя несколько суток человек становится неуправляемым.

    Александр Варго, Особь, 2011

Происхождение слова «Сбой»

Происходит от гл. сбивать, из с- + бить, далее от праслав. *biti, от кот. в числе прочего произошли: др.-русск., ст.-слав. бити, укр. би́ти, болг. би́я, сербохорв. би̏ти би̏jе̑м, словенск. bíti bȋjem, чешск. bít biji, польск. bić biję, в.-луж. bić biju, н.-луж. biś bijom; восходит к праиндоевр. *bheyǝ-. Родственно др.-в.-нем. bīhal «топор», также bil, арм. bir «дубинка, палка», др.-греч. φιτρός «ствол дерева, кол, колода», ирл. benim (*bhināmi) «режу, бью», biail «топор». (восходит к праиндоевр. *bieiti/*boiti суфф. производное от *bhei-/*bhoi-/*bhi- «бить, бой»). Использованы данные словаря М. Фасмера. . Использованы материалы этимологического словаря Г. П. Цыганенко; .

A software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed «debugging» and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.

Bugs in software can arise from mistakes and errors made in interpreting and extracting users’ requirements, planning a program’s design, writing its source code, and from interaction with humans, hardware and programs, such as operating systems or libraries. A program with many, or serious, bugs is often described as buggy. Bugs can trigger errors that may have ripple effects. The effects of bugs may be subtle, such as unintended text formatting, through to more obvious effects such as causing a program to crash, freezing the computer, or causing damage to hardware. Other bugs qualify as security bugs and might, for example, enable a malicious user to bypass access controls in order to obtain unauthorized privileges.[1]

Some software bugs have been linked to disasters. Bugs in code that controlled the Therac-25 radiation therapy machine were directly responsible for patient deaths in the 1980s. In 1996, the European Space Agency’s US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after launch due to a bug in the on-board guidance computer program.[2] In 1994, an RAF Chinook helicopter crashed, killing 29; this was initially blamed on pilot error, but was later thought to have been caused by a software bug in the engine-control computer.[3] Buggy software caused the early 21st century British Post Office scandal, the most widespread miscarriage of justice in British legal history.[4]

In 2002, a study commissioned by the US Department of Commerce’s National Institute of Standards and Technology concluded that «software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross domestic product».[5]

History[edit]

The Middle English word bugge is the basis for the terms «bugbear» and «bugaboo» as terms used for a monster.[6]

The term «bug» to describe defects has been a part of engineering jargon since the 1870s[7] and predates electronics and computers; it may have originally been used in hardware engineering to describe mechanical malfunctions. For instance, Thomas Edison wrote in a letter to an associate in 1878:[8]

… difficulties arise—this thing gives out and [it is] then that «Bugs»—as such little faults and difficulties are called—show themselves[9]

Baffle Ball, the first mechanical pinball game, was advertised as being «free of bugs» in 1931.[10] Problems with military gear during World War II were referred to as bugs (or glitches).[11] In a book published in 1942, Louise Dickinson Rich, speaking of a powered ice cutting machine, said, «Ice sawing was suspended until the creator could be brought in to take the bugs out of his darling.»[12]

Isaac Asimov used the term «bug» to relate to issues with a robot in his short story «Catch That Rabbit», published in 1944.

A page from the Harvard Mark II electromechanical computer’s log, featuring a dead moth that was removed from the device.

The term «bug» was used in an account by computer pioneer Grace Hopper, who publicized the cause of a malfunction in an early electromechanical computer.[13] A typical version of the story is:

In 1946, when Hopper was released from active duty, she joined the Harvard Faculty at the Computation Laboratory where she continued her work on the Mark II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug. This bug was carefully removed and taped to the log book. Stemming from the first bug, today we call errors or glitches in a program a bug.[14]

Hopper was not present when the bug was found, but it became one of her favorite stories.[15] The date in the log book was September 9, 1947.[16][17][18] The operators who found it, including William «Bill» Burke, later of the Naval Weapons Laboratory, Dahlgren, Virginia,[19] were familiar with the engineering term and amusedly kept the insect with the notation «First actual case of bug being found.» This log book, complete with attached moth, is part of the collection of the Smithsonian National Museum of American History.[17]

The related term «debug» also appears to predate its usage in computing: the Oxford English Dictionarys etymology of the word contains an attestation from 1945, in the context of aircraft engines.[20]

The concept that software might contain errors dates back to Ada Lovelace’s 1843 notes on the analytical engine, in which she speaks of the possibility of program «cards» for Charles Babbage’s analytical engine being erroneous:

… an analysing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.

«Bugs in the System» report[edit]

The Open Technology Institute, run by the group, New America,[21] released a report «Bugs in the System» in August 2016 stating that U.S. policymakers should make reforms to help researchers identify and address software bugs. The report «highlights the need for reform in the field of software vulnerability discovery and disclosure.»[22] One of the report’s authors said that Congress has not done enough to address cyber software vulnerability, even though Congress has passed a number of bills to combat the larger issue of cyber security.[22]

Government researchers, companies, and cyber security experts are the people who typically discover software flaws. The report calls for reforming computer crime and copyright laws.[22]

The Computer Fraud and Abuse Act, the Digital Millennium Copyright Act and the Electronic Communications Privacy Act criminalize and create civil penalties for actions that security researchers routinely engage in while conducting legitimate security research, the report said.[22]

Terminology[edit]

While the use of the term «bug» to describe software errors is common, many have suggested that it should be abandoned. One argument is that the word «bug» is divorced from a sense that a human being caused the problem, and instead implies that the defect arose on its own, leading to a push to abandon the term «bug» in favor of terms such as «defect», with limited success.[23] Since the 1970s Gary Kildall somewhat humorously suggested to use the term «blunder».[24][25]

In software engineering, mistake metamorphism (from Greek meta = «change», morph = «form») refers to the evolution of a defect in the final stage of software deployment. Transformation of a «mistake» committed by an analyst in the early stages of the software development lifecycle, which leads to a «defect» in the final stage of the cycle has been called ‘mistake metamorphism’.[26]

Different stages of a «mistake» in the entire cycle may be described as «mistakes», «anomalies», «faults», «failures», «errors», «exceptions», «crashes», «glitches», «bugs», «defects», «incidents», or «side effects».[26]

Prevention[edit]

The software industry has put much effort into reducing bug counts.[27][28] These include:

Typographical errors[edit]

Bugs usually appear when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot. Some typos, especially of symbols or logical/mathematical operators, allow the program to operate incorrectly, while others such as a missing symbol or misspelled name may prevent the program from operating. Compiled languages can reveal some typos when the source code is compiled.

Development methodologies[edit]

Several schemes assist managing programmer activity so that fewer bugs are produced. Software engineering (which addresses software design issues as well) applies many techniques to prevent defects. For example, formal program specifications state the exact behavior of programs so that design bugs may be eliminated. Unfortunately, formal specifications are impractical for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.

Unit testing involves writing a test for every function (unit) that a program is to perform.

In test-driven development unit tests are written before the code and the code is not considered complete until all tests complete successfully.

Agile software development involves frequent software releases with relatively small changes. Defects are revealed by user feedback.

Open source development allows anyone to examine source code. A school of thought popularized by Eric S. Raymond as Linus’s law says that popular open-source software has more chance of having few or no bugs than other software, because «given enough eyeballs, all bugs are shallow».[29] This assertion has been disputed, however: computer security specialist Elias Levy wrote that «it is easy to hide vulnerabilities in complex, little understood and undocumented source code,» because, «even if people are reviewing the code, that doesn’t mean they’re qualified to do so.»[30] An example of an open-source software bug was the 2008 OpenSSL vulnerability in Debian.

Programming language support[edit]

Programming languages include features to help prevent bugs, such as static type systems, restricted namespaces and modular programming. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Compiled languages catch this without having to run the program. Interpreted languages catch such errors at runtime. Some languages deliberately exclude features that easily lead to bugs, at the expense of slower performance: the general principle being that, it is almost always better to write simpler, slower code than inscrutable code that runs slightly faster, especially considering that maintenance cost is substantial. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.

Code analysis[edit]

Tools for code analysis help developers by inspecting the program text beyond the compiler’s capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make certain kinds of simple mistakes often when writing software.

Instrumentation[edit]

Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.

Testing[edit]

Software testers are people whose primary task is to find bugs, or write code to support testing. On some projects, more resources may be spent on testing than in developing the program.

Measurements during testing can provide an estimate of the number of likely bugs remaining; this becomes more reliable the longer a product is tested and developed.[citation needed]

Debugging[edit]

The typical bug history (GNU Classpath project data). A new bug submitted by the user is unconfirmed. Once it has been reproduced by a developer, it is a confirmed bug. The confirmed bugs are later fixed. Bugs belonging to other categories (unreproducible, will not be fixed, etc.) are usually in the minority

Finding and fixing bugs, or debugging, is a major part of computer programming. Maurice Wilkes, an early computing pioneer, described his realization in the late 1940s that much of the rest of his life would be spent finding mistakes in his own programs.[31]

Usually, the most difficult part of debugging is finding the bug. Once it is found, correcting it is usually relatively easy. Programs known as debuggers help programmers locate bugs by executing code line by line, watching variable values, and other features to observe program behavior. Without a debugger, code may be added so that messages or values may be written to a console or to a window or log file to trace program execution or show values.

However, even with the aid of a debugger, locating bugs is something of an art. It is not uncommon for a bug in one section of a program to cause failures in a completely different section,[citation needed] thus making it especially difficult to track (for example, an error in a graphics rendering routine causing a file I/O routine to fail), in an apparently unrelated part of the system.

Sometimes, a bug is not an isolated flaw, but represents an error of thinking or planning on the part of the programmer. Such logic errors require a section of the program to be overhauled or rewritten. As a part of code review, stepping through the code and imagining or transcribing the execution process may often find errors without ever reproducing the bug as such.

More typically, the first step in locating a bug is to reproduce it reliably. Once the bug is reproducible, the programmer may use a debugger or other tool while reproducing the error to find the point at which the program went astray.

Some bugs are revealed by inputs that may be difficult for the programmer to re-create. One cause of the Therac-25 radiation machine deaths was a bug (specifically, a race condition) that occurred only when the machine operator very rapidly entered a treatment plan; it took days of practice to become able to do this, so the bug did not manifest in testing or when the manufacturer attempted to duplicate it. Other bugs may stop occurring whenever the setup is augmented to help find the bug, such as running the program with a debugger; these are called heisenbugs (humorously named after the Heisenberg uncertainty principle).

Since the 1990s, particularly following the Ariane 5 Flight 501 disaster, interest in automated aids to debugging rose, such as static code analysis by abstract interpretation.[32]

Some classes of bugs have nothing to do with the code. Faulty documentation or hardware may lead to problems in system use, even though the code matches the documentation. In some cases, changes to the code eliminate the problem even though the code then no longer matches the documentation. Embedded systems frequently work around hardware bugs, since to make a new version of a ROM is much cheaper than remanufacturing the hardware, especially if they are commodity items.

Benchmark of bugs[edit]

To facilitate reproducible research on testing and debugging, researchers use curated benchmarks of bugs:

  • the Siemens benchmark
  • ManyBugs[33] is a benchmark of 185 C bugs in nine open-source programs.
  • Defects4J[34] is a benchmark of 341 Java bugs from 5 open-source projects. It contains the corresponding patches, which cover a variety of patch type.[35]
  • BEARS[36] is a benchmark of continuous integration build failures focusing on test failures. It has been created by monitoring builds from open-source projects on Travis CI.

Bug management[edit]

Bug management includes the process of documenting, categorizing, assigning, reproducing, correcting and releasing the corrected code. Proposed changes to software – bugs as well as enhancement requests and even entire releases – are commonly tracked and managed using bug tracking systems or issue tracking systems.[37] The items added may be called defects, tickets, issues, or, following the agile development paradigm, stories and epics. Categories may be objective, subjective or a combination, such as version number, area of the software, severity and priority, as well as what type of issue it is, such as a feature request or a bug.

A bug triage reviews bugs and decides whether and when to fix them. The decision is based on the bug’s priority, and factors such as project schedules. The triage is not meant to investigate the cause of bugs, but rather the cost of fixing them. The triage happens regularly, and goes through bugs opened or reopened since the previous meeting. The attendees of the triage process typically are the project manager, development manager, test manager, build manager, and technical experts.[38][39]

Severity[edit]

Severity is the intensity of the impact the bug has on system operation.[40] This impact may be data loss, financial, loss of goodwill and wasted effort. Severity levels are not standardized. Impacts differ across industry. A crash in a video game has a totally different impact than a crash in a web browser, or real time monitoring system. For example, bug severity levels might be «crash or hang», «no workaround» (meaning there is no way the customer can accomplish a given task), «has workaround» (meaning the user can still accomplish the task), «visual defect» (for example, a missing image or displaced button or form element), or «documentation error». Some software publishers use more qualified severities such as «critical», «high», «low», «blocker» or «trivial».[41] The severity of a bug may be a separate category to its priority for fixing, and the two may be quantified and managed separately.

Priority[edit]

Priority controls where a bug falls on the list of planned changes. The priority is decided by each software producer. Priorities may be numerical, such as 1 through 5, or named, such as «critical», «high», «low», or «deferred». These rating scales may be similar or even identical to severity ratings, but are evaluated as a combination of the bug’s severity with its estimated effort to fix; a bug with low severity but easy to fix may get a higher priority than a bug with moderate severity that requires excessive effort to fix. Priority ratings may be aligned with product releases, such as «critical» priority indicating all the bugs that must be fixed before the next software release.

A bug severe enough to delay or halt the release of the product is called a «show stopper»[42] or «showstopper bug».[43] It is named so because it «stops the show» – causes unacceptable product failure.[43]

Software releases[edit]

It is common practice to release software with known, low-priority bugs. Bugs of sufficiently high priority may warrant a special release of part of the code containing only modules with those fixes. These are known as patches. Most releases include a mixture of behavior changes and multiple bug fixes. Releases that emphasize bug fixes are known as maintenance releases, to differentiate it from major releases that emphasize feature additions or changes.

Reasons that a software publisher opts not to patch or even fix a particular bug include:

  • A deadline must be met and resources are insufficient to fix all bugs by the deadline.[44]
  • The bug is already fixed in an upcoming release, and it is not of high priority.
  • The changes required to fix the bug are too costly or affect too many other components, requiring a major testing activity.
  • It may be suspected, or known, that some users are relying on the existing buggy behavior; a proposed fix may introduce a breaking change.
  • The problem is in an area that will be obsolete with an upcoming release; fixing it is unnecessary.
  • «It’s not a bug, it’s a feature».[45] A misunderstanding has arisen between expected and perceived behavior or undocumented feature.

Types[edit]

In software development projects, a mistake or error may be introduced at any stage. Bugs arise from oversight or misunderstanding by a software team during specification, design, coding, configuration, data entry or documentation. For example, a relatively simple program to alphabetize a list of words, the design might fail to consider what should happen when a word contains a hyphen. Or when converting an abstract design into code, the coder might inadvertently create an off-by-one error which can be a «<» where «<=» was intended, and fail to sort the last word in a list.

Another category of bug is called a race condition that may occur when programs have multiple components executing at the same time. If the components interact in a different order than the developer intended, they could interfere with each other and stop the program from completing its tasks. These bugs may be difficult to detect or anticipate, since they may not occur during every execution of a program.

Conceptual errors are a developer’s misunderstanding of what the software must do. The resulting software may perform according to the developer’s understanding, but not what is really needed. Other types:

Arithmetic[edit]

In operations on numerical values, problems can arise that result in unexpected output, slowing of a process, or crashing.[46] These can be from a lack of awareness of the qualities of the data storage such as a loss of precision due to rounding, numerically unstable algorithms, arithmetic overflow and underflow, or from lack of awareness of how calculations are handled by different software coding languages such as division by zero which in some languages may throw an exception, and in others may return a special value such as NaN or infinity.

Control flow[edit]

Control flow bugs are those found in processes with valid logic, but that lead to unintended results, such as infinite loops and infinite recursion, incorrect comparisons for conditional statements such as using the incorrect comparison operator, and off-by-one errors (counting one too many or one too few iterations when looping).

Interfacing[edit]

  • Incorrect API usage.[47]
  • Incorrect protocol implementation.
  • Incorrect hardware handling.
  • Incorrect assumptions of a particular platform.
  • Incompatible systems. A new API or communications protocol may seem to work when two systems use different versions, but errors may occur when a function or feature implemented in one version is changed or missing in another. In production systems which must run continually, shutting down the entire system for a major update may not be possible, such as in the telecommunication industry[48] or the internet.[49][50][51] In this case, smaller segments of a large system are upgraded individually, to minimize disruption to a large network. However, some sections could be overlooked and not upgraded, and cause compatibility errors which may be difficult to find and repair.
  • Incorrect code annotations[52]

Concurrency[edit]

  • Deadlock, where task A cannot continue until task B finishes, but at the same time, task B cannot continue until task A finishes.
  • Race condition, where the computer does not perform tasks in the order the programmer intended.
  • Concurrency errors in critical sections, mutual exclusions and other features of concurrent processing. Time-of-check-to-time-of-use (TOCTOU) is a form of unprotected critical section.

Resourcing[edit]

  • Null pointer dereference.
  • Using an uninitialized variable.
  • Using an otherwise valid instruction on the wrong data type (see packed decimal/binary-coded decimal).
  • Access violations.
  • Resource leaks, where a finite system resource (such as memory or file handles) become exhausted by repeated allocation without release.
  • Buffer overflow, in which a program tries to store data past the end of allocated storage. This may or may not lead to an access violation or storage violation. These are frequently security bugs.
  • Excessive recursion which—though logically valid—causes stack overflow.
  • Use-after-free error, where a pointer is used after the system has freed the memory it references.
  • Double free error.

Syntax[edit]

  • Use of the wrong token, such as performing assignment instead of equality test. For example, in some languages x=5 will set the value of x to 5 while x==5 will check whether x is currently 5 or some other number. Interpreted languages allow such code to fail. Compiled languages can catch such errors before testing begins.

Teamwork[edit]

  • Unpropagated updates; e.g. programmer changes «myAdd» but forgets to change «mySubtract», which uses the same algorithm. These errors are mitigated by the Don’t Repeat Yourself philosophy.
  • Comments out of date or incorrect: many programmers assume the comments accurately describe the code.
  • Differences between documentation and product.

Implications[edit]

The amount and type of damage a software bug may cause naturally affects decision-making, processes and policy regarding software quality. In applications such as human spaceflight, aviation, nuclear power, health care, public transport or automotive safety, since software flaws have the potential to cause human injury or even death, such software will have far more scrutiny and quality control than, for example, an online shopping website. In applications such as banking, where software flaws have the potential to cause serious financial damage to a bank or its customers, quality control is also more important than, say, a photo editing application.

Other than the damage caused by bugs, some of their cost is due to the effort invested in fixing them. In 1978, Lientz et al. showed that the median of projects invest 17 percent of the development effort in bug fixing.[53] In research in 2020 on GitHub repositories showed the median is 20%.[54]

Residual bugs in delivered product[edit]

In 1994, NASA’s Goddard Space Flight Center managed to reduce their average number of errors from 4.5 per 1000 lines of code (SLOC) down to 1 per 1000 SLOC.[55]

Another study in 1990 reported that exceptionally good software development processes can achieve deployment failure rates as low as 0.1 per 1000 SLOC.[56] This figure is iterated in literature such as Code Complete by Steve McConnell,[57] and the NASA study on Flight Software Complexity.[58] Some projects even attained zero defects: the firmware in the IBM Wheelwriter typewriter which consists of 63,000 SLOC, and the Space Shuttle software with 500,000 SLOC.[56]

Well-known bugs[edit]

A number of software bugs have become well-known, usually due to their severity: examples include various space and military aircraft crashes. Possibly the most famous bug is the Year 2000 problem or Y2K bug, which caused many programs written long before the transition from 19xx to 20xx dates to malfunction, for example treating a date such as «25 Dec 04» as being in 1904, displaying «19100» instead of «2000», and so on. A huge effort at the end of the 20th century resolved the most severe problems, and there were no major consequences.

The 2012 stock trading disruption involved one such incompatibility between the old API and a new API.

In popular culture[edit]

  • In both the 1968 novel 2001: A Space Odyssey and the corresponding 1968 film 2001: A Space Odyssey, a spaceship’s onboard computer, HAL 9000, attempts to kill all its crew members. In the follow-up 1982 novel, 2010: Odyssey Two, and the accompanying 1984 film, 2010, it is revealed that this action was caused by the computer having been programmed with two conflicting objectives: to fully disclose all its information, and to keep the true purpose of the flight secret from the crew; this conflict caused HAL to become paranoid and eventually homicidal.
  • In the English version of the Nena 1983 song 99 Luftballons (99 Red Balloons) as a result of «bugs in the software», a release of a group of 99 red balloons are mistaken for an enemy nuclear missile launch, requiring an equivalent launch response, resulting in catastrophe.
  • In the 1999 American comedy Office Space, three employees attempt (unsuccessfully) to exploit their company’s preoccupation with the Y2K computer bug using a computer virus that sends rounded-off fractions of a penny to their bank account—a long-known technique described as salami slicing.
  • The 2004 novel The Bug, by Ellen Ullman, is about a programmer’s attempt to find an elusive bug in a database application.[59]
  • The 2008 Canadian film Control Alt Delete is about a computer programmer at the end of 1999 struggling to fix bugs at his company related to the year 2000 problem.

See also[edit]

  • Anti-pattern
  • Bug bounty program
  • Glitch removal
  • Hardware bug
  • ISO/IEC 9126, which classifies a bug as either a defect or a nonconformity
  • Orthogonal Defect Classification
  • Racetrack problem
  • RISKS Digest
  • Software defect indicator
  • Software regression
  • Software rot
  • Automatic bug fixing

References[edit]

  1. ^ Mittal, Varun; Aditya, Shivam (January 1, 2015). «Recent Developments in the Field of Bug Fixing». Procedia Computer Science. International Conference on Computer, Communication and Convergence (ICCC 2015). 48: 288–297. doi:10.1016/j.procs.2015.04.184. ISSN 1877-0509.
  2. ^ «Ariane 501 — Presentation of Inquiry Board report». www.esa.int. Retrieved January 29, 2022.
  3. ^ Prof. Simon Rogerson. «The Chinook Helicopter Disaster». Ccsr.cse.dmu.ac.uk. Archived from the original on July 17, 2012. Retrieved September 24, 2012.
  4. ^ «Post Office scandal ruined lives, inquiry hears». BBC News. February 14, 2022.
  5. ^ «Software bugs cost US economy dear». June 10, 2009. Archived from the original on June 10, 2009. Retrieved September 24, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  6. ^ Computerworld staff (September 3, 2011). «Moth in the machine: Debugging the origins of ‘bug’«. Computerworld. Archived from the original on August 25, 2015.
  7. ^ «bug». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) 5a
  8. ^ «Did You Know? Edison Coined the Term «Bug»«. August 1, 2013. Retrieved July 19, 2019.
  9. ^ Edison to Puskas, 13 November 1878, Edison papers, Edison National Laboratory, U.S. National Park Service, West Orange, N.J., cited in Hughes, Thomas Parke (1989). American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970. Penguin Books. p. 75. ISBN 978-0-14-009741-2.
  10. ^ «Baffle Ball». Internet Pinball Database. (See image of advertisement in reference entry)
  11. ^ «Modern Aircraft Carriers are Result of 20 Years of Smart Experimentation». Life. June 29, 1942. p. 25. Archived from the original on June 4, 2013. Retrieved November 17, 2011.
  12. ^ Dickinson Rich, Louise (1942), We Took to the Woods, JB Lippincott Co, p. 93, LCCN 42024308, OCLC 405243, archived from the original on March 16, 2017.
  13. ^ FCAT NRT Test, Harcourt, March 18, 2008
  14. ^ «Danis, Sharron Ann: «Rear Admiral Grace Murray Hopper»«. ei.cs.vt.edu. February 16, 1997. Retrieved January 31, 2010.
  15. ^ James S. Huggins. «First Computer Bug». Jamesshuggins.com. Archived from the original on August 16, 2000. Retrieved September 24, 2012.
  16. ^ «Bug Archived March 23, 2017, at the Wayback Machine», The Jargon File, ver. 4.4.7. Retrieved June 3, 2010.
  17. ^ a b «Log Book With Computer Bug Archived March 23, 2017, at the Wayback Machine», National Museum of American History, Smithsonian Institution.
  18. ^ «The First «Computer Bug», Naval Historical Center. But note the Harvard Mark II computer was not complete until the summer of 1947.
  19. ^ IEEE Annals of the History of Computing, Vol 22 Issue 1, 2000
  20. ^ Journal of the Royal Aeronautical Society. 49, 183/2, 1945 «It ranged … through the stage of type test and flight test and ‘debugging’ …»
  21. ^ Wilson, Andi; Schulman, Ross; Bankston, Kevin; Herr, Trey. «Bugs in the System» (PDF). Open Policy Institute. Archived (PDF) from the original on September 21, 2016. Retrieved August 22, 2016.
  22. ^ a b c d Rozens, Tracy (August 12, 2016). «Cyber reforms needed to strengthen software bug discovery and disclosure: New America report – Homeland Preparedness News». Retrieved August 23, 2016.
  23. ^ «News at SEI 1999 Archive». cmu.edu. Archived from the original on May 26, 2013.
  24. ^ Shustek, Len (August 2, 2016). «In His Own Words: Gary Kildall». Remarkable People. Computer History Museum. Archived from the original on December 17, 2016.
  25. ^ Kildall, Gary Arlen (August 2, 2016) [1993]. Kildall, Scott; Kildall, Kristin (eds.). «Computer Connections: People, Places, and Events in the Evolution of the Personal Computer Industry» (Manuscript, part 1). Kildall Family: 14–15. Archived from the original on November 17, 2016. Retrieved November 17, 2016.
  26. ^ a b «Testing experience : te : the magazine for professional testers». Testing Experience. Germany: testingexperience: 42. March 2012. ISSN 1866-5705. (subscription required)
  27. ^ Huizinga, Dorota; Kolawa, Adam (2007). Automated Defect Prevention: Best Practices in Software Management. Wiley-IEEE Computer Society Press. p. 426. ISBN 978-0-470-04212-0. Archived from the original on April 25, 2012.
  28. ^ McDonald, Marc; Musson, Robert; Smith, Ross (2007). The Practical Guide to Defect Prevention. Microsoft Press. p. 480. ISBN 978-0-7356-2253-1.
  29. ^ «Release Early, Release Often» Archived May 14, 2011, at the Wayback Machine, Eric S. Raymond, The Cathedral and the Bazaar
  30. ^ «Wide Open Source» Archived September 29, 2007, at the Wayback Machine, Elias Levy, SecurityFocus, April 17, 2000
  31. ^ Maurice Wilkes Quotes
  32. ^ «PolySpace Technologies history». christele.faure.pagesperso-orange.fr. Retrieved August 1, 2019.
  33. ^ Le Goues, Claire; Holtschulte, Neal; Smith, Edward K.; Brun, Yuriy; Devanbu, Premkumar; Forrest, Stephanie; Weimer, Westley (2015). «The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs». IEEE Transactions on Software Engineering. 41 (12): 1236–1256. doi:10.1109/TSE.2015.2454513. ISSN 0098-5589.
  34. ^ Just, René; Jalali, Darioush; Ernst, Michael D. (2014). «Defects4J: a database of existing faults to enable controlled testing studies for Java programs». Proceedings of the 2014 International Symposium on Software Testing and Analysis — ISSTA 2014. pp. 437–440. CiteSeerX 10.1.1.646.3086. doi:10.1145/2610384.2628055. ISBN 9781450326452. S2CID 12796895.
  35. ^ Sobreira, Victor; Durieux, Thomas; Madeiral, Fernanda; Monperrus, Martin; de Almeida Maia, Marcelo (2018). «Dissection of a bug dataset: Anatomy of 395 patches from Defects4J». 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). pp. 130–140. arXiv:1801.06393. doi:10.1109/SANER.2018.8330203. ISBN 978-1-5386-4969-5. S2CID 4607810.
  36. ^ Madeiral, Fernanda; Urli, Simon; Maia, Marcelo; Monperrus, Martin; Maia, Marcelo A. (2019). «BEARS: An Extensible Java Bug Benchmark for Automatic Program Repair Studies». 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). pp. 468–478. arXiv:1901.06024. doi:10.1109/SANER.2019.8667991. ISBN 978-1-7281-0591-8. S2CID 58028949.
  37. ^ Allen, Mitch (May–June 2002). «Bug Tracking Basics: A beginner’s guide to reporting and tracking defects». Software Testing & Quality Engineering Magazine. Vol. 4, no. 3. pp. 20–24. Retrieved December 19, 2017.
  38. ^ Rex Black (2002). Managing The Testing Process (2Nd Ed.). Wiley India Pvt. Limited. p. 139. ISBN 9788126503131. Retrieved June 19, 2021.
  39. ^ Chris Vander Mey (August 24, 2012). Shipping Greatness — Practical Lessons on Building and Launching Outstanding Software, Learned on the Job at Google and Amazon. O’Reilly Media. pp. 79–81. ISBN 9781449336608.
  40. ^ Soleimani Neysiani, Behzad; Babamir, Seyed Morteza; Aritsugi, Masayoshi (October 1, 2020). «Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems». Information and Software Technology. 126: 106344. doi:10.1016/j.infsof.2020.106344. S2CID 219733047.
  41. ^ «5.3. Anatomy of a Bug». bugzilla.org. Archived from the original on May 23, 2013.
  42. ^ Jones, Wilbur D. Jr., ed. (1989). «Show stopper». Glossary: defense acquisition acronyms and terms (4 ed.). Fort Belvoir, Virginia, USA: Department of Defense, Defense Systems Management College. p. 123. hdl:2027/mdp.39015061290758. hdl:2027/mdp.39015061290758 – via Hathitrust.
  43. ^ a b Zachary, G. Pascal (1994). Show-stopper!: the breakneck race to create Windows NT and the next generation at Microsoft. New York: The Free Press. p. 158. ISBN 0029356717 – via archive.org.
  44. ^ «The Next Generation 1996 Lexicon A to Z: Slipstream Release». Next Generation. No. 15. March 1996. p. 41.
  45. ^ Carr, Nicholas (2018). «‘It’s Not a Bug, It’s a Feature.’ Trite—or Just Right?». wired.com.
  46. ^ Di Franco, Anthony; Guo, Hui; Cindy, Rubio-González. «A Comprehensive Study of Real-World Numerical Bug Characteristics» (PDF). Archived (PDF) from the original on October 9, 2022.
  47. ^ Monperrus, Martin; Bruch, Marcel; Mezini, Mira (2010). «Detecting Missing Method Calls in Object-Oriented Software». ECOOP 2010 – Object-Oriented Programming (PDF). Lecture Notes in Computer Science. Vol. 6183. pp. 2–25. doi:10.1007/978-3-642-14107-2_2. ISBN 978-3-642-14106-5. S2CID 16724498. Archived (PDF) from the original on October 9, 2022.
  48. ^ Kimbler, K. (1998). Feature Interactions in Telecommunications and Software Systems V. IOS Press. p. 8. ISBN 978-90-5199-431-5.
  49. ^ Syed, Mahbubur Rahman (July 1, 2001). Multimedia Networking: Technology, Management and Applications: Technology, Management and Applications. Idea Group Inc (IGI). p. 398. ISBN 978-1-59140-005-9.
  50. ^ Wu, Chwan-Hwa (John); Irwin, J. David (April 19, 2016). Introduction to Computer Networks and Cybersecurity. CRC Press. p. 500. ISBN 978-1-4665-7214-0.
  51. ^ RFC 1263: «TCP Extensions Considered Harmful» quote: «the time to distribute the new version of the protocol to all hosts can be quite long (forever in fact). … If there is the slightest incompatibly between old and new versions, chaos can result.»
  52. ^ Yu, Zhongxing; Bai, Chenggang; Seinturier, Lionel; Monperrus, Martin (2019). «Characterizing the Usage, Evolution and Impact of Java Annotations in Practice». IEEE Transactions on Software Engineering. 47 (5): 1. arXiv:1805.01965. doi:10.1109/TSE.2019.2910516. S2CID 102351817.
  53. ^ Lientz, B. P.; Swanson, E. B.; Tompkins, G. E. (1978). «Characteristics of Application Software Maintenance». Communications of the ACM. 21 (6): 466–471. doi:10.1145/359511.359522. S2CID 14950091.
  54. ^ Amit, Idan; Feitelson, Dror G. (2020). «The Corrective Commit Probability Code Quality Metric». arXiv:2007.10912 [cs.SE].
  55. ^ An overview of the Software Engineering Laboratory (PDF) (Report). Maryland, USA: Goddard Space Flight Center, NASA. December 1, 1994. pp41–42 Figure 18; pp43–44 Figure 21. CR-189410; SEL-94-005. Archived (PDF) from the original on November 22, 2022. Retrieved November 22, 2022. (bibliography: An overview of the Software Engineering Laboratory)
  56. ^ a b Cobb, Richard H.; Mills, Harlan D. (1990). «Engineering software under statistical quality control». IEEE Software. 7 (6): 46. doi:10.1109/52.60601. ISSN 1937-4194. S2CID 538311 – via University of Tennessee – Harlan D. Mills Collection.
  57. ^ McConnell, Steven C. (1993). Code Complete. Redmond, Washington, USA: Microsoft Press. p. 611. ISBN 9781556154843 – via archive.org. (Cobb and Mills 1990)
  58. ^ Holzmann, Gerard (March 6, 2009). «Appendix D – Software Complexity» (PDF). In Dvorak, Daniel L. (ed.). NASA Study on Flight Software Complexity (Report). NASA. pdf frame 109/264. Appendix D p.2. Archived (PDF) from the original on March 8, 2022. Retrieved November 22, 2022. (under NASA Office of the Chief Engineer Technical Excellence Initiative)
  59. ^ Ullman, Ellen (2004). The Bug. Picador. ISBN 978-1-250-00249-5.

External links[edit]

  • «Common Weakness Enumeration» – an expert webpage focus on bugs, at NIST.gov
  • BUG type of Jim Gray – another Bug type
  • Picture of the «first computer bug» at the Wayback Machine (archived January 12, 2015)
  • «The First Computer Bug!» – an email from 1981 about Adm. Hopper’s bug
  • «Toward Understanding Compiler Bugs in GCC and LLVM». A 2016 study of bugs in compilers

A software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed «debugging» and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.

Bugs in software can arise from mistakes and errors made in interpreting and extracting users’ requirements, planning a program’s design, writing its source code, and from interaction with humans, hardware and programs, such as operating systems or libraries. A program with many, or serious, bugs is often described as buggy. Bugs can trigger errors that may have ripple effects. The effects of bugs may be subtle, such as unintended text formatting, through to more obvious effects such as causing a program to crash, freezing the computer, or causing damage to hardware. Other bugs qualify as security bugs and might, for example, enable a malicious user to bypass access controls in order to obtain unauthorized privileges.[1]

Some software bugs have been linked to disasters. Bugs in code that controlled the Therac-25 radiation therapy machine were directly responsible for patient deaths in the 1980s. In 1996, the European Space Agency’s US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after launch due to a bug in the on-board guidance computer program.[2] In 1994, an RAF Chinook helicopter crashed, killing 29; this was initially blamed on pilot error, but was later thought to have been caused by a software bug in the engine-control computer.[3] Buggy software caused the early 21st century British Post Office scandal, the most widespread miscarriage of justice in British legal history.[4]

In 2002, a study commissioned by the US Department of Commerce’s National Institute of Standards and Technology concluded that «software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross domestic product».[5]

History[edit]

The Middle English word bugge is the basis for the terms «bugbear» and «bugaboo» as terms used for a monster.[6]

The term «bug» to describe defects has been a part of engineering jargon since the 1870s[7] and predates electronics and computers; it may have originally been used in hardware engineering to describe mechanical malfunctions. For instance, Thomas Edison wrote in a letter to an associate in 1878:[8]

… difficulties arise—this thing gives out and [it is] then that «Bugs»—as such little faults and difficulties are called—show themselves[9]

Baffle Ball, the first mechanical pinball game, was advertised as being «free of bugs» in 1931.[10] Problems with military gear during World War II were referred to as bugs (or glitches).[11] In a book published in 1942, Louise Dickinson Rich, speaking of a powered ice cutting machine, said, «Ice sawing was suspended until the creator could be brought in to take the bugs out of his darling.»[12]

Isaac Asimov used the term «bug» to relate to issues with a robot in his short story «Catch That Rabbit», published in 1944.

A page from the Harvard Mark II electromechanical computer’s log, featuring a dead moth that was removed from the device.

The term «bug» was used in an account by computer pioneer Grace Hopper, who publicized the cause of a malfunction in an early electromechanical computer.[13] A typical version of the story is:

In 1946, when Hopper was released from active duty, she joined the Harvard Faculty at the Computation Laboratory where she continued her work on the Mark II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug. This bug was carefully removed and taped to the log book. Stemming from the first bug, today we call errors or glitches in a program a bug.[14]

Hopper was not present when the bug was found, but it became one of her favorite stories.[15] The date in the log book was September 9, 1947.[16][17][18] The operators who found it, including William «Bill» Burke, later of the Naval Weapons Laboratory, Dahlgren, Virginia,[19] were familiar with the engineering term and amusedly kept the insect with the notation «First actual case of bug being found.» This log book, complete with attached moth, is part of the collection of the Smithsonian National Museum of American History.[17]

The related term «debug» also appears to predate its usage in computing: the Oxford English Dictionarys etymology of the word contains an attestation from 1945, in the context of aircraft engines.[20]

The concept that software might contain errors dates back to Ada Lovelace’s 1843 notes on the analytical engine, in which she speaks of the possibility of program «cards» for Charles Babbage’s analytical engine being erroneous:

… an analysing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.

«Bugs in the System» report[edit]

The Open Technology Institute, run by the group, New America,[21] released a report «Bugs in the System» in August 2016 stating that U.S. policymakers should make reforms to help researchers identify and address software bugs. The report «highlights the need for reform in the field of software vulnerability discovery and disclosure.»[22] One of the report’s authors said that Congress has not done enough to address cyber software vulnerability, even though Congress has passed a number of bills to combat the larger issue of cyber security.[22]

Government researchers, companies, and cyber security experts are the people who typically discover software flaws. The report calls for reforming computer crime and copyright laws.[22]

The Computer Fraud and Abuse Act, the Digital Millennium Copyright Act and the Electronic Communications Privacy Act criminalize and create civil penalties for actions that security researchers routinely engage in while conducting legitimate security research, the report said.[22]

Terminology[edit]

While the use of the term «bug» to describe software errors is common, many have suggested that it should be abandoned. One argument is that the word «bug» is divorced from a sense that a human being caused the problem, and instead implies that the defect arose on its own, leading to a push to abandon the term «bug» in favor of terms such as «defect», with limited success.[23] Since the 1970s Gary Kildall somewhat humorously suggested to use the term «blunder».[24][25]

In software engineering, mistake metamorphism (from Greek meta = «change», morph = «form») refers to the evolution of a defect in the final stage of software deployment. Transformation of a «mistake» committed by an analyst in the early stages of the software development lifecycle, which leads to a «defect» in the final stage of the cycle has been called ‘mistake metamorphism’.[26]

Different stages of a «mistake» in the entire cycle may be described as «mistakes», «anomalies», «faults», «failures», «errors», «exceptions», «crashes», «glitches», «bugs», «defects», «incidents», or «side effects».[26]

Prevention[edit]

The software industry has put much effort into reducing bug counts.[27][28] These include:

Typographical errors[edit]

Bugs usually appear when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot. Some typos, especially of symbols or logical/mathematical operators, allow the program to operate incorrectly, while others such as a missing symbol or misspelled name may prevent the program from operating. Compiled languages can reveal some typos when the source code is compiled.

Development methodologies[edit]

Several schemes assist managing programmer activity so that fewer bugs are produced. Software engineering (which addresses software design issues as well) applies many techniques to prevent defects. For example, formal program specifications state the exact behavior of programs so that design bugs may be eliminated. Unfortunately, formal specifications are impractical for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.

Unit testing involves writing a test for every function (unit) that a program is to perform.

In test-driven development unit tests are written before the code and the code is not considered complete until all tests complete successfully.

Agile software development involves frequent software releases with relatively small changes. Defects are revealed by user feedback.

Open source development allows anyone to examine source code. A school of thought popularized by Eric S. Raymond as Linus’s law says that popular open-source software has more chance of having few or no bugs than other software, because «given enough eyeballs, all bugs are shallow».[29] This assertion has been disputed, however: computer security specialist Elias Levy wrote that «it is easy to hide vulnerabilities in complex, little understood and undocumented source code,» because, «even if people are reviewing the code, that doesn’t mean they’re qualified to do so.»[30] An example of an open-source software bug was the 2008 OpenSSL vulnerability in Debian.

Programming language support[edit]

Programming languages include features to help prevent bugs, such as static type systems, restricted namespaces and modular programming. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Compiled languages catch this without having to run the program. Interpreted languages catch such errors at runtime. Some languages deliberately exclude features that easily lead to bugs, at the expense of slower performance: the general principle being that, it is almost always better to write simpler, slower code than inscrutable code that runs slightly faster, especially considering that maintenance cost is substantial. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.

Code analysis[edit]

Tools for code analysis help developers by inspecting the program text beyond the compiler’s capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make certain kinds of simple mistakes often when writing software.

Instrumentation[edit]

Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.

Testing[edit]

Software testers are people whose primary task is to find bugs, or write code to support testing. On some projects, more resources may be spent on testing than in developing the program.

Measurements during testing can provide an estimate of the number of likely bugs remaining; this becomes more reliable the longer a product is tested and developed.[citation needed]

Debugging[edit]

The typical bug history (GNU Classpath project data). A new bug submitted by the user is unconfirmed. Once it has been reproduced by a developer, it is a confirmed bug. The confirmed bugs are later fixed. Bugs belonging to other categories (unreproducible, will not be fixed, etc.) are usually in the minority

Finding and fixing bugs, or debugging, is a major part of computer programming. Maurice Wilkes, an early computing pioneer, described his realization in the late 1940s that much of the rest of his life would be spent finding mistakes in his own programs.[31]

Usually, the most difficult part of debugging is finding the bug. Once it is found, correcting it is usually relatively easy. Programs known as debuggers help programmers locate bugs by executing code line by line, watching variable values, and other features to observe program behavior. Without a debugger, code may be added so that messages or values may be written to a console or to a window or log file to trace program execution or show values.

However, even with the aid of a debugger, locating bugs is something of an art. It is not uncommon for a bug in one section of a program to cause failures in a completely different section,[citation needed] thus making it especially difficult to track (for example, an error in a graphics rendering routine causing a file I/O routine to fail), in an apparently unrelated part of the system.

Sometimes, a bug is not an isolated flaw, but represents an error of thinking or planning on the part of the programmer. Such logic errors require a section of the program to be overhauled or rewritten. As a part of code review, stepping through the code and imagining or transcribing the execution process may often find errors without ever reproducing the bug as such.

More typically, the first step in locating a bug is to reproduce it reliably. Once the bug is reproducible, the programmer may use a debugger or other tool while reproducing the error to find the point at which the program went astray.

Some bugs are revealed by inputs that may be difficult for the programmer to re-create. One cause of the Therac-25 radiation machine deaths was a bug (specifically, a race condition) that occurred only when the machine operator very rapidly entered a treatment plan; it took days of practice to become able to do this, so the bug did not manifest in testing or when the manufacturer attempted to duplicate it. Other bugs may stop occurring whenever the setup is augmented to help find the bug, such as running the program with a debugger; these are called heisenbugs (humorously named after the Heisenberg uncertainty principle).

Since the 1990s, particularly following the Ariane 5 Flight 501 disaster, interest in automated aids to debugging rose, such as static code analysis by abstract interpretation.[32]

Some classes of bugs have nothing to do with the code. Faulty documentation or hardware may lead to problems in system use, even though the code matches the documentation. In some cases, changes to the code eliminate the problem even though the code then no longer matches the documentation. Embedded systems frequently work around hardware bugs, since to make a new version of a ROM is much cheaper than remanufacturing the hardware, especially if they are commodity items.

Benchmark of bugs[edit]

To facilitate reproducible research on testing and debugging, researchers use curated benchmarks of bugs:

  • the Siemens benchmark
  • ManyBugs[33] is a benchmark of 185 C bugs in nine open-source programs.
  • Defects4J[34] is a benchmark of 341 Java bugs from 5 open-source projects. It contains the corresponding patches, which cover a variety of patch type.[35]
  • BEARS[36] is a benchmark of continuous integration build failures focusing on test failures. It has been created by monitoring builds from open-source projects on Travis CI.

Bug management[edit]

Bug management includes the process of documenting, categorizing, assigning, reproducing, correcting and releasing the corrected code. Proposed changes to software – bugs as well as enhancement requests and even entire releases – are commonly tracked and managed using bug tracking systems or issue tracking systems.[37] The items added may be called defects, tickets, issues, or, following the agile development paradigm, stories and epics. Categories may be objective, subjective or a combination, such as version number, area of the software, severity and priority, as well as what type of issue it is, such as a feature request or a bug.

A bug triage reviews bugs and decides whether and when to fix them. The decision is based on the bug’s priority, and factors such as project schedules. The triage is not meant to investigate the cause of bugs, but rather the cost of fixing them. The triage happens regularly, and goes through bugs opened or reopened since the previous meeting. The attendees of the triage process typically are the project manager, development manager, test manager, build manager, and technical experts.[38][39]

Severity[edit]

Severity is the intensity of the impact the bug has on system operation.[40] This impact may be data loss, financial, loss of goodwill and wasted effort. Severity levels are not standardized. Impacts differ across industry. A crash in a video game has a totally different impact than a crash in a web browser, or real time monitoring system. For example, bug severity levels might be «crash or hang», «no workaround» (meaning there is no way the customer can accomplish a given task), «has workaround» (meaning the user can still accomplish the task), «visual defect» (for example, a missing image or displaced button or form element), or «documentation error». Some software publishers use more qualified severities such as «critical», «high», «low», «blocker» or «trivial».[41] The severity of a bug may be a separate category to its priority for fixing, and the two may be quantified and managed separately.

Priority[edit]

Priority controls where a bug falls on the list of planned changes. The priority is decided by each software producer. Priorities may be numerical, such as 1 through 5, or named, such as «critical», «high», «low», or «deferred». These rating scales may be similar or even identical to severity ratings, but are evaluated as a combination of the bug’s severity with its estimated effort to fix; a bug with low severity but easy to fix may get a higher priority than a bug with moderate severity that requires excessive effort to fix. Priority ratings may be aligned with product releases, such as «critical» priority indicating all the bugs that must be fixed before the next software release.

A bug severe enough to delay or halt the release of the product is called a «show stopper»[42] or «showstopper bug».[43] It is named so because it «stops the show» – causes unacceptable product failure.[43]

Software releases[edit]

It is common practice to release software with known, low-priority bugs. Bugs of sufficiently high priority may warrant a special release of part of the code containing only modules with those fixes. These are known as patches. Most releases include a mixture of behavior changes and multiple bug fixes. Releases that emphasize bug fixes are known as maintenance releases, to differentiate it from major releases that emphasize feature additions or changes.

Reasons that a software publisher opts not to patch or even fix a particular bug include:

  • A deadline must be met and resources are insufficient to fix all bugs by the deadline.[44]
  • The bug is already fixed in an upcoming release, and it is not of high priority.
  • The changes required to fix the bug are too costly or affect too many other components, requiring a major testing activity.
  • It may be suspected, or known, that some users are relying on the existing buggy behavior; a proposed fix may introduce a breaking change.
  • The problem is in an area that will be obsolete with an upcoming release; fixing it is unnecessary.
  • «It’s not a bug, it’s a feature».[45] A misunderstanding has arisen between expected and perceived behavior or undocumented feature.

Types[edit]

In software development projects, a mistake or error may be introduced at any stage. Bugs arise from oversight or misunderstanding by a software team during specification, design, coding, configuration, data entry or documentation. For example, a relatively simple program to alphabetize a list of words, the design might fail to consider what should happen when a word contains a hyphen. Or when converting an abstract design into code, the coder might inadvertently create an off-by-one error which can be a «<» where «<=» was intended, and fail to sort the last word in a list.

Another category of bug is called a race condition that may occur when programs have multiple components executing at the same time. If the components interact in a different order than the developer intended, they could interfere with each other and stop the program from completing its tasks. These bugs may be difficult to detect or anticipate, since they may not occur during every execution of a program.

Conceptual errors are a developer’s misunderstanding of what the software must do. The resulting software may perform according to the developer’s understanding, but not what is really needed. Other types:

Arithmetic[edit]

In operations on numerical values, problems can arise that result in unexpected output, slowing of a process, or crashing.[46] These can be from a lack of awareness of the qualities of the data storage such as a loss of precision due to rounding, numerically unstable algorithms, arithmetic overflow and underflow, or from lack of awareness of how calculations are handled by different software coding languages such as division by zero which in some languages may throw an exception, and in others may return a special value such as NaN or infinity.

Control flow[edit]

Control flow bugs are those found in processes with valid logic, but that lead to unintended results, such as infinite loops and infinite recursion, incorrect comparisons for conditional statements such as using the incorrect comparison operator, and off-by-one errors (counting one too many or one too few iterations when looping).

Interfacing[edit]

  • Incorrect API usage.[47]
  • Incorrect protocol implementation.
  • Incorrect hardware handling.
  • Incorrect assumptions of a particular platform.
  • Incompatible systems. A new API or communications protocol may seem to work when two systems use different versions, but errors may occur when a function or feature implemented in one version is changed or missing in another. In production systems which must run continually, shutting down the entire system for a major update may not be possible, such as in the telecommunication industry[48] or the internet.[49][50][51] In this case, smaller segments of a large system are upgraded individually, to minimize disruption to a large network. However, some sections could be overlooked and not upgraded, and cause compatibility errors which may be difficult to find and repair.
  • Incorrect code annotations[52]

Concurrency[edit]

  • Deadlock, where task A cannot continue until task B finishes, but at the same time, task B cannot continue until task A finishes.
  • Race condition, where the computer does not perform tasks in the order the programmer intended.
  • Concurrency errors in critical sections, mutual exclusions and other features of concurrent processing. Time-of-check-to-time-of-use (TOCTOU) is a form of unprotected critical section.

Resourcing[edit]

  • Null pointer dereference.
  • Using an uninitialized variable.
  • Using an otherwise valid instruction on the wrong data type (see packed decimal/binary-coded decimal).
  • Access violations.
  • Resource leaks, where a finite system resource (such as memory or file handles) become exhausted by repeated allocation without release.
  • Buffer overflow, in which a program tries to store data past the end of allocated storage. This may or may not lead to an access violation or storage violation. These are frequently security bugs.
  • Excessive recursion which—though logically valid—causes stack overflow.
  • Use-after-free error, where a pointer is used after the system has freed the memory it references.
  • Double free error.

Syntax[edit]

  • Use of the wrong token, such as performing assignment instead of equality test. For example, in some languages x=5 will set the value of x to 5 while x==5 will check whether x is currently 5 or some other number. Interpreted languages allow such code to fail. Compiled languages can catch such errors before testing begins.

Teamwork[edit]

  • Unpropagated updates; e.g. programmer changes «myAdd» but forgets to change «mySubtract», which uses the same algorithm. These errors are mitigated by the Don’t Repeat Yourself philosophy.
  • Comments out of date or incorrect: many programmers assume the comments accurately describe the code.
  • Differences between documentation and product.

Implications[edit]

The amount and type of damage a software bug may cause naturally affects decision-making, processes and policy regarding software quality. In applications such as human spaceflight, aviation, nuclear power, health care, public transport or automotive safety, since software flaws have the potential to cause human injury or even death, such software will have far more scrutiny and quality control than, for example, an online shopping website. In applications such as banking, where software flaws have the potential to cause serious financial damage to a bank or its customers, quality control is also more important than, say, a photo editing application.

Other than the damage caused by bugs, some of their cost is due to the effort invested in fixing them. In 1978, Lientz et al. showed that the median of projects invest 17 percent of the development effort in bug fixing.[53] In research in 2020 on GitHub repositories showed the median is 20%.[54]

Residual bugs in delivered product[edit]

In 1994, NASA’s Goddard Space Flight Center managed to reduce their average number of errors from 4.5 per 1000 lines of code (SLOC) down to 1 per 1000 SLOC.[55]

Another study in 1990 reported that exceptionally good software development processes can achieve deployment failure rates as low as 0.1 per 1000 SLOC.[56] This figure is iterated in literature such as Code Complete by Steve McConnell,[57] and the NASA study on Flight Software Complexity.[58] Some projects even attained zero defects: the firmware in the IBM Wheelwriter typewriter which consists of 63,000 SLOC, and the Space Shuttle software with 500,000 SLOC.[56]

Well-known bugs[edit]

A number of software bugs have become well-known, usually due to their severity: examples include various space and military aircraft crashes. Possibly the most famous bug is the Year 2000 problem or Y2K bug, which caused many programs written long before the transition from 19xx to 20xx dates to malfunction, for example treating a date such as «25 Dec 04» as being in 1904, displaying «19100» instead of «2000», and so on. A huge effort at the end of the 20th century resolved the most severe problems, and there were no major consequences.

The 2012 stock trading disruption involved one such incompatibility between the old API and a new API.

In popular culture[edit]

  • In both the 1968 novel 2001: A Space Odyssey and the corresponding 1968 film 2001: A Space Odyssey, a spaceship’s onboard computer, HAL 9000, attempts to kill all its crew members. In the follow-up 1982 novel, 2010: Odyssey Two, and the accompanying 1984 film, 2010, it is revealed that this action was caused by the computer having been programmed with two conflicting objectives: to fully disclose all its information, and to keep the true purpose of the flight secret from the crew; this conflict caused HAL to become paranoid and eventually homicidal.
  • In the English version of the Nena 1983 song 99 Luftballons (99 Red Balloons) as a result of «bugs in the software», a release of a group of 99 red balloons are mistaken for an enemy nuclear missile launch, requiring an equivalent launch response, resulting in catastrophe.
  • In the 1999 American comedy Office Space, three employees attempt (unsuccessfully) to exploit their company’s preoccupation with the Y2K computer bug using a computer virus that sends rounded-off fractions of a penny to their bank account—a long-known technique described as salami slicing.
  • The 2004 novel The Bug, by Ellen Ullman, is about a programmer’s attempt to find an elusive bug in a database application.[59]
  • The 2008 Canadian film Control Alt Delete is about a computer programmer at the end of 1999 struggling to fix bugs at his company related to the year 2000 problem.

See also[edit]

  • Anti-pattern
  • Bug bounty program
  • Glitch removal
  • Hardware bug
  • ISO/IEC 9126, which classifies a bug as either a defect or a nonconformity
  • Orthogonal Defect Classification
  • Racetrack problem
  • RISKS Digest
  • Software defect indicator
  • Software regression
  • Software rot
  • Automatic bug fixing

References[edit]

  1. ^ Mittal, Varun; Aditya, Shivam (January 1, 2015). «Recent Developments in the Field of Bug Fixing». Procedia Computer Science. International Conference on Computer, Communication and Convergence (ICCC 2015). 48: 288–297. doi:10.1016/j.procs.2015.04.184. ISSN 1877-0509.
  2. ^ «Ariane 501 — Presentation of Inquiry Board report». www.esa.int. Retrieved January 29, 2022.
  3. ^ Prof. Simon Rogerson. «The Chinook Helicopter Disaster». Ccsr.cse.dmu.ac.uk. Archived from the original on July 17, 2012. Retrieved September 24, 2012.
  4. ^ «Post Office scandal ruined lives, inquiry hears». BBC News. February 14, 2022.
  5. ^ «Software bugs cost US economy dear». June 10, 2009. Archived from the original on June 10, 2009. Retrieved September 24, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  6. ^ Computerworld staff (September 3, 2011). «Moth in the machine: Debugging the origins of ‘bug’«. Computerworld. Archived from the original on August 25, 2015.
  7. ^ «bug». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) 5a
  8. ^ «Did You Know? Edison Coined the Term «Bug»«. August 1, 2013. Retrieved July 19, 2019.
  9. ^ Edison to Puskas, 13 November 1878, Edison papers, Edison National Laboratory, U.S. National Park Service, West Orange, N.J., cited in Hughes, Thomas Parke (1989). American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970. Penguin Books. p. 75. ISBN 978-0-14-009741-2.
  10. ^ «Baffle Ball». Internet Pinball Database. (See image of advertisement in reference entry)
  11. ^ «Modern Aircraft Carriers are Result of 20 Years of Smart Experimentation». Life. June 29, 1942. p. 25. Archived from the original on June 4, 2013. Retrieved November 17, 2011.
  12. ^ Dickinson Rich, Louise (1942), We Took to the Woods, JB Lippincott Co, p. 93, LCCN 42024308, OCLC 405243, archived from the original on March 16, 2017.
  13. ^ FCAT NRT Test, Harcourt, March 18, 2008
  14. ^ «Danis, Sharron Ann: «Rear Admiral Grace Murray Hopper»«. ei.cs.vt.edu. February 16, 1997. Retrieved January 31, 2010.
  15. ^ James S. Huggins. «First Computer Bug». Jamesshuggins.com. Archived from the original on August 16, 2000. Retrieved September 24, 2012.
  16. ^ «Bug Archived March 23, 2017, at the Wayback Machine», The Jargon File, ver. 4.4.7. Retrieved June 3, 2010.
  17. ^ a b «Log Book With Computer Bug Archived March 23, 2017, at the Wayback Machine», National Museum of American History, Smithsonian Institution.
  18. ^ «The First «Computer Bug», Naval Historical Center. But note the Harvard Mark II computer was not complete until the summer of 1947.
  19. ^ IEEE Annals of the History of Computing, Vol 22 Issue 1, 2000
  20. ^ Journal of the Royal Aeronautical Society. 49, 183/2, 1945 «It ranged … through the stage of type test and flight test and ‘debugging’ …»
  21. ^ Wilson, Andi; Schulman, Ross; Bankston, Kevin; Herr, Trey. «Bugs in the System» (PDF). Open Policy Institute. Archived (PDF) from the original on September 21, 2016. Retrieved August 22, 2016.
  22. ^ a b c d Rozens, Tracy (August 12, 2016). «Cyber reforms needed to strengthen software bug discovery and disclosure: New America report – Homeland Preparedness News». Retrieved August 23, 2016.
  23. ^ «News at SEI 1999 Archive». cmu.edu. Archived from the original on May 26, 2013.
  24. ^ Shustek, Len (August 2, 2016). «In His Own Words: Gary Kildall». Remarkable People. Computer History Museum. Archived from the original on December 17, 2016.
  25. ^ Kildall, Gary Arlen (August 2, 2016) [1993]. Kildall, Scott; Kildall, Kristin (eds.). «Computer Connections: People, Places, and Events in the Evolution of the Personal Computer Industry» (Manuscript, part 1). Kildall Family: 14–15. Archived from the original on November 17, 2016. Retrieved November 17, 2016.
  26. ^ a b «Testing experience : te : the magazine for professional testers». Testing Experience. Germany: testingexperience: 42. March 2012. ISSN 1866-5705. (subscription required)
  27. ^ Huizinga, Dorota; Kolawa, Adam (2007). Automated Defect Prevention: Best Practices in Software Management. Wiley-IEEE Computer Society Press. p. 426. ISBN 978-0-470-04212-0. Archived from the original on April 25, 2012.
  28. ^ McDonald, Marc; Musson, Robert; Smith, Ross (2007). The Practical Guide to Defect Prevention. Microsoft Press. p. 480. ISBN 978-0-7356-2253-1.
  29. ^ «Release Early, Release Often» Archived May 14, 2011, at the Wayback Machine, Eric S. Raymond, The Cathedral and the Bazaar
  30. ^ «Wide Open Source» Archived September 29, 2007, at the Wayback Machine, Elias Levy, SecurityFocus, April 17, 2000
  31. ^ Maurice Wilkes Quotes
  32. ^ «PolySpace Technologies history». christele.faure.pagesperso-orange.fr. Retrieved August 1, 2019.
  33. ^ Le Goues, Claire; Holtschulte, Neal; Smith, Edward K.; Brun, Yuriy; Devanbu, Premkumar; Forrest, Stephanie; Weimer, Westley (2015). «The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs». IEEE Transactions on Software Engineering. 41 (12): 1236–1256. doi:10.1109/TSE.2015.2454513. ISSN 0098-5589.
  34. ^ Just, René; Jalali, Darioush; Ernst, Michael D. (2014). «Defects4J: a database of existing faults to enable controlled testing studies for Java programs». Proceedings of the 2014 International Symposium on Software Testing and Analysis — ISSTA 2014. pp. 437–440. CiteSeerX 10.1.1.646.3086. doi:10.1145/2610384.2628055. ISBN 9781450326452. S2CID 12796895.
  35. ^ Sobreira, Victor; Durieux, Thomas; Madeiral, Fernanda; Monperrus, Martin; de Almeida Maia, Marcelo (2018). «Dissection of a bug dataset: Anatomy of 395 patches from Defects4J». 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). pp. 130–140. arXiv:1801.06393. doi:10.1109/SANER.2018.8330203. ISBN 978-1-5386-4969-5. S2CID 4607810.
  36. ^ Madeiral, Fernanda; Urli, Simon; Maia, Marcelo; Monperrus, Martin; Maia, Marcelo A. (2019). «BEARS: An Extensible Java Bug Benchmark for Automatic Program Repair Studies». 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). pp. 468–478. arXiv:1901.06024. doi:10.1109/SANER.2019.8667991. ISBN 978-1-7281-0591-8. S2CID 58028949.
  37. ^ Allen, Mitch (May–June 2002). «Bug Tracking Basics: A beginner’s guide to reporting and tracking defects». Software Testing & Quality Engineering Magazine. Vol. 4, no. 3. pp. 20–24. Retrieved December 19, 2017.
  38. ^ Rex Black (2002). Managing The Testing Process (2Nd Ed.). Wiley India Pvt. Limited. p. 139. ISBN 9788126503131. Retrieved June 19, 2021.
  39. ^ Chris Vander Mey (August 24, 2012). Shipping Greatness — Practical Lessons on Building and Launching Outstanding Software, Learned on the Job at Google and Amazon. O’Reilly Media. pp. 79–81. ISBN 9781449336608.
  40. ^ Soleimani Neysiani, Behzad; Babamir, Seyed Morteza; Aritsugi, Masayoshi (October 1, 2020). «Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems». Information and Software Technology. 126: 106344. doi:10.1016/j.infsof.2020.106344. S2CID 219733047.
  41. ^ «5.3. Anatomy of a Bug». bugzilla.org. Archived from the original on May 23, 2013.
  42. ^ Jones, Wilbur D. Jr., ed. (1989). «Show stopper». Glossary: defense acquisition acronyms and terms (4 ed.). Fort Belvoir, Virginia, USA: Department of Defense, Defense Systems Management College. p. 123. hdl:2027/mdp.39015061290758. hdl:2027/mdp.39015061290758 – via Hathitrust.
  43. ^ a b Zachary, G. Pascal (1994). Show-stopper!: the breakneck race to create Windows NT and the next generation at Microsoft. New York: The Free Press. p. 158. ISBN 0029356717 – via archive.org.
  44. ^ «The Next Generation 1996 Lexicon A to Z: Slipstream Release». Next Generation. No. 15. March 1996. p. 41.
  45. ^ Carr, Nicholas (2018). «‘It’s Not a Bug, It’s a Feature.’ Trite—or Just Right?». wired.com.
  46. ^ Di Franco, Anthony; Guo, Hui; Cindy, Rubio-González. «A Comprehensive Study of Real-World Numerical Bug Characteristics» (PDF). Archived (PDF) from the original on October 9, 2022.
  47. ^ Monperrus, Martin; Bruch, Marcel; Mezini, Mira (2010). «Detecting Missing Method Calls in Object-Oriented Software». ECOOP 2010 – Object-Oriented Programming (PDF). Lecture Notes in Computer Science. Vol. 6183. pp. 2–25. doi:10.1007/978-3-642-14107-2_2. ISBN 978-3-642-14106-5. S2CID 16724498. Archived (PDF) from the original on October 9, 2022.
  48. ^ Kimbler, K. (1998). Feature Interactions in Telecommunications and Software Systems V. IOS Press. p. 8. ISBN 978-90-5199-431-5.
  49. ^ Syed, Mahbubur Rahman (July 1, 2001). Multimedia Networking: Technology, Management and Applications: Technology, Management and Applications. Idea Group Inc (IGI). p. 398. ISBN 978-1-59140-005-9.
  50. ^ Wu, Chwan-Hwa (John); Irwin, J. David (April 19, 2016). Introduction to Computer Networks and Cybersecurity. CRC Press. p. 500. ISBN 978-1-4665-7214-0.
  51. ^ RFC 1263: «TCP Extensions Considered Harmful» quote: «the time to distribute the new version of the protocol to all hosts can be quite long (forever in fact). … If there is the slightest incompatibly between old and new versions, chaos can result.»
  52. ^ Yu, Zhongxing; Bai, Chenggang; Seinturier, Lionel; Monperrus, Martin (2019). «Characterizing the Usage, Evolution and Impact of Java Annotations in Practice». IEEE Transactions on Software Engineering. 47 (5): 1. arXiv:1805.01965. doi:10.1109/TSE.2019.2910516. S2CID 102351817.
  53. ^ Lientz, B. P.; Swanson, E. B.; Tompkins, G. E. (1978). «Characteristics of Application Software Maintenance». Communications of the ACM. 21 (6): 466–471. doi:10.1145/359511.359522. S2CID 14950091.
  54. ^ Amit, Idan; Feitelson, Dror G. (2020). «The Corrective Commit Probability Code Quality Metric». arXiv:2007.10912 [cs.SE].
  55. ^ An overview of the Software Engineering Laboratory (PDF) (Report). Maryland, USA: Goddard Space Flight Center, NASA. December 1, 1994. pp41–42 Figure 18; pp43–44 Figure 21. CR-189410; SEL-94-005. Archived (PDF) from the original on November 22, 2022. Retrieved November 22, 2022. (bibliography: An overview of the Software Engineering Laboratory)
  56. ^ a b Cobb, Richard H.; Mills, Harlan D. (1990). «Engineering software under statistical quality control». IEEE Software. 7 (6): 46. doi:10.1109/52.60601. ISSN 1937-4194. S2CID 538311 – via University of Tennessee – Harlan D. Mills Collection.
  57. ^ McConnell, Steven C. (1993). Code Complete. Redmond, Washington, USA: Microsoft Press. p. 611. ISBN 9781556154843 – via archive.org. (Cobb and Mills 1990)
  58. ^ Holzmann, Gerard (March 6, 2009). «Appendix D – Software Complexity» (PDF). In Dvorak, Daniel L. (ed.). NASA Study on Flight Software Complexity (Report). NASA. pdf frame 109/264. Appendix D p.2. Archived (PDF) from the original on March 8, 2022. Retrieved November 22, 2022. (under NASA Office of the Chief Engineer Technical Excellence Initiative)
  59. ^ Ullman, Ellen (2004). The Bug. Picador. ISBN 978-1-250-00249-5.

External links[edit]

  • «Common Weakness Enumeration» – an expert webpage focus on bugs, at NIST.gov
  • BUG type of Jim Gray – another Bug type
  • Picture of the «first computer bug» at the Wayback Machine (archived January 12, 2015)
  • «The First Computer Bug!» – an email from 1981 about Adm. Hopper’s bug
  • «Toward Understanding Compiler Bugs in GCC and LLVM». A 2016 study of bugs in compilers

сбой

сбой — существительное, именительный п., муж. p., ед. ч.

сбой — существительное, винительный п., муж. p., ед. ч.

Часть речи: существительное

Единственное число Множественное число
Им.

сбой

сбои

Рд.

сбоя

сбоев

Дт.

сбою

сбоям

Вн.

сбой

сбои

Тв.

сбоем

сбоями

Пр.

сбое

сбоях

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Разбор слова «сбой»: для переноса, на слоги, по составу

Объяснение правил деление (разбивки) слова «сбой» на слоги для переноса.
Онлайн словарь Soosle.ru поможет: фонетический и морфологический разобрать слово «сбой» по составу, правильно делить на слоги по провилам русского языка, выделить части слова, поставить ударение, укажет значение, синонимы, антонимы и сочетаемость к слову «сбой».

Деление слова сбой

Слово сбой по слогам

Содержимое:

  • 1 Как перенести слово «сбой»
  • 2 Морфологический разбор слова «сбой»
  • 3 Разбор слова «сбой» по составу
  • 4 Сходные по морфемному строению слова «сбой»
  • 5 Синонимы слова «сбой»
  • 6 Антонимы слова «сбой»
  • 7 Ударение в слове «сбой»
  • 8 Фонетическая транскрипция слова «сбой»
  • 9 Фонетический разбор слова «сбой» на буквы и звуки (Звуко-буквенный)
  • 10 Предложения со словом «сбой»
  • 11 Сочетаемость слова «сбой»
  • 12 Значение слова «сбой»
  • 13 Склонение слова «сбой» по подежам
  • 14 Как правильно пишется слово «сбой»
  • 15 Ассоциации к слову «сбой»

Как перенести слово «сбой»

сбой

Морфологический разбор слова «сбой»

Часть речи:

Имя существительное

Грамматика:

часть речи: имя существительное;
одушевлённость: неодушевлённое;
род: мужской;
число: единственное;
падеж: именительный, винительный;
отвечает на вопрос: (есть) Что?, (вижу/виню) Что?

Разбор слова «сбой» по составу

с приставка
бой корень
ø нулевое
окончание

сбой

Сходные по морфемному строению слова «сбой»

Сходные по морфемному строению слова

  • срыв
  • спад
  • сговор
  • слом
  • спуск
  • Синонимы слова «сбой»

    1. пастбище

    2. накладка

    3. нарушение

    4. остановка

    5. заминка

    6. скачок

    7. голова

    8. ноги

    9. внутренности

    10. баг

    Антонимы слова «сбой»

    1. исправность

    2. отлаженность

    Ударение в слове «сбой»

    Сбо́й — ударение падает на слог с единственной гласной в слове

    Фонетическая транскрипция слова «сбой»

    [сб`ой’]

    Фонетический разбор слова «сбой» на буквы и звуки (Звуко-буквенный)

    Буква Звук Характеристики звука Цвет
    С [с] согласный, глухой парный, твёрдый, шумный С
    б [б] согласный, звонкий парный, твёрдый, шумный б
    о [] гласный, ударный о
    й [й’] согласный, звонкий непарный (сонорный), мягкий й

    Число букв и звуков:
    На основе сделанного разбора делаем вывод, что в слове 4 буквы и 4 звука.
    Буквы: 1 гласная буква, 3 согласных букв.
    Звуки: 1 гласный звук, 3 согласных звука.

    Предложения со словом «сбой»

    Во время обновления может произойти сбой, в результате которого базы будут повреждены.

    Источник: С. А. Яремчук, Защита вашего компьютера, 2008.

    Произойдёт ли сбой в системе, нарушится ли кровообращение.

    Источник: Т. С. Тихоплав, Идущие по пустыне, 2016.

    А суицид есть нарушение, сбой этой программы.

    Источник: М. С. Серова, Один взмах мотылька, 2015.

    Сочетаемость слова «сбой»

    1. серьёзные сбои

    2. небольшой сбой

    3. гормональный сбой

    4. сбой системы

    5. сбой программы

    6. сбой ритма

    7. причина сбоя

    8. в случае сбоя

    9. в результате сбоя

    10. сбой произошёл

    11. случались сбои

    12. давать сбой

    13. работать без сбоя

    14. приводить к сбою

    15. (полная таблица сочетаемости)

    Значение слова «сбой»

    СБОЙ , сбо́я, мн. сбои́, сбоёв, м. 1. Спец. Действие по глаг. сбить (во 2 и 3 знач.) и сбиться (в 1 и 2 знач.). Сбой пил. Сбой концов рельса. Сбой ткацкого рисунка. (Малый академический словарь, МАС)

    Склонение слова «сбой» по подежам

    Падеж Вопрос Единственное числоЕд.ч. Множественное числоМн.ч.
    ИменительныйИм. что? сбой сбои
    РодительныйРод. чего? сбоя сбоёв
    ДательныйДат. чему? сбою сбоям
    ВинительныйВин. что? сбой сбои
    ТворительныйТв. чем? сбоем сбоями
    ПредложныйПред. о чём? сбое сбоях

    Как правильно пишется слово «сбой»

    Правописание слова «сбой»
    Орфография слова «сбой»

    Правильно слово пишется: сбой

    Нумерация букв в слове
    Номера букв в слове «сбой» в прямом и обратном порядке:

    • 4
      с
      1
    • 3
      б
      2
    • 2
      о
      3
    • 1
      й
      4

    Ассоциации к слову «сбой»

    • Автоматика

    • Аппаратура

    • Слежение

    • Программа

    • Сервер

    • Система

    • Жизнеобеспечение

    • Механизм

    • Электроника

    • Функционирование

    • Дефект

    • Глюк

    • Компьютер

    • Ритм

    • Автопилот

    • Процессор

    • Датчик

    • Ориентация

    • Наведение

    • Настройка

    • Генератор

    • Графика

    • Питание

    • Устойчивость

    • Вирус

    • Психика

    • Запуск

    • Программирование

    • Подача

    • Организм

    • Загрузка

    • Перегрузка

    • Конвейер

    • Дали

    • Детектор

    • Андроид

    • Мутация

    • Программист

    • Фантом

    • Искажение

    • Баланс

    • Заминка

    • Схема

    • Сигнализация

    • Охлаждение

    • Пользователь

    • Оборудование

    • Ошибка

    • Киборг

    • Отклонение

    • Файл

    • Реактор

    • Связист

    • Идентификация

    • Терминал

    • Сенсор

    • Срыв

    • Старт

    • Скачок

    • Программный

    • Системный

    • Досадный

    • Катастрофический

    • Глобальный

    • Навигационный

    • Кратковременный

    • Генетический

    • Компьютерный

    • Секундный

    • Бортовой

    • Непредвиденный

    • Вычислительный

    • Локальный

    • Дисковый

    • Временный

    • Случайный

    • Технический

    • Подверженный

    • Аварийный

    • Несовершенный

    • Электронный

    • Резервный

    • Логический

    • Масштабный

    • Незначительный

    • Биологический

    • Сетевой

    • Двигательный

    • Непредсказуемый

    • Бортовый

    • Виртуальный

    • Плановый

    • Ощутимый

    • Необратимый

    • Дать

    • Устранить

    • Списать

    • Продумать

    • Запрограммировать

    • Заглохнуть

    Сейчас я расскажу о причинах почему в телефоне Андроид постоянно выскакивает ошибка/сбой и может появиться сообщение типа «В приложении произошла ошибка». Давайте устраним этот сбой в работе операционной системы.

    Данная статья подходит для всех брендов, выпускающих телефоны на Android 11/10/9/8: Samsung, HTC, Lenovo, LG, Sony, ZTE, Huawei, Meizu, Fly, Alcatel, Xiaomi, Nokia и прочие. Мы не несем ответственности за ваши действия.

    Внимание! Вы можете задать свой вопрос специалисту в конце статьи.

    Содержание

    1. Почему появляется ошибка при запуске приложения Андроид и что делать
    2. Откатываем приложение Google на предыдущую версию
    3. Очищаем данные и кэш программы
    4. Сбрасываем настройки к заводским
    5. Приложение «Телефон»
    6. Синтаксическая ошибка пакета
    7. Повторное добавление профиля
    8. Вирусная активность

    Почему появляется ошибка при запуске приложения Андроид и что делать

    Важно!!! Часто ошибку вызывают сбои в работе сервисов Google и тут вы никак не можете повлиять на ситуацию. Остается только ждать как решится проблема.

    Например, такой сбой был 23 марта 2021 года и 22 июня 2021 года, когда были проблемы с компонентом «Android System WebView», который Google неудачно обновил. Проблема затронула телефоны на Андроид по всему миру. Ошибку признал сам разработчик.

    Если глобальный сбой не ваш случай, то читаем дальше.

    Отображение ошибок может иметь программные и аппаратные причины. Хотя в большинстве проблем причина состоит в программной части, аппаратные также могут привести к проблеме, к примеру, поломка внутренней памяти гаджета.

    На Android телефоне постоянно выскакивает ошибка приложения (сбой)Нужна помощь?

    Не знаешь как решить проблему в работе своего гаджета и нужен совет специалиста? На вопросы отвечает Алексей, мастер по ремонту смартфонов и планшетов в сервисном центре.Напиши мне »

    Первым делом проверьте версию программу, которая вызывает ошибку. Есть вероятность, что она недавно обновилась и из-за недоработок программиста появился сбой, вызывающий данное сообщение. Если что обновите.

    Есть вероятность, что данный случай вызова сбоя единичный и очистка ОЗУ при перезагрузке телефона его исправит.

    Если перечисленное выше не помогает, то действуем по советам дальше в статье.

    Откатываем приложение Google на предыдущую версию

    В последнее время чаще всего из-за этого приложения наблюдаются сбои и ошибки в работе телефона. Давайте сделаем несложные манипуляции за минуту и вернем телефону работоспособность.

    Наша задача: откатить актуальную версию приложения Google до базовой, работоспособной и при этом надо отключить автообновление, чтобы приложение сразу же не обновилось снова на нерабочую версию.

    Заходим в Play Google и ищем приложение Google.

    Заходим в него и нажимаем кнопку «Удалить».

    устраняем ошибку в приложении google

    Откатываем приложение Google на рабочую базовую версию

    Есть. Теперь у нас ошибка не будет больше появляться. Но теперь надо отключить автообновление.

    Тут же кликаем по трем вертикальным точкам и снимаем галку в пункте «Автообновление»

    На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    Откроем дополнительное меню
    На Android телефоне постоянно выскакивает ошибка приложения (сбой)
    Отключим автообновление

    Важно! Включите автообновление снова через пару дней после появления ошибки. Google должен оперативно выпустить исправление, а для нормальной работы телефона важно чтобы этот сервис всегда был актуальным. Не забудьте!!!

    Если эта инструкция помогла, то поделись статьей в социальных сетях. Твои друзья и подписчики тоже столкнутся с такой проблемой, т.к. она носит глобальный характер.

    Очищаем данные и кэш программы

    А теперь инструкция в случае, если ошибку вызывают другие приложения.

    Очень часто причиной ошибки приложения является сбой в служебных файлах софта: данных, кэша и соответствия между ними. В подобных ситуациях требуется программу сбросить к виду только установленного устройства, попутно выполнив очистку его файлов:

    • Переходим в «Настройки».
    • На Android телефоне постоянно выскакивает ошибка приложения

    • Список функций нужно прокрутить, пока не будет найден раздел «Приложения». Еще он может называться «Менеджер приложений» или «Диспетчер приложений».
    • На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    • Переходим в раздел «Все» в открывшемся списке с программами.
    • На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    • Находим в списке софт, из-за которого случился сбой. Жмем на него, чтобы перейти в свойства.
    • На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    • Приложение, функционирующее в фоне, необходимо остановить. Для этого жмем на соответствующую кнопку. После остановки приложения выбираем «Очистить кэш», потом жмем «Очистить данные».
    • На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    • Если ошибка отображается сразу в нескольких программах, то следует возвратиться к списку установленного софта и найти оставшиеся. Манипуляции первых 3 – 4 действий повторяем для каждого такого приложения.
    • Когда данные будут очищены для всего проблемного софта, гаджет следует перезагрузить. Ошибка после этих действия должна исчезнуть.

    Если сообщение об ошибке приложения отображается постоянно, а среди этого софта присутствует системные программы, вам необходимо рассмотреть следующие метод.

    Сбрасываем настройки к заводским

    Если сообщения об ошибках касаются встроенных программ (СМС, «звонилки», «Настройки), то проблема имеет системный характер. Выполнением очистки кэша и данных здесь не решить вопрос.
    Хард ресет – это ультимативный метод большинства программных ошибок. Вы потеряете все данные, расположенные на накопителе гаджета, поэтому рекомендуется сделать бэкап.

    Читайте Как сбросить настройки до заводских на Android

    Инструкция:

    • Переходим в «Настройки», где выбираем функцию «Восстановление и сброс». В некоторых девайсах она имеет название «Архивация и сброс».
    • На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    • Список с доступными вариантами следует прокрутить вниз, после чего выбрать «Сброс настроек». Переходим в это меню.
    • На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    • Рассматриваем отображенное предупреждение, жмем на кнопку для начала сброса настроек к заводским.
    • На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    • Теперь будет начат процесс сброса. Необходимо дождаться, пока действие завершится, после чего проверяем состояние гаджета.

    Приложение «Телефон»

    Кроме стандартных программ для совершения звонков, пользователи могут работать с иными приложениями для хранения данных вызовов и контактов. Скачать и установить утилиты можно в Плей Маркете.

    Читайте Android не скачивает с Play Market новые приложения/игры

    Вам необходимо просто ввести в поиске название приложения и выбрать подходящее. Затем установите и используйте ее вместо стандартного софта. После этого ошибка отображаться не будет.

    На Android телефоне постоянно выскакивает ошибка приложения (сбой)

    Синтаксическая ошибка пакета

    Зачастую появляется проблема, когда приложение установлено из непроверенного источника. У этого сбоя могут быть такие причины:

    • APK файл содержит ошибку и не получается инсталлировать софт на гаджетах с любой версией Android.
    • Программа создана для устройств с новой версией ОС, чем установлена на гаджете.

    Для решения проблемы необходимо файл APK удалить, после чего загрузить его с иного источника. Еще требуется проверить требования к программам. Если на вашем девайсе установлена версия ОС ниже, чем в требованиях софта, то устройство необходимо обновить.

    Читайте Android «Ошибка при синтаксическом анализе пакета»

    Повторное добавление профиля

    В некоторых случаях решить проблему позволяет повторное добавление профиля:

    • Жмем «Настройки», после чего переходим в раздел «Аккаунты» или указываем «Учетные записи».
    • Находим профиль Гугл, запускаем настройки его синхронизации.
    • Открываем дополнительное меню, где жмем «Удалить».

    После выполнения этих действий перезагружаем девайс, открываем настройки и во вкладке «Аккаунты» выбираем «Добавить». Указываем аккаунт Гугл, вводим данные для авторизации от своего аккаунта или создаем новый профиль.

    Вирусная активность

    От пользователя требуется:

    • Вспомнить, при отображении ошибки не начиналось ли скачивание неизвестного софта или не отображалась ли всплывающая реклама. Подобный действия говорят о наличии вируса.
    • Проверить дату инсталляции софта и сравнить ее с иными пакетами системы. Для этого следует воспользоваться сторонней утилитой, к примеру, Uninstaller или Gemini App Manager. Когда файл com.android.systemUI создан недавно, то это будет подтверждением наличия вируса, замаскированного под системный софт. Если его дата идентична дате создания иных файлов системы, то вирус может содержаться в ином пакете.
    • Скачайте антивирус и проверьте им смартфон.

    Читайте Как проверить Android на вирусы через компьютер (ПК)

    Антивирус для системы Андроид не всегда может полностью удалить вирус с гаджета. Но таким способом вы сможете узнать, какие именно программы заражены и удалить их через безопасный режим.

    Мастер Николай

    АвторМастер Николай

    Инженер по ремонту мобильной и компьютерной техники в специализированном сервисном центре, г. Москва. Непрерывный опыт работы с 2010 года.
    Есть вопросы? Задавайте в комментариях к статье. Отвечать стараюсь максимально быстро вам на указанную почту. Каждый случай индивидуален и поэтому очень важно, чтобы вы максимально расписали свою проблему и какая у вас модель устройства.

  • Как пишется сбербанк в системе быстрых платежей
  • Как пишется сбежавшиеся или збежавшиеся
  • Как пишется сбавить или збавить
  • Как пишется сачок или сачек
  • Как пишется сахарный или сахорный