Как пишется сероводородная кислота

Hydrogen sulfide

Skeletal formula of hydrogen sulfide with two dimensions

Ball-and-stick model of hydrogen sulfide

Spacefill model of hydrogen sulfide

Names
Systematic IUPAC name

Hydrogen sulfide[1]

Other names

  • Dihydrogen monosulfide
  • Sour gas
  • Dihydrogen sulfide
  • Sewer gas
  • Egg gas
  • Sulfane
  • Sulfurated hydrogen
  • Sulfureted hydrogen
  • Sulfuretted hydrogen
  • Sulfur hydride
  • Hydrosulfuric acid
  • Hydrothionic acid
  • Thiohydroxic acid
  • Sulfhydric acid
Identifiers

CAS Number

  • 7783-06-4 check

3D model (JSmol)

  • Interactive image
3DMet
  • B01206

Beilstein Reference

3535004
ChEBI
  • CHEBI:16136 check
ChEMBL
  • ChEMBL1200739 ☒
ChemSpider
  • 391 check
ECHA InfoCard 100.029.070 Edit this at Wikidata
EC Number
  • 231-977-3

Gmelin Reference

303
KEGG
  • C00283 check
MeSH Hydrogen+sulfide

PubChem CID

  • 402
RTECS number
  • MX1225000
UNII
  • YY9FVM7NSN check
UN number 1053

CompTox Dashboard (EPA)

  • DTXSID4024149 Edit this at Wikidata

InChI

  • InChI=1S/H2S/h1H2 check

    Key: RWSOTUBLDIXVET-UHFFFAOYSA-N check

  • InChI=1/H2S/h1H2

    Key: RWSOTUBLDIXVET-UHFFFAOYAJ

SMILES

  • S

Properties

Chemical formula

H2S
Molar mass 34.08 g·mol−1
Appearance Colorless gas
Odor Pungent, like that of rotten eggs
Density 1.539 g.L−1 (0°C)[2]
Melting point −85.5[3] °C (−121.9 °F; 187.7 K)
Boiling point −59.55[3] °C (−75.19 °F; 213.60 K)

Solubility in water

3.980 g dm−3 (at 20 °C) [4]
Vapor pressure 1740 kPa (at 21 °C)
Acidity (pKa) 7.0[5][6]
Conjugate acid Sulfonium
Conjugate base Bisulfide

Magnetic susceptibility (χ)

−25.5·10−6 cm3/mol

Refractive index (nD)

1.000644 (0 °C)[2]
Structure

Point group

C2v

Molecular shape

Bent

Dipole moment

0.97 D
Thermochemistry

Heat capacity (C)

1.003 J K−1 g−1

Std molar
entropy (S298)

206 J mol−1 K−1[7]

Std enthalpy of
formation fH298)

−21 kJ mol−1[7]
Hazards
Occupational safety and health (OHS/OSH):

Main hazards

Flammable and highly toxic
GHS labelling:

Pictograms

GHS02: FlammableGHS06: ToxicGHS09: Environmental hazard

Signal word

Danger

Hazard statements

H220, H330, H400

Precautionary statements

P210, P260, P271, P273, P284, P304+P340, P310, P320, P377, P381, P391, P403, P403+P233, P405, P501
NFPA 704 (fire diamond)

NFPA 704 four-colored diamond

4

4

0

Flash point −82.4 °C (−116.3 °F; 190.8 K)[10]

Autoignition
temperature

232 °C (450 °F; 505 K)
Explosive limits 4.3–46%
Lethal dose or concentration (LD, LC):

LC50 (median concentration)

  • 713 ppm (rat, 1 hr)
  • 673 ppm (mouse, 1 hr)
  • 634 ppm (mouse, 1 hr)
  • 444 ppm (rat, 4 hr)[9]

LCLo (lowest published)

  • 600 ppm (human, 30 min)
  • 800 ppm (human, 5 min)[9]
NIOSH (US health exposure limits):

PEL (Permissible)

C 20 ppm; 50 ppm [10-minute maximum peak][8]

REL (Recommended)

C 10 ppm (15 mg/m3) [10-minute][8]

IDLH (Immediate danger)

100 ppm[8]
Related compounds

Related hydrogen chalcogenides

  • Water
  • Hydrogen selenide
  • Hydrogen telluride
  • Hydrogen polonide
  • Hydrogen disulfide
  • Sulfanyl

Related compounds

Phosphine

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒ verify (what is check☒ ?)

Infobox references

Hydrogen sulfide is a chemical compound with the formula H
2
S
. It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs.[11] The underground mine gas term for foul-smelling hydrogen sulfide-rich gas mixtures is stinkdamp. Swedish chemist Carl Wilhelm Scheele is credited with having discovered the chemical composition of purified hydrogen sulfide in 1777.[citation needed] The British English spelling of this compound is hydrogen sulphide, a spelling no longer recommended by the Royal Society of Chemistry or the International Union of Pure and Applied Chemistry.

Hydrogen sulfide is toxic to humans and most other animals by inhibiting cellular respiration in a manner similar to hydrogen cyanide. When it is inhaled or it or its salts are ingested in high amounts,[clarification needed] damage to organs occurs rapidly with symptoms ranging from breathing difficulties to convulsions and death.[12][13] Despite this, the human body produces small amounts of this sulfide and its mineral salts, and uses it as a signalling molecule.[14]

Hydrogen sulfide is often produced from the microbial breakdown of organic matter in the absence of oxygen, such as in swamps and sewers; this process is commonly known as anaerobic digestion, which is done by sulfate-reducing microorganisms. It also occurs in volcanic gases, natural gas deposits, and sometimes in well-drawn water.

Properties[edit]

Hydrogen sulfide is slightly denser than air. A mixture of H
2
S
and air can be explosive. Hydrogen sulfide burns in oxygen with a blue flame to form sulfur dioxide (SO
2
) and water. In general, hydrogen sulfide acts as a reducing agent, although in the presence of a base, it can act as an acid by donating a proton and forming SH.

At high temperatures or in the presence of catalysts, sulfur dioxide reacts with hydrogen sulfide to form elemental sulfur and water. This reaction is exploited in the Claus process, an important industrial method to dispose of hydrogen sulfide.

Hydrogen sulfide is slightly soluble in water and acts as a weak acid (pKa = 6.9 in 0.01–0.1 mol/litre solutions at 18 °C), giving the hydrosulfide ion HS
(also written SH
). Hydrogen sulfide and its solutions are colorless. When exposed to air, it slowly oxidizes to form elemental sulfur, which is not soluble in water. The sulfide anion S2−
is not formed in aqueous solution.[15]

Hydrogen sulfide reacts with metal ions to form metal sulfides, which are insoluble, often dark colored solids. Lead(II) acetate paper is used to detect hydrogen sulfide because it readily converts to lead(II) sulfide, which is black. Treating metal sulfides with strong acid or electrolysis often liberates hydrogen sulfide. Hydrogen sulfide is also responsible for tarnishing on various metals including copper and silver; the chemical responsible for black toning found on silver coins is silver sulfide (Ag2S), which is produced when the silver on the surface of the coin reacts with atmospheric hydrogen sulfide.[16]

At pressures above 90 GPa (gigapascal), hydrogen sulfide becomes a metallic conductor of electricity. When cooled below a critical temperature this high-pressure phase exhibits superconductivity. The critical temperature increases with pressure, ranging from 23 K at 100 GPa to 150 K at 200 GPa.[17] If hydrogen sulfide is pressurized at higher temperatures, then cooled, the critical temperature reaches 203 K (−70 °C), the highest accepted superconducting critical temperature as of 2015. By substituting a small part of sulfur with phosphorus and using even higher pressures, it has been predicted that it may be possible to raise the critical temperature to above 0 °C (273 K) and achieve room-temperature superconductivity.[18]

Hydrogen sulfide decomposes without a presence of a catalyst under atmospheric pressure around 1200 °C into hydrogen and sulfur.[19]

Production[edit]

Hydrogen sulfide is most commonly obtained by its separation from sour gas, which is natural gas with a high content of H
2
S
. It can also be produced by treating hydrogen with molten elemental sulfur at about 450 °C. Hydrocarbons can serve as a source of hydrogen in this process.[20]

Sulfate-reducing (resp. sulfur-reducing) bacteria generate usable energy under low-oxygen conditions by using sulfates (resp. elemental sulfur) to oxidize organic compounds or hydrogen; this produces hydrogen sulfide as a waste product.

A standard lab preparation is to treat ferrous sulfide with a strong acid in a Kipp generator:

FeS + 2 HCl → FeCl2 + H2S

For use in qualitative inorganic analysis, thioacetamide is used to generate H
2
S
:

CH3C(S)NH2 + H2O → CH3C(O)NH2 + H2S

Many metal and nonmetal sulfides, e.g. aluminium sulfide, phosphorus pentasulfide, silicon disulfide liberate hydrogen sulfide upon exposure to water:[21]

6 H2O + Al2S3 → 3 H2S + 2 Al(OH)3

This gas is also produced by heating sulfur with solid organic compounds and by reducing sulfurated organic compounds with hydrogen.

Water heaters can aid the conversion of sulfate in water to hydrogen sulfide gas. This is due to providing a warm environment sustainable for sulfur bacteria and maintaining the reaction which interacts between sulfate in the water and the water heater anode, which is usually made from magnesium metal.[22]

Biosynthesis in the body[edit]

Hydrogen sulfide can be generated in cells via enzymatic or non-enzymatic pathways. H
2
S
in the body acts as a gaseous signaling molecule which is known to inhibit Complex IV of the mitochondrial electron transport chain which effectively reduces ATP generation and biochemical activity within cells.[23] Three enzymes are known to synthesize H
2
S
: cystathionine γ-lyase (CSE), cystathionine β-synthetase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST).[24] These enzymes have been identified in a breadth of biological cells and tissues, and their activity has been observed to be induced by a number of disease states.[25] It is becoming increasingly clear that H
2
S
is an important mediator of a wide range of cell functions in health and in diseases.[24] CBS and CSE are the main proponents of H
2
S
biogenesis, which follows the trans-sulfuration pathway.[26] These enzymes are characterized by the transfer of a sulfur atom from methionine to serine to form a cysteine molecule.[26] 3-MST also contributes to hydrogen sulfide production by way of the cysteine catabolic pathway.[25][26] Dietary amino acids, such as methionine and cysteine serve as the primary substrates for the transulfuration pathways and in the production of hydrogen sulfide. Hydrogen sulfide can also be synthesized by non-enzymatic pathway, which is derived from proteins such as ferredoxins and Rieske proteins.[25] There has been continuing interest in exploiting such knowledge of hydrogen sulfide’s role in signaling through development of mechanistically related therapeutic agents.[27][28]

Hydrogen sulfide has been shown to be involved in physiological processes such as vasodilation in animals, as well as in increasing seed germination and stress responses in plants.[23] Hydrogen sulfide signaling is also innately intertwined with physiological processes that are known to be moderated by reactive oxygen species (ROS) and reactive nitrogen species (RNS).[23] H
2
S
has been shown to interact with NO resulting in several different cellular effects, as well as the formation of a new signal called nitrosothiol.[23] Hydrogen sulfide is also known to increase the levels of glutathione which acts to reduce or disrupt ROS levels in cells.[23] The field of H2S biology has advanced from environmental toxicology to investigate the roles of endogenously produced H2S in physiological conditions and in various pathophysiological states.[29] According to a current classification, pathophysiological states with H2S overproduction (such as cancer and Down syndrome) and pathophysiological states with H2S deficit (e.g. vascular disease) can be identified.[30] Although the understanding of H2S biology has significantly advanced over the last decade,[31][32][33] many questions remain, for instance related to the quantification of endogenous H2S levels.[25]

Uses[edit]

Production of sulfur, thioorganic compounds, and alkali metal sulfides[edit]

The main use of hydrogen sulfide is as a precursor to elemental sulfur. Several organosulfur compounds are produced using hydrogen sulfide. These include methanethiol, ethanethiol, and thioglycolic acid.[20]

Upon combining with alkali metal bases, hydrogen sulfide converts to alkali hydrosulfides such as sodium hydrosulfide and sodium sulfide:

H2S + NaOH → NaSH + H2O
NaSH + NaOH → Na2S + H2O

These compounds are used in the paper making industry. Specifically, salts of SH break bonds between lignin and cellulose components of pulp in the Kraft process.[20]

Reversibly sodium sulfide in the presence of acids turns into hydrosulfides and hydrogen sulfide; this supplies hydrosulfides in organic solutions and is utilized in the production of thiophenol.[34]

Analytical chemistry[edit]

For well over a century hydrogen sulfide was important in analytical chemistry in the qualitative inorganic analysis of metal ions. In these analyses, heavy metal (and nonmetal) ions (e.g., Pb(II), Cu(II), Hg(II), As(III)) are precipitated from solution upon exposure to H
2
S
). The components of the resulting precipitate redissolve with some selectivity, and are thus identified.

Precursor to metal sulfides[edit]

As indicated above, many metal ions react with hydrogen sulfide to give the corresponding metal sulfides. This conversion is widely exploited. For example, gases or waters contaminated by hydrogen sulfide can be cleaned with metals, by forming metal sulfides. In the purification of metal ores by flotation, mineral powders are often treated with hydrogen sulfide to enhance the separation. Metal parts are sometimes passivated with hydrogen sulfide. Catalysts used in hydrodesulfurization are routinely activated with hydrogen sulfide, and the behavior of metallic catalysts used in other parts of a refinery is also modified using hydrogen sulfide.

Miscellaneous applications[edit]

Hydrogen sulfide is used to separate deuterium oxide, or heavy water, from normal water via the Girdler sulfide process.

Scientists from the University of Exeter discovered that cell exposure to small amounts of hydrogen sulfide gas can prevent mitochondrial damage. When the cell is stressed with disease, enzymes are drawn into the cell to produce small amounts of hydrogen sulfide. This study could have further implications on preventing strokes, heart disease and arthritis.[35]

Depending on the level of toning present, coins that have been subject to toning by hydrogen sulfide and other sulfur-containing compounds may add to the numismatic value of a coin based on the toning’s aesthetics. Coins can also be intentionally treated with hydrogen sulfide to induce toning, though artificial toning can be distinguished from natural toning, and is generally criticised among collectors.[36]

A suspended animation-like state has been induced in rodents with the use of hydrogen sulfide, resulting in hypothermia with a concomitant reduction in metabolic rate. Oxygen demand was also reduced, thereby protecting against hypoxia. In addition, hydrogen sulfide has been shown to reduce inflammation in various situations.[37]

Occurrence[edit]

Volcanoes and some hot springs (as well as cold springs) emit some H
2
S
, where it probably arises via the hydrolysis of sulfide minerals, i.e. MS + H
2
O
→ MO + H
2
S
.[citation needed] Hydrogen sulfide can be present naturally in well water, often as a result of the action of sulfate-reducing bacteria.[38][better source needed] Hydrogen sulfide is produced by the human body in small quantities through bacterial breakdown of proteins containing sulfur in the intestinal tract, therefore it contributes to the characteristic odor of flatulence. It is also produced in the mouth (halitosis).[39]

A portion of global H
2
S
emissions are due to human activity. By far the largest industrial source of H
2
S
is petroleum refineries: The hydrodesulfurization process liberates sulfur from petroleum by the action of hydrogen. The resulting H
2
S
is converted to elemental sulfur by partial combustion via the Claus process, which is a major source of elemental sulfur. Other anthropogenic sources of hydrogen sulfide include coke ovens, paper mills (using the Kraft process), tanneries and sewerage. H
2
S
arises from virtually anywhere where elemental sulfur comes in contact with organic material, especially at high temperatures. Depending on environmental conditions, it is responsible for deterioration of material through the action of some sulfur oxidizing microorganisms. It is called biogenic sulfide corrosion.

In 2011 it was reported that increased concentrations of H
2
S
were observed in the Bakken formation crude, possibly due to oil field practices, and presented challenges such as «health and environmental risks, corrosion of wellbore, added expense with regard to materials handling and pipeline equipment, and additional refinement requirements».[40]

Besides living near gas and oil drilling operations, ordinary citizens can be exposed to hydrogen sulfide by being near waste water treatment facilities, landfills and farms with manure storage. Exposure occurs through breathing contaminated air or drinking contaminated water.[41]

In municipal waste landfill sites, the burial of organic material rapidly leads to the production of anaerobic digestion within the waste mass and, with the humid atmosphere and relatively high temperature that accompanies biodegradation, biogas is produced as soon as the air within the waste mass has been reduced. If there is a source of sulfate bearing material, such as plasterboard or natural gypsum (calcium sulphate dihydrate), under anaerobic conditions sulfate reducing bacteria converts this to hydrogen sulfide. These bacteria cannot survive in air but the moist, warm, anaerobic conditions of buried waste that contains a high source of carbon – in inert landfills, paper and glue used in the fabrication of products such as plasterboard can provide a rich source of carbon[42] – is an excellent environment for the formation of hydrogen sulfide.

In industrial anaerobic digestion processes, such as waste water treatment or the digestion of organic waste from agriculture, hydrogen sulfide can be formed from the reduction of sulfate and the degradation of amino acids and proteins within organic compounds.[43] Sulfates are relatively non-inhibitory to methane forming bacteria but can be reduced to H2S by sulfate reducing bacteria, of which there are several genera.[44]

Removal from water[edit]

A number of processes have been designed to remove hydrogen sulfide from drinking water.[45]

Continuous chlorination
For levels up to 75 mg/L chlorine is used in the purification process as an oxidizing chemical to react with hydrogen sulfide. This reaction yields insoluble solid sulfur. Usually the chlorine used is in the form of sodium hypochlorite.[46]
Aeration
For concentrations of hydrogen sulfide less than 2 mg/L aeration is an ideal treatment process. Oxygen is added to water and a reaction between oxygen and hydrogen sulfide react to produce odorless sulfate.[47]
Nitrate addition
Calcium nitrate can be used to prevent hydrogen sulfide formation in wastewater streams.

Removal from fuel gases[edit]

Hydrogen sulfide is commonly found in raw natural gas and biogas. It is typically removed by amine gas treating technologies. In such processes, the hydrogen sulfide is first converted to an ammonium salt, whereas the natural gas is unaffected.

RNH2 + H2S ⇌ RNH+
3
+ SH

The bisulfide anion is subsequently regenerated by heating of the amine sulfide solution. Hydrogen sulfide generated in this process is typically converted to elemental sulfur using the Claus Process.

Process flow diagram of a typical amine treating process used in petroleum refineries, natural gas processing plants and other industrial facilities

Safety[edit]

Hydrogen sulfide is a highly toxic and flammable gas (flammable range: 4.3–46%). Being heavier than air, it tends to accumulate at the bottom of poorly ventilated spaces. Although very pungent at first (it smells like rotten eggs[48]), it quickly deadens the sense of smell, creating temporary anosmia,[49] so victims may be unaware of its presence until it is too late. Safe handling procedures are provided by its safety data sheet (SDS).[50]

Toxicity[edit]

Hydrogen sulfide is a broad-spectrum poison, meaning that it can poison several different systems in the body, although the nervous system is most affected. The toxicity of H
2
S
is comparable with that of carbon monoxide.[51] It binds with iron in the mitochondrial cytochrome enzymes, thus preventing cellular respiration. Its toxic properties were described in detail in 1843 by Justus von Liebig.[52]

Low-level exposure[edit]

Since hydrogen sulfide occurs naturally in the body, the environment, and the gut, enzymes exist to detoxify it. At some threshold level, believed to average around 300–350 ppm, the oxidative enzymes become overwhelmed. Many personal safety gas detectors, such as those used by utility, sewage and petrochemical workers, are set to alarm at as low as 5 to 10 ppm and to go into high alarm at 15 ppm. Detoxification is effected by oxidation to sulfate, which is harmless.[53] Hence, low levels of hydrogen sulfide may be tolerated indefinitely.

Exposure to lower concentrations can result in eye irritation, a sore throat and cough, nausea, shortness of breath, and fluid in the lungs (pulmonary edema).[51] These effects are believed to be due to hydrogen sulfide combining with alkali present in moist surface tissues to form sodium sulfide, a caustic.[54] These symptoms usually subside in a few weeks.

Long-term, low-level exposure may result in fatigue, loss of appetite, headaches, irritability, poor memory, and dizziness. Chronic exposure to low level H
2
S
(around 2 ppm) has been implicated in increased miscarriage and reproductive health issues among Russian and Finnish wood pulp workers,[55] but the reports have not (as of 1995) been replicated.

High-level exposure[edit]

Short-term, high-level exposure can induce immediate collapse, with loss of breathing and a high probability of death. If death does not occur, high exposure to hydrogen sulfide can lead to cortical pseudolaminar necrosis, degeneration of the basal ganglia and cerebral edema.[51] Although respiratory paralysis may be immediate, it can also be delayed up to 72 hours.[56] Diagnostic of extreme poisoning by H
2
S
is the discolouration of copper coins in the pockets of the victim.

Inhalation of H2S resulted in about 7 workplace deaths per year in the U.S. (2011–2017 data), second only to carbon monoxide (17 deaths per year) for workplace chemical inhalation deaths.[57]

Exposure thresholds[edit]

  • Exposure limits stipulated by the United States government:[58]
    • 10 ppm REL-Ceiling (NIOSH): recommended permissible exposure ceiling (the recommended level that must not be exceeded, except once for 10 min. in an 8-hour shift, if no other measurable exposure occurs)
    • 20 ppm PEL-Ceiling (OSHA): permissible exposure ceiling (the level that must not be exceeded, except once for 10 min. in an 8-hour shift, if no other measurable exposure occurs)
    • 50 ppm PEL-Peak (OSHA): peak permissible exposure (the level that must never be exceeded)
    • 100 ppm IDLH (NIOSH): immediately dangerous to life and health (the level that interferes with the ability to escape)
  • 0.00047 ppm or 0.47 ppb is the odor threshold, the point at which 50% of a human panel can detect the presence of an odor without being able to identify it.[59]
  • 10–20 ppm is the borderline concentration for eye irritation.
  • 50–100 ppm leads to eye damage.
  • At 100–150 ppm the olfactory nerve is paralyzed after a few inhalations, and the sense of smell disappears, often together with awareness of danger.[60][61]
  • 320–530 ppm leads to pulmonary edema with the possibility of death.[51]
  • 530–1000 ppm causes strong stimulation of the central nervous system and rapid breathing, leading to loss of breathing.
  • 800 ppm is the lethal concentration for 50% of humans for 5 minutes’ exposure (LC50).
  • Concentrations over 1000 ppm cause immediate collapse with loss of breathing, even after inhalation of a single breath.

Treatment[edit]

Treatment involves immediate inhalation of amyl nitrite, injections of sodium nitrite, or administration of 4-dimethylaminophenol in combination with inhalation of pure oxygen, administration of bronchodilators to overcome eventual bronchospasm, and in some cases hyperbaric oxygen therapy (HBOT).[51] HBOT has clinical and anecdotal support.[62][63][64]

Incidents[edit]

Hydrogen sulfide was used by the British Army as a chemical weapon during World War I. It was not considered to be an ideal war gas, but, while other gases were in short supply, it was used on two occasions in 1916.[65]

In 1975, a hydrogen sulfide release from an oil drilling operation in Denver City, Texas, killed nine people and caused the state legislature to focus on the deadly hazards of the gas. State Representative E L Short took the lead in endorsing an investigation by the Texas Railroad Commission and urged that residents be warned «by knocking on doors if necessary» of the imminent danger stemming from the gas. An exposed person may die from a second exposure to the gas, and a warning itself may be too late.[66]

On September 2, 2005, a leak in the propeller room of a Royal Caribbean Cruise Liner docked in Los Angeles resulted in the deaths of 3 crewmen due to a sewage line leak. As a result, all such compartments are now required to have a ventilation system.[67][68]

A dump of toxic waste containing hydrogen sulfide is believed to have caused 17 deaths and thousands of illnesses in Abidjan, on the West African coast, in the 2006 Côte d’Ivoire toxic waste dump.

In September 2008, three workers were killed and two suffered serious injury, including long term brain damage, at a mushroom growing company in Langley, British Columbia. A valve to a pipe that carried chicken manure, straw and gypsum to the compost fuel for the mushroom growing operation became clogged, and as workers unclogged the valve in a confined space without proper ventilation the hydrogen sulfide that had built up due to anaerobic decomposition of the material was released, poisoning the workers in the surrounding area.[69] Investigator said there could have been more fatalities if the pipe had been fully cleared and/or if the wind had changed directions.[70]

In 2014, levels of hydrogen sulfide as high as 83 ppm were detected at a recently built mall in Thailand called Siam Square One at the Siam Square area. Shop tenants at the mall reported health complications such as sinus inflammation, breathing difficulties and eye irritation. After investigation it was determined that the large amount of gas originated from imperfect treatment and disposal of waste water in the building.[71]

In November 2014, a substantial amount of hydrogen sulfide gas shrouded the central, eastern and southeastern parts of Moscow. Residents living in the area were urged to stay indoors by the emergencies ministry. Although the exact source of the gas was not known, blame had been placed on a Moscow oil refinery.[72]

In June 2016, a mother and her daughter were found deceased in their still-running 2006 Porsche Cayenne SUV against a guardrail on Florida’s Turnpike, initially thought to be victims of carbon monoxide poisoning.[73][74] Their deaths remained unexplained as the medical examiner waited for results of toxicology tests on the victims,[75] until urine tests revealed that hydrogen sulfide was the cause of death. A report from the Orange-Osceola Medical Examiner’s Office indicated that toxic fumes came from the Porsche’s starter battery, located under the front passenger seat.[76][77]

In January 2017, three utility workers in Key Largo, Florida, died one by one within seconds of descending into a narrow space beneath a manhole cover to check a section of paved street.[78] In an attempt to save the men, a firefighter who entered the hole without his air tank (because he could not fit through the hole with it) collapsed within seconds and had to be rescued by a colleague.[79] The firefighter was airlifted to Jackson Memorial Hospital and later recovered.[80][81] A Monroe County Sheriff officer initially determined that the space contained hydrogen sulfide and methane gas produced by decomposing vegetation.[82]

On May 24, 2018, two workers were killed, another seriously injured, and 14 others hospitalized by hydrogen sulfide inhalation at a Norske Skog paper mill in Albury, New South Wales.[83][84] An investigation by SafeWork NSW found that the gas was released from a tank used to hold process water. The workers were exposed at the end of a 3-day maintenance period. Hydrogen sulfide had built up in an upstream tank, which had been left stagnant and untreated with biocide during the maintenance period. These conditions allowed sulfate-reducing bacteria to grow in the upstream tank, as the water contained small quantities of wood pulp and fiber. The high rate of pumping from this tank into the tank involved in the incident caused hydrogen sulfide gas to escape from various openings around its top when pumping was resumed at the end of the maintenance period. The area above it was sufficiently enclosed for the gas to pool there, despite not being identified as a confined space by Norske Skog. One of the workers who was killed was exposed while investigating an apparent fluid leak in the tank, while the other who was killed and the worker who was badly injured were attempting to rescue the first after he collapsed on top of it. In a resulting criminal case, Norske Skog was accused of failing to ensure the health and safety of its workforce at the plant to a reasonably practicable extent. It plead guilty, and was fined AU$1,012,500 and ordered to fund the production of an anonymized educational video about the incident.[85][86][83][87]

In October 2019, an Odessa, Texas employee of Aghorn Operating Inc. and his wife were killed due to a water pump failure. Produced water with a high concentration of hydrogen sulfide was released by the pump. The worker died while responding to an automated phone call he had received alerting him to a mechanical failure in the pump, while his wife died after driving to the facility to check on him.[88] A CSB investigation cited lax safety practices at the facility, such as an informal lockout-tagout procedure and a nonfunctioning hydrogen sulfide alert system.[89]

Suicides[edit]

The gas, produced by mixing certain household ingredients, was used in a suicide wave in 2008 in Japan.[90] The wave prompted staff at Tokyo’s suicide prevention center to set up a special hotline during «Golden Week», as they received an increase in calls from people wanting to kill themselves during the annual May holiday.[91]

As of 2010, this phenomenon has occurred in a number of US cities, prompting warnings to those arriving at the site of the suicide.[92][93][94][95][96] These first responders, such as emergency services workers or family members are at risk of death or injury from inhaling the gas, or by fire.[97][98] Local governments have also initiated campaigns to prevent such suicides.

In 2020, H2S ingestion was used as a suicide method by Japanese pro wrestler Hana Kimura.[99]

Hydrogen sulfide in the natural environment[edit]

Microbial: The sulfur cycle[edit]

Sludge from a pond; the black color is due to metal sulfides

Hydrogen sulfide is a central participant in the sulfur cycle, the biogeochemical cycle of sulfur on Earth.[100]

In the absence of oxygen, sulfur-reducing and sulfate-reducing bacteria derive energy from oxidizing hydrogen or organic molecules by reducing elemental sulfur or sulfate to hydrogen sulfide. Other bacteria liberate hydrogen sulfide from sulfur-containing amino acids; this gives rise to the odor of rotten eggs and contributes to the odor of flatulence.

As organic matter decays under low-oxygen (or hypoxic) conditions (such as in swamps, eutrophic lakes or dead zones of oceans), sulfate-reducing bacteria will use the sulfates present in the water to oxidize the organic matter, producing hydrogen sulfide as waste. Some of the hydrogen sulfide will react with metal ions in the water to produce metal sulfides, which are not water-soluble. These metal sulfides, such as ferrous sulfide FeS, are often black or brown, leading to the dark color of sludge.

Several groups of bacteria can use hydrogen sulfide as fuel, oxidizing it to elemental sulfur or to sulfate by using dissolved oxygen, metal oxides (e.g., iron oxyhydroxides and manganese oxides), or nitrate as electron acceptors.[101]

The purple sulfur bacteria and the green sulfur bacteria use hydrogen sulfide as an electron donor in photosynthesis, thereby producing elemental sulfur. This mode of photosynthesis is older than the mode of cyanobacteria, algae, and plants, which uses water as electron donor and liberates oxygen.

The biochemistry of hydrogen sulfide is a key part of the chemistry of the iron-sulfur world. In this model of the origin of life on Earth, geologically produced hydrogen sulfide is postulated as an electron donor driving the reduction of carbon dioxide.[102]

Animals[edit]

Hydrogen sulfide is lethal to most animals, but a few highly specialized species (extremophiles) do thrive in habitats that are rich in this compound.[103]

In the deep sea, hydrothermal vents and cold seeps with high levels of hydrogen sulfide are home to a number of extremely specialized lifeforms, ranging from bacteria to fish.[which?][104] Because of the absence of sunlight at these depths, these ecosystems rely on chemosynthesis rather than photosynthesis.[105]

Freshwater springs rich in hydrogen sulfide are mainly home to invertebrates, but also include a small number of fish: Cyprinodon bobmilleri (a pupfish from Mexico), Limia sulphurophila (a poeciliid from the Dominican Republic), Gambusia eurystoma (a poeciliid from Mexico), and a few Poecilia (poeciliids from Mexico).[103][106] Invertebrates and microorganisms in some cave systems, such as Movile Cave, are adapted to high levels of hydrogen sulfide.[107]

Interstellar and planetary occurrence[edit]

Hydrogen sulfide has often been detected in the interstellar medium.[108] It also occurs in the clouds of planets in our solar system.[109][110]

Mass extinctions[edit]

A hydrogen sulfide bloom (green) stretching for about 150km along the coast of Namibia. As oxygen-poor water reaches the coast, bacteria in the organic-matter rich sediment produce hydrogen sulfide which is toxic to fish.

Hydrogen sulfide has been implicated in several mass extinctions that have occurred in the Earth’s past. In particular, a buildup of hydrogen sulfide in the atmosphere may have caused, or at least contributed to, the Permian-Triassic extinction event 252 million years ago.[111]

Organic residues from these extinction boundaries indicate that the oceans were anoxic (oxygen-depleted) and had species of shallow plankton that metabolized H
2
S
. The formation of H
2
S
may have been initiated by massive volcanic eruptions, which emitted carbon dioxide and methane into the atmosphere, which warmed the oceans, lowering their capacity to absorb oxygen that would otherwise oxidize H
2
S
. The increased levels of hydrogen sulfide could have killed oxygen-generating plants as well as depleted the ozone layer, causing further stress. Small H
2
S
blooms have been detected in modern times in the Dead Sea and in the Atlantic ocean off the coast of Namibia.[111]

See also[edit]

  • Hydrogen chalcogenide
  • Hydrogen sulfide chemosynthesis
  • Sewer gas
  • Targeted temperature management, also known as induced hypothermia – Medical procedure
  • Marsh gas

References[edit]

  1. ^ «Hydrogen Sulfide — PubChem Public Chemical Database». The PubChem Project. USA: National Center for Biotechnology Information.
  2. ^ a b Patnaik, Pradyot (2002). Handbook of Inorganic Chemicals. McGraw-Hill. ISBN 978-0-07-049439-8.
  3. ^ a b William M. Haynes (2016). CRC Handbook of Chemistry and Physics (97th ed.). Boca Raton: CRC Press. pp. 4–87. ISBN 978-1-4987-5429-3.
  4. ^ «Hydrogen sulfide». pubchem.ncbi.nlm.nih.gov.
  5. ^ Perrin, D.D. (1982). Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution (2nd ed.). Oxford: Pergamon Press.
  6. ^ Bruckenstein, S.; Kolthoff, I.M., in Kolthoff, I.M.; Elving, P.J. Treatise on Analytical Chemistry, Vol. 1, pt. 1; Wiley, NY, 1959, pp. 432–433.
  7. ^ a b Zumdahl, Steven S. (2009). Chemical Principles (6th ed.). Houghton Mifflin Company. p. A23. ISBN 978-0-618-94690-7.
  8. ^ a b c NIOSH Pocket Guide to Chemical Hazards. «#0337». National Institute for Occupational Safety and Health (NIOSH).
  9. ^ a b «Hydrogen sulfide». Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  10. ^ «Hydrogen sulfide». npi.gov.au.
  11. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  12. ^ Shackelford, R. E.; Li, Y.; Ghali, G. E.; Kevil, C. G. (2021). «Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation». Antioxidants. 10 (11): 1820. doi:10.3390/antiox10111820. PMC 8614844. PMID 34829691.
  13. ^ Reiffenstein, R. J.; Hulbert, W. C.; Roth, S. H. (1992). «Toxicology of Hydrogen Sulfide». Annual Review of Pharmacology and Toxicology. 32: 109–134. doi:10.1146/annurev.pa.32.040192.000545. PMID 1605565.
  14. ^ Bos, E. M; Van Goor, H; Joles, J. A; Whiteman, M; Leuvenink, H. G (2015). «Hydrogen sulfide: Physiological properties and therapeutic potential in ischaemia». British Journal of Pharmacology. 172 (6): 1479–1493. doi:10.1111/bph.12869. PMC 4369258. PMID 25091411.
  15. ^ May, P.M.; Batka, D.; Hefter, G.; Könignberger, E.; Rowland, D. (2018). «Goodbye to S2-«. Chem. Comm. 54 (16): 1980–1983. doi:10.1039/c8cc00187a. PMID 29404555.
  16. ^ JCE staff (March 2000). «Silver to Black — and Back». Journal of Chemical Education. 77 (3): 328A. Bibcode:2000JChEd..77R.328J. doi:10.1021/ed077p328a. ISSN 0021-9584.
  17. ^ Drozdov, A.; Eremets, M. I.; Troyan, I. A. (2014). «Conventional superconductivity at 190 K at high pressures». arXiv:1412.0460 [cond-mat.supr-con].
  18. ^ Cartlidge, Edwin (August 2015). «Superconductivity record sparks wave of follow-up physics». Nature. 524 (7565): 277. Bibcode:2015Natur.524..277C. doi:10.1038/nature.2015.18191. PMID 26289188.
  19. ^ Faraji, F. (1998). «The direct conversion of hydrogen sulfide to hydrogen and sulfur». International Journal of Hydrogen Energy. 23 (6): 451–456. doi:10.1016/S0360-3199(97)00099-2.
  20. ^ a b c Pouliquen, Francois; Blanc, Claude; Arretz, Emmanuel; Labat, Ives; Tournier-Lasserve, Jacques; Ladousse, Alain; Nougayrede, Jean; Savin, Gérard; Ivaldi, Raoul; Nicolas, Monique; Fialaire, Jean; Millischer, René; Azema, Charles; Espagno, Lucien; Hemmer, Henri; Perrot, Jacques (2000). «Hydrogen Sulfide». Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a13_467. ISBN 3527306730.
  21. ^ McPherson, William (1913). Laboratory manual. Boston: Ginn and Company. p. 445.
  22. ^ «Why Does My Water Smell Like Rotten Eggs? Hydrogen Sulfide and Sulfur Bacteria in Well Water». Minnesota Department of Health. Minnesota Department of Health. Archived from the original on 11 March 2015. Retrieved 1 December 2014.
  23. ^ a b c d e Hancock, John T. (2017). Cell signalling (Fourth ed.). Oxford, United Kingdom. ISBN 9780199658480. OCLC 947925636.
  24. ^ a b Huang, Caleb Weihao; Moore, Philip Keith (2015), «H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects», Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide, Springer International Publishing, vol. 230, pp. 3–25, doi:10.1007/978-3-319-18144-8_1, ISBN 9783319181431, PMID 26162827
  25. ^ a b c d Kabil, Omer; Banerjee, Ruma (10 February 2014). «Enzymology of H 2 S Biogenesis, Decay and Signaling». Antioxidants & Redox Signaling. 20 (5): 770–782. doi:10.1089/ars.2013.5339. PMC 3910450. PMID 23600844.
  26. ^ a b c Kabil, Omer; Vitvitsky, Victor; Xie, Peter; Banerjee, Ruma (15 July 2011). «The Quantitative Significance of the Transsulfuration Enzymes for H 2 S Production in Murine Tissues». Antioxidants & Redox Signaling. 15 (2): 363–372. doi:10.1089/ars.2010.3781. PMC 3118817. PMID 21254839.
  27. ^ Wallace, John L.; Wang, Rui (May 2015). «Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter». Nature Reviews Drug Discovery. 14 (5): 329–345. doi:10.1038/nrd4433. PMID 25849904. S2CID 5361233.
  28. ^ Powell, Chadwick R.; Dillon, Kearsley M.; Matson, John B. (2018). «A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications». Biochemical Pharmacology. 149: 110–123. doi:10.1016/j.bcp.2017.11.014. ISSN 0006-2952. PMC 5866188. PMID 29175421.
  29. ^ Szabo, Csaba (March 2018). «A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator». Biochemical Pharmacology. 149: 5–19. doi:10.1016/j.bcp.2017.09.010. PMC 5862769. PMID 28947277.
  30. ^ Szabo, Csaba; Papapetropoulos, Andreas (October 2017). «International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2 S Levels: H 2 S Donors and H 2 S Biosynthesis Inhibitors». Pharmacological Reviews. 69 (4): 497–564. doi:10.1124/pr.117.014050. PMC 5629631. PMID 28978633.
  31. ^ Wang, Rui (April 2012). «Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed». Physiological Reviews. 92 (2): 791–896. doi:10.1152/physrev.00017.2011. PMID 22535897. S2CID 21932297.
  32. ^ Li, Zhen; Polhemus, David J.; Lefer, David J. (17 August 2018). «Evolution of Hydrogen Sulfide Therapeutics to Treat Cardiovascular Disease». Circulation Research. 123 (5): 590–600. doi:10.1161/CIRCRESAHA.118.311134. PMID 30355137. S2CID 53027283.
  33. ^ Kimura, Hideo (February 2020). «Signalling by hydrogen sulfide and polysulfides via protein S ‐sulfuration». British Journal of Pharmacology. 177 (4): 720–733. doi:10.1111/bph.14579. PMC 7024735. PMID 30657595.
  34. ^ Khazaei, Ardeshir; Kazem-Rostami, Masoud; Moosavi-Zare, Ahmad; Bayat, Mohammad; Saednia, Shahnaz (August 2012). «Novel One-Pot Synthesis of Thiophenols from Related Triazenes under Mild Conditions». Synlett. 23 (13): 1893–1896. doi:10.1055/s-0032-1316557.
  35. ^ Stampler, Laura. «A Stinky Compound May Protect Against Cell Damage, Study Finds». Time. Time. Retrieved 1 December 2014.
  36. ^ «Coin Toning 101: The Differences between Naturally and Artificially Toned Coins». Original Skin Coins. Retrieved 2021-10-15.
  37. ^ Aslami, H; Schultz, MJ; Juffermans, NP (2009). «Potential applications of hydrogen sulfide-induced suspended animation». Current Medicinal Chemistry. 16 (10): 1295–303. doi:10.2174/092986709787846631. PMID 19355886.
  38. ^ «Hydrogen Sulphide In Well Water». Retrieved 4 September 2018.
  39. ^ Agency for Toxic Substances and Disease Registry (July 2006). «Toxicological Profile For Hydrogen Sulfide» (PDF). p. 154. Retrieved 2012-06-20.
  40. ^ OnePetro. «Home — OnePetro». onepetro.org. Archived from the original on 2013-10-14. Retrieved 2013-08-14.
  41. ^ «Hydrogen Sulfide» (PDF). Agency for Toxic Substances and Disease Registry. December 2016.
  42. ^ Jang, Yong-Chul; Townsend, Timothy (2001). «Sulfate leaching from recovered construction and demolition debris fines». Advances in Environmental Research. 5 (3): 203–217. doi:10.1016/S1093-0191(00)00056-3.
  43. ^ Cavinato, C. (2013) [2013]. «Anaerobic digestion fundamentals» (PDF).
  44. ^ Pokorna, Dana; Zabranska, Jana (November 2015). «Sulfur-oxidizing bacteria in environmental technology». Biotechnology Advances. 33 (6): 1246–1259. doi:10.1016/j.biotechadv.2015.02.007. PMID 25701621.
  45. ^ Lemley, Ann T.; Schwartz, John J.; Wagenet, Linda P. «Hydrogen Sulfide in Household Drinking Water» (PDF). Cornell University. Archived from the original (PDF) on 19 August 2019.
  46. ^ «Hydrogen Sulfide (Rotten Egg Odor) in Pennsylvania Groundwater Wells». Penn State. Penn State College of Agricultural Sciences. Archived from the original on 4 January 2015. Retrieved 1 December 2014.
  47. ^ McFarland, Mark L.; Provin, T. L. «Hydrogen Sulfide in Drinking Water Treatment Causes and Alternatives» (PDF). Texas A&M University. Retrieved 1 December 2014.
  48. ^ «Why Does My Water Smell Like Rotten Eggs?». Minnesota Department of Health. Retrieved 20 January 2020.
  49. ^ Contaminants, National Research Council (US) Committee on Emergency and Continuous Exposure Guidance Levels for Selected Submarine (2009). Hydrogen Sulfide. National Academies Press (US).
  50. ^ Iowa State University. «Hydrogen Sulfide Material Safety Data Sheet» (PDF). Department of Chemistry. Archived from the original (PDF) on 2009-03-27. Retrieved 2009-03-14.
  51. ^ a b c d e Lindenmann, J.; Matzi, V.; Neuboeck, N.; Ratzenhofer-Komenda, B.; Maier, A; Smolle-Juettner, F. M. (December 2010). «Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and hyperbaric oxygen». Diving and Hyperbaric Medicine. 40 (4): 213–217. PMID 23111938. Archived from the original on June 15, 2013. Retrieved 2013-06-07.{{cite journal}}: CS1 maint: unfit URL (link)
  52. ^ Harrison, J. Bower (1843-11-18). «Some Remarks on the Production of Sulphuretted Hydrogen Gas in the Alimentary Canal, and Its Effects on the System». Provincial Medical Journal and Retrospect of the Medical Sciences, BMJ. 7 (164): 127–129. JSTOR 25492480.
  53. ^ Ramasamy, S.; Singh, S.; Taniere, P.; Langman, M. J. S.; Eggo, M. C. (August 2006). «Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation». American Journal of Physiology. Gastrointestinal and Liver Physiology. 291 (2): G288–G296. doi:10.1152/ajpgi.00324.2005. PMID 16500920. S2CID 15443357.
  54. ^ Lewis, R.J. (1996). Sax’s Dangerous Properties of Industrial Materials (9th ed.). New York, NY: Van Nostrand Reinhold.[page needed]
  55. ^ Hemminki, K.; Niemi, M. L. (1982). «Community study of spontaneous abortions: relation to occupation and air pollution by sulfur dioxide, hydrogen sulfide, and carbon disulfide». Int. Arch. Occup. Environ. Health. 51 (1): 55–63. doi:10.1007/bf00378410. PMID 7152702. S2CID 2768183.
  56. ^ «The chemical suicide phenomenon». Firerescue1.com. 2011-02-07. Retrieved 2013-12-19.
  57. ^ «Fatal chemical inhalations in the workplace up in 2017». U.S. Bureau of Labor Statistics. Retrieved 15 April 2022.
  58. ^ «Hydrogen Sulfide — Hazards | Occupational Safety and Health Administration». www.osha.gov. Retrieved 2021-09-27.
  59. ^ Iowa State University Extension (May 2004). «The Science of Smell Part 1: Odor perception and physiological response» (PDF). PM 1963a. Retrieved 2012-06-20.
  60. ^ USEPA; Health and Environmental Effects Profile for Hydrogen Sulfide p.118-8 (1980) ECAO-CIN-026A
  61. ^ Zenz, C.; Dickerson, O.B.; Horvath, E.P. (1994). Occupational Medicine (3rd ed.). St. Louis, MO. p. 886.
  62. ^ Gerasimon, Gregg; Bennett, Steven; Musser, Jeffrey; Rinard, John (January 2007). «Acute hydrogen sulfide poisoning in a dairy farmer». Clinical Toxicology. 45 (4): 420–423. doi:10.1080/15563650601118010. PMID 17486486. S2CID 10952243.
  63. ^ Belley, R.; Bernard, N.; Côté, M; Paquet, F.; Poitras, J. (July 2005). «Hyperbaric oxygen therapy in the management of two cases of hydrogen sulfide toxicity from liquid manure». CJEM. 7 (4): 257–261. doi:10.1017/s1481803500014408. PMID 17355683.
  64. ^ Hsu, P; Li, H-W; Lin, Y-T (1987). «Acute hydrogen sulfide poisoning treated with hyperbaric oxygen». Journal of Hyperbaric Medicine. 2 (4): 215–221. Archived from the original on December 7, 2008.{{cite journal}}: CS1 maint: unfit URL (link)
  65. ^ Foulkes, Charles Howard (2001) [First published Blackwood & Sons, 1934]. «Gas!» The story of the special brigade. Published by Naval & Military P. p. 105. ISBN 978-1-84342-088-0.
  66. ^ Swindle, Howard (June 1975). «The Deadly Smell of Success». Texas Monthly. pp. 64–68, 96–97. Retrieved December 14, 2010.
  67. ^ «LA County Department of Public Health» (PDF). County of Los Angeles: Department of Public Health. Archived from the original (PDF) on 2017-02-18. Retrieved 2017-06-11.
  68. ^ Becerra, Hector; Pierson, David (2005-09-03). «Gas Kills 3 Crewmen on Ship». Los Angeles Times.
  69. ^ Ferguson, Dan (September 16, 2011). «Details of Langley mushroom farm tragedy finally disclosed». Abbotsford News. Retrieved April 13, 2020.
  70. ^ Theodore, Terri (May 8, 2012). «Dozens could have died because of owner’s negligence in B.C. mushroom farm incident: investigator». The Canadian Press. The Globe and Mail. Retrieved April 13, 2020.
  71. ^ «Do not breathe: Dangerous, toxic gas found at Siam Square One». Coconuts Bangkok. Coconuts Media. 2014-10-21. Retrieved 20 November 2014.
  72. ^ «Russian capital Moscow shrouded in noxious gas». BBC News. British Broadcasting Corporation. 2014-11-10. Retrieved 1 December 2014.
  73. ^ «Sources: Mom, daughter found dead in Porsche likely died from carbon monoxide». WFTV. 7 June 2016. Both had red skin and rash-like symptoms, and had vomited, sources said.
  74. ^ Salinger, Tobias (4 October 2016). «Woman, girl died after inhaling hydrogen sulfide, coroners say». New York Daily News. Retrieved 28 April 2017.
  75. ^ Lotan, Gal Tziperman (4 October 2016). «Hydrogen sulfide inhalation killed mother, toddler found on Florida’s Turnpike in June». Orlando Sentinel. Retrieved 28 April 2017.
  76. ^ Kealing, Bob. «Medical examiner confirms suspected cause of deaths in Turnpike mystery». Archived from the original on 2016-10-05. Retrieved 2016-10-04.
  77. ^ Bell, Lisa (19 March 2017). «Hidden car dangers you should be aware of». ClickOrlando.com. Produced by Donovan Myrie. WKMG-TV. Retrieved 28 April 2017. Porsche Cayennes, along with a few other vehicles, have their batteries in the passenger compartment.
  78. ^ «One by one, 3 utility workers descended into a manhole. One by one, they died». www.washingtonpost.com. Archived from the original on 2017-01-18.
  79. ^ Goodhue, David (17 January 2017). «Firefighter who tried to save 3 men in a manhole is fighting for his life». Miami Herald. Retrieved 28 April 2017.
  80. ^ «Key Largo firefighter takes first steps since nearly getting killed». WSVN. 18 January 2017.
  81. ^ «Firefighter who survived Key Largo rescue attempt that killed 3 leaves hospital». Sun Sentinel. The Associated Press. 26 January 2017.
  82. ^ Rabin, Charles; Goodhue, David (16 January 2017). «Three Keys utility workers die in wastewater trench». Miami Herald. Retrieved 28 April 2017.
  83. ^ a b Clantar, Claire (25 Sep 2020). «Former Victorian paper mill fined $1 million after deaths of two workers». 9News. Retrieved 30 May 2021.
  84. ^ «Two fatalities in suspected hydrogen sulfide gas leak at paper mill». Australian Institute of Health & Safety. 31 May 2018. Retrieved 30 May 2021.
  85. ^ Brescia, Paul (28 May 2018). «SafeWork investigating Norske Skog». Sprinter. Retrieved 30 May 2021.
  86. ^ SafeWork NSW v Norske Skog Paper Mills (Australia) Limited, NSWDC 559 (District Court of New South Wales 25 September 2020).
  87. ^ SafeWork NSW (29 Mar 2021). Incident Animation – Hazardous Gas (Motion picture). Archived from the original on 2021-10-30. Retrieved 30 May 2021.
  88. ^ «Feds Probe Fatal 2019 Hydrogen Sulfide Release in Texas». Industrial Fire World. 27 July 2020. Retrieved 29 May 2021.
  89. ^ «Aghorn Operating Waterflood Station Hydrogen Sulfide Release». U.S. Chemical Safety and Hazardous Investigation Board. 21 May 2021. Retrieved 29 May 2021.
  90. ^ «Dangerous Japanese ‘Detergent Suicide’ Technique Creeps Into U.S». Wired. March 13, 2009.
  91. ^ Namiki, Noriko (23 May 2008). «Terrible Twist in Japan Suicide Spates». ABC News.
  92. ^ http://info.publicintelligence.net/LARTTAChydrogensulfide.pdf[full citation needed]
  93. ^ http://info.publicintelligence.net/MAchemicalsuicide.pdf[full citation needed]
  94. ^ http://info.publicintelligence.net/illinoisH2Ssuicide.pdf[full citation needed]
  95. ^ http://info.publicintelligence.net/NYhydrogensulfide.pdf[full citation needed]
  96. ^ http://info.publicintelligence.net/KCTEWhydrogensulfide.pdf[full citation needed]
  97. ^ «Chemical Suicide on Campus» (PDF). www.maryland.gov. Archived from the original on January 3, 2012.
  98. ^ Scoville, Dean (April 2011). «Chemical Suicides». POLICE Magazine. Retrieved 2013-12-19.
  99. ^ Casey, Connor (26 May 2020). «Hana Kimura Cause Of Death Revealed». ComicBook.com. More details about her death have since come to light, as Dave Meltzer provided details about what happened on the night of her death during a recent Wrestling Observer Radio. According to Meltzer, Kimura died after ingesting hydrogen sulfide. He explained that concerns about her health first popped up when she posted a tweet early Saturday morning indicating that she was going to cause self-harm.
  100. ^ Barton, Larry L.; Fardeau, Marie-Laure; Fauque, Guy D. (2014). «Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation». The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. Vol. 14. pp. 237–277. doi:10.1007/978-94-017-9269-1_10. ISBN 978-94-017-9268-4. PMID 25416397.
  101. ^ Jørgensen, B. B.; Nelson, D. C. (2004). «Sulfide oxidation in marine sediments: Geochemistry meets microbiology». In Amend, J. P.; Edwards, K. J.; Lyons, T. W. (eds.). Sulfur Biogeochemistry – Past and Present. Geological Society of America. pp. 36–81.
  102. ^ Wächtershäuser, G (December 1988). «Before enzymes and templates: theory of surface metabolism». Microbiological Reviews. 52 (4): 452–484. doi:10.1128/MMBR.52.4.452-484.1988. PMC 373159. PMID 3070320.
  103. ^ a b Tobler, M; Riesch, R.; García de León, F. J.; Schlupp, I.; Plath, M. (2008). «Two endemic and endangered fishes, Poecilia sulphuraria (Álvarez, 1948) and Gambusia eurystoma Miller, 1975 (Poeciliidae, Teleostei) as only survivors in a small sulphidic habitat». Journal of Fish Biology. 72 (3): 523–533. doi:10.1111/j.1095-8649.2007.01716.x. S2CID 27303725.
  104. ^ Bernardino, Angelo F.; Levin, Lisa A.; Thurber, Andrew R.; Smith, Craig R. (2012). «Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls». PLOS ONE. 7 (4): e33515. Bibcode:2012PLoSO…733515B. doi:10.1371/journal.pone.0033515. PMC 3319539. PMID 22496753.
  105. ^ «Hydrothermal Vents». Marine Society of Australia. Retrieved 28 December 2014.
  106. ^ Palacios, Maura; Arias-Rodríguez, Lenín; Plath, Martin; Eifert, Constanze; Lerp, Hannes; Lamboj, Anton; Voelker, Gary; Tobler, Michael (2013). «The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid Fishes in Sulfide Springs». PLOS ONE. 8 (8): e71069. Bibcode:2013PLoSO…871069P. doi:10.1371/journal.pone.0071069. PMC 3745397. PMID 23976979.
  107. ^ Kumaresan, Deepak; Wischer, Daniela; Stephenson, Jason; Hillebrand-Voiculescu, Alexandra; Murrell, J. Colin (16 March 2014). «Microbiology of Movile Cave—A Chemolithoautotrophic Ecosystem». Geomicrobiology Journal. 31 (3): 186–193. doi:10.1080/01490451.2013.839764. S2CID 84472119.
  108. ^ Despois, D. (1997). «Radio Line Observations Of Molecular And Isotopic Species In Comet C/1995 O1 (Hale-Bopp)». Earth, Moon, and Planets. 79 (1/3): 103–124. Bibcode:1997EM&P…79..103D. doi:10.1023/A:1006229131864. S2CID 118540103.
  109. ^ Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno (May 2018). «Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere». Nature Astronomy. 2 (5): 420–427. Bibcode:2018NatAs…2..420I. doi:10.1038/s41550-018-0432-1. hdl:2381/42547. S2CID 102775371.
  110. ^ Lissauer, Jack J.; de Pater, Imke (2019). Fundamental Planetary Sciences : physics, chemistry, and habitability. New York, NY, USA: Cambridge University Press. pp. 149–152. ISBN 9781108411981.[page needed]
  111. ^ a b «Impact from the Deep». Scientific American. October 2006.

Additional resources[edit]

  • Committee on Medical and Biological Effects of Environmental Pollutants (1979). Hydrogen Sulfide. Baltimore: University Park Press. ISBN 978-0-8391-0127-7.
  • Siefers, Andrea (2010). A novel and cost-effective hydrogen sulfide removal technology using tire derived rubber particles (MS thesis). Iowa State University. Retrieved 8 February 2013.

External links[edit]

  • International Chemical Safety Card 0165
  • Concise International Chemical Assessment Document 53
  • National Pollutant Inventory — Hydrogen sulfide fact sheet
  • NIOSH Pocket Guide to Chemical Hazards
  • NACE (National Association of Corrosion Epal)
Hydrogen sulfide

Skeletal formula of hydrogen sulfide with two dimensions

Ball-and-stick model of hydrogen sulfide

Spacefill model of hydrogen sulfide

Names
Systematic IUPAC name

Hydrogen sulfide[1]

Other names

  • Dihydrogen monosulfide
  • Sour gas
  • Dihydrogen sulfide
  • Sewer gas
  • Egg gas
  • Sulfane
  • Sulfurated hydrogen
  • Sulfureted hydrogen
  • Sulfuretted hydrogen
  • Sulfur hydride
  • Hydrosulfuric acid
  • Hydrothionic acid
  • Thiohydroxic acid
  • Sulfhydric acid
Identifiers

CAS Number

  • 7783-06-4 check

3D model (JSmol)

  • Interactive image
3DMet
  • B01206

Beilstein Reference

3535004
ChEBI
  • CHEBI:16136 check
ChEMBL
  • ChEMBL1200739 ☒
ChemSpider
  • 391 check
ECHA InfoCard 100.029.070 Edit this at Wikidata
EC Number
  • 231-977-3

Gmelin Reference

303
KEGG
  • C00283 check
MeSH Hydrogen+sulfide

PubChem CID

  • 402
RTECS number
  • MX1225000
UNII
  • YY9FVM7NSN check
UN number 1053

CompTox Dashboard (EPA)

  • DTXSID4024149 Edit this at Wikidata

InChI

  • InChI=1S/H2S/h1H2 check

    Key: RWSOTUBLDIXVET-UHFFFAOYSA-N check

  • InChI=1/H2S/h1H2

    Key: RWSOTUBLDIXVET-UHFFFAOYAJ

SMILES

  • S

Properties

Chemical formula

H2S
Molar mass 34.08 g·mol−1
Appearance Colorless gas
Odor Pungent, like that of rotten eggs
Density 1.539 g.L−1 (0°C)[2]
Melting point −85.5[3] °C (−121.9 °F; 187.7 K)
Boiling point −59.55[3] °C (−75.19 °F; 213.60 K)

Solubility in water

3.980 g dm−3 (at 20 °C) [4]
Vapor pressure 1740 kPa (at 21 °C)
Acidity (pKa) 7.0[5][6]
Conjugate acid Sulfonium
Conjugate base Bisulfide

Magnetic susceptibility (χ)

−25.5·10−6 cm3/mol

Refractive index (nD)

1.000644 (0 °C)[2]
Structure

Point group

C2v

Molecular shape

Bent

Dipole moment

0.97 D
Thermochemistry

Heat capacity (C)

1.003 J K−1 g−1

Std molar
entropy (S298)

206 J mol−1 K−1[7]

Std enthalpy of
formation fH298)

−21 kJ mol−1[7]
Hazards
Occupational safety and health (OHS/OSH):

Main hazards

Flammable and highly toxic
GHS labelling:

Pictograms

GHS02: FlammableGHS06: ToxicGHS09: Environmental hazard

Signal word

Danger

Hazard statements

H220, H330, H400

Precautionary statements

P210, P260, P271, P273, P284, P304+P340, P310, P320, P377, P381, P391, P403, P403+P233, P405, P501
NFPA 704 (fire diamond)

NFPA 704 four-colored diamond

4

4

0

Flash point −82.4 °C (−116.3 °F; 190.8 K)[10]

Autoignition
temperature

232 °C (450 °F; 505 K)
Explosive limits 4.3–46%
Lethal dose or concentration (LD, LC):

LC50 (median concentration)

  • 713 ppm (rat, 1 hr)
  • 673 ppm (mouse, 1 hr)
  • 634 ppm (mouse, 1 hr)
  • 444 ppm (rat, 4 hr)[9]

LCLo (lowest published)

  • 600 ppm (human, 30 min)
  • 800 ppm (human, 5 min)[9]
NIOSH (US health exposure limits):

PEL (Permissible)

C 20 ppm; 50 ppm [10-minute maximum peak][8]

REL (Recommended)

C 10 ppm (15 mg/m3) [10-minute][8]

IDLH (Immediate danger)

100 ppm[8]
Related compounds

Related hydrogen chalcogenides

  • Water
  • Hydrogen selenide
  • Hydrogen telluride
  • Hydrogen polonide
  • Hydrogen disulfide
  • Sulfanyl

Related compounds

Phosphine

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒ verify (what is check☒ ?)

Infobox references

Hydrogen sulfide is a chemical compound with the formula H
2
S
. It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs.[11] The underground mine gas term for foul-smelling hydrogen sulfide-rich gas mixtures is stinkdamp. Swedish chemist Carl Wilhelm Scheele is credited with having discovered the chemical composition of purified hydrogen sulfide in 1777.[citation needed] The British English spelling of this compound is hydrogen sulphide, a spelling no longer recommended by the Royal Society of Chemistry or the International Union of Pure and Applied Chemistry.

Hydrogen sulfide is toxic to humans and most other animals by inhibiting cellular respiration in a manner similar to hydrogen cyanide. When it is inhaled or it or its salts are ingested in high amounts,[clarification needed] damage to organs occurs rapidly with symptoms ranging from breathing difficulties to convulsions and death.[12][13] Despite this, the human body produces small amounts of this sulfide and its mineral salts, and uses it as a signalling molecule.[14]

Hydrogen sulfide is often produced from the microbial breakdown of organic matter in the absence of oxygen, such as in swamps and sewers; this process is commonly known as anaerobic digestion, which is done by sulfate-reducing microorganisms. It also occurs in volcanic gases, natural gas deposits, and sometimes in well-drawn water.

Properties[edit]

Hydrogen sulfide is slightly denser than air. A mixture of H
2
S
and air can be explosive. Hydrogen sulfide burns in oxygen with a blue flame to form sulfur dioxide (SO
2
) and water. In general, hydrogen sulfide acts as a reducing agent, although in the presence of a base, it can act as an acid by donating a proton and forming SH.

At high temperatures or in the presence of catalysts, sulfur dioxide reacts with hydrogen sulfide to form elemental sulfur and water. This reaction is exploited in the Claus process, an important industrial method to dispose of hydrogen sulfide.

Hydrogen sulfide is slightly soluble in water and acts as a weak acid (pKa = 6.9 in 0.01–0.1 mol/litre solutions at 18 °C), giving the hydrosulfide ion HS
(also written SH
). Hydrogen sulfide and its solutions are colorless. When exposed to air, it slowly oxidizes to form elemental sulfur, which is not soluble in water. The sulfide anion S2−
is not formed in aqueous solution.[15]

Hydrogen sulfide reacts with metal ions to form metal sulfides, which are insoluble, often dark colored solids. Lead(II) acetate paper is used to detect hydrogen sulfide because it readily converts to lead(II) sulfide, which is black. Treating metal sulfides with strong acid or electrolysis often liberates hydrogen sulfide. Hydrogen sulfide is also responsible for tarnishing on various metals including copper and silver; the chemical responsible for black toning found on silver coins is silver sulfide (Ag2S), which is produced when the silver on the surface of the coin reacts with atmospheric hydrogen sulfide.[16]

At pressures above 90 GPa (gigapascal), hydrogen sulfide becomes a metallic conductor of electricity. When cooled below a critical temperature this high-pressure phase exhibits superconductivity. The critical temperature increases with pressure, ranging from 23 K at 100 GPa to 150 K at 200 GPa.[17] If hydrogen sulfide is pressurized at higher temperatures, then cooled, the critical temperature reaches 203 K (−70 °C), the highest accepted superconducting critical temperature as of 2015. By substituting a small part of sulfur with phosphorus and using even higher pressures, it has been predicted that it may be possible to raise the critical temperature to above 0 °C (273 K) and achieve room-temperature superconductivity.[18]

Hydrogen sulfide decomposes without a presence of a catalyst under atmospheric pressure around 1200 °C into hydrogen and sulfur.[19]

Production[edit]

Hydrogen sulfide is most commonly obtained by its separation from sour gas, which is natural gas with a high content of H
2
S
. It can also be produced by treating hydrogen with molten elemental sulfur at about 450 °C. Hydrocarbons can serve as a source of hydrogen in this process.[20]

Sulfate-reducing (resp. sulfur-reducing) bacteria generate usable energy under low-oxygen conditions by using sulfates (resp. elemental sulfur) to oxidize organic compounds or hydrogen; this produces hydrogen sulfide as a waste product.

A standard lab preparation is to treat ferrous sulfide with a strong acid in a Kipp generator:

FeS + 2 HCl → FeCl2 + H2S

For use in qualitative inorganic analysis, thioacetamide is used to generate H
2
S
:

CH3C(S)NH2 + H2O → CH3C(O)NH2 + H2S

Many metal and nonmetal sulfides, e.g. aluminium sulfide, phosphorus pentasulfide, silicon disulfide liberate hydrogen sulfide upon exposure to water:[21]

6 H2O + Al2S3 → 3 H2S + 2 Al(OH)3

This gas is also produced by heating sulfur with solid organic compounds and by reducing sulfurated organic compounds with hydrogen.

Water heaters can aid the conversion of sulfate in water to hydrogen sulfide gas. This is due to providing a warm environment sustainable for sulfur bacteria and maintaining the reaction which interacts between sulfate in the water and the water heater anode, which is usually made from magnesium metal.[22]

Biosynthesis in the body[edit]

Hydrogen sulfide can be generated in cells via enzymatic or non-enzymatic pathways. H
2
S
in the body acts as a gaseous signaling molecule which is known to inhibit Complex IV of the mitochondrial electron transport chain which effectively reduces ATP generation and biochemical activity within cells.[23] Three enzymes are known to synthesize H
2
S
: cystathionine γ-lyase (CSE), cystathionine β-synthetase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST).[24] These enzymes have been identified in a breadth of biological cells and tissues, and their activity has been observed to be induced by a number of disease states.[25] It is becoming increasingly clear that H
2
S
is an important mediator of a wide range of cell functions in health and in diseases.[24] CBS and CSE are the main proponents of H
2
S
biogenesis, which follows the trans-sulfuration pathway.[26] These enzymes are characterized by the transfer of a sulfur atom from methionine to serine to form a cysteine molecule.[26] 3-MST also contributes to hydrogen sulfide production by way of the cysteine catabolic pathway.[25][26] Dietary amino acids, such as methionine and cysteine serve as the primary substrates for the transulfuration pathways and in the production of hydrogen sulfide. Hydrogen sulfide can also be synthesized by non-enzymatic pathway, which is derived from proteins such as ferredoxins and Rieske proteins.[25] There has been continuing interest in exploiting such knowledge of hydrogen sulfide’s role in signaling through development of mechanistically related therapeutic agents.[27][28]

Hydrogen sulfide has been shown to be involved in physiological processes such as vasodilation in animals, as well as in increasing seed germination and stress responses in plants.[23] Hydrogen sulfide signaling is also innately intertwined with physiological processes that are known to be moderated by reactive oxygen species (ROS) and reactive nitrogen species (RNS).[23] H
2
S
has been shown to interact with NO resulting in several different cellular effects, as well as the formation of a new signal called nitrosothiol.[23] Hydrogen sulfide is also known to increase the levels of glutathione which acts to reduce or disrupt ROS levels in cells.[23] The field of H2S biology has advanced from environmental toxicology to investigate the roles of endogenously produced H2S in physiological conditions and in various pathophysiological states.[29] According to a current classification, pathophysiological states with H2S overproduction (such as cancer and Down syndrome) and pathophysiological states with H2S deficit (e.g. vascular disease) can be identified.[30] Although the understanding of H2S biology has significantly advanced over the last decade,[31][32][33] many questions remain, for instance related to the quantification of endogenous H2S levels.[25]

Uses[edit]

Production of sulfur, thioorganic compounds, and alkali metal sulfides[edit]

The main use of hydrogen sulfide is as a precursor to elemental sulfur. Several organosulfur compounds are produced using hydrogen sulfide. These include methanethiol, ethanethiol, and thioglycolic acid.[20]

Upon combining with alkali metal bases, hydrogen sulfide converts to alkali hydrosulfides such as sodium hydrosulfide and sodium sulfide:

H2S + NaOH → NaSH + H2O
NaSH + NaOH → Na2S + H2O

These compounds are used in the paper making industry. Specifically, salts of SH break bonds between lignin and cellulose components of pulp in the Kraft process.[20]

Reversibly sodium sulfide in the presence of acids turns into hydrosulfides and hydrogen sulfide; this supplies hydrosulfides in organic solutions and is utilized in the production of thiophenol.[34]

Analytical chemistry[edit]

For well over a century hydrogen sulfide was important in analytical chemistry in the qualitative inorganic analysis of metal ions. In these analyses, heavy metal (and nonmetal) ions (e.g., Pb(II), Cu(II), Hg(II), As(III)) are precipitated from solution upon exposure to H
2
S
). The components of the resulting precipitate redissolve with some selectivity, and are thus identified.

Precursor to metal sulfides[edit]

As indicated above, many metal ions react with hydrogen sulfide to give the corresponding metal sulfides. This conversion is widely exploited. For example, gases or waters contaminated by hydrogen sulfide can be cleaned with metals, by forming metal sulfides. In the purification of metal ores by flotation, mineral powders are often treated with hydrogen sulfide to enhance the separation. Metal parts are sometimes passivated with hydrogen sulfide. Catalysts used in hydrodesulfurization are routinely activated with hydrogen sulfide, and the behavior of metallic catalysts used in other parts of a refinery is also modified using hydrogen sulfide.

Miscellaneous applications[edit]

Hydrogen sulfide is used to separate deuterium oxide, or heavy water, from normal water via the Girdler sulfide process.

Scientists from the University of Exeter discovered that cell exposure to small amounts of hydrogen sulfide gas can prevent mitochondrial damage. When the cell is stressed with disease, enzymes are drawn into the cell to produce small amounts of hydrogen sulfide. This study could have further implications on preventing strokes, heart disease and arthritis.[35]

Depending on the level of toning present, coins that have been subject to toning by hydrogen sulfide and other sulfur-containing compounds may add to the numismatic value of a coin based on the toning’s aesthetics. Coins can also be intentionally treated with hydrogen sulfide to induce toning, though artificial toning can be distinguished from natural toning, and is generally criticised among collectors.[36]

A suspended animation-like state has been induced in rodents with the use of hydrogen sulfide, resulting in hypothermia with a concomitant reduction in metabolic rate. Oxygen demand was also reduced, thereby protecting against hypoxia. In addition, hydrogen sulfide has been shown to reduce inflammation in various situations.[37]

Occurrence[edit]

Volcanoes and some hot springs (as well as cold springs) emit some H
2
S
, where it probably arises via the hydrolysis of sulfide minerals, i.e. MS + H
2
O
→ MO + H
2
S
.[citation needed] Hydrogen sulfide can be present naturally in well water, often as a result of the action of sulfate-reducing bacteria.[38][better source needed] Hydrogen sulfide is produced by the human body in small quantities through bacterial breakdown of proteins containing sulfur in the intestinal tract, therefore it contributes to the characteristic odor of flatulence. It is also produced in the mouth (halitosis).[39]

A portion of global H
2
S
emissions are due to human activity. By far the largest industrial source of H
2
S
is petroleum refineries: The hydrodesulfurization process liberates sulfur from petroleum by the action of hydrogen. The resulting H
2
S
is converted to elemental sulfur by partial combustion via the Claus process, which is a major source of elemental sulfur. Other anthropogenic sources of hydrogen sulfide include coke ovens, paper mills (using the Kraft process), tanneries and sewerage. H
2
S
arises from virtually anywhere where elemental sulfur comes in contact with organic material, especially at high temperatures. Depending on environmental conditions, it is responsible for deterioration of material through the action of some sulfur oxidizing microorganisms. It is called biogenic sulfide corrosion.

In 2011 it was reported that increased concentrations of H
2
S
were observed in the Bakken formation crude, possibly due to oil field practices, and presented challenges such as «health and environmental risks, corrosion of wellbore, added expense with regard to materials handling and pipeline equipment, and additional refinement requirements».[40]

Besides living near gas and oil drilling operations, ordinary citizens can be exposed to hydrogen sulfide by being near waste water treatment facilities, landfills and farms with manure storage. Exposure occurs through breathing contaminated air or drinking contaminated water.[41]

In municipal waste landfill sites, the burial of organic material rapidly leads to the production of anaerobic digestion within the waste mass and, with the humid atmosphere and relatively high temperature that accompanies biodegradation, biogas is produced as soon as the air within the waste mass has been reduced. If there is a source of sulfate bearing material, such as plasterboard or natural gypsum (calcium sulphate dihydrate), under anaerobic conditions sulfate reducing bacteria converts this to hydrogen sulfide. These bacteria cannot survive in air but the moist, warm, anaerobic conditions of buried waste that contains a high source of carbon – in inert landfills, paper and glue used in the fabrication of products such as plasterboard can provide a rich source of carbon[42] – is an excellent environment for the formation of hydrogen sulfide.

In industrial anaerobic digestion processes, such as waste water treatment or the digestion of organic waste from agriculture, hydrogen sulfide can be formed from the reduction of sulfate and the degradation of amino acids and proteins within organic compounds.[43] Sulfates are relatively non-inhibitory to methane forming bacteria but can be reduced to H2S by sulfate reducing bacteria, of which there are several genera.[44]

Removal from water[edit]

A number of processes have been designed to remove hydrogen sulfide from drinking water.[45]

Continuous chlorination
For levels up to 75 mg/L chlorine is used in the purification process as an oxidizing chemical to react with hydrogen sulfide. This reaction yields insoluble solid sulfur. Usually the chlorine used is in the form of sodium hypochlorite.[46]
Aeration
For concentrations of hydrogen sulfide less than 2 mg/L aeration is an ideal treatment process. Oxygen is added to water and a reaction between oxygen and hydrogen sulfide react to produce odorless sulfate.[47]
Nitrate addition
Calcium nitrate can be used to prevent hydrogen sulfide formation in wastewater streams.

Removal from fuel gases[edit]

Hydrogen sulfide is commonly found in raw natural gas and biogas. It is typically removed by amine gas treating technologies. In such processes, the hydrogen sulfide is first converted to an ammonium salt, whereas the natural gas is unaffected.

RNH2 + H2S ⇌ RNH+
3
+ SH

The bisulfide anion is subsequently regenerated by heating of the amine sulfide solution. Hydrogen sulfide generated in this process is typically converted to elemental sulfur using the Claus Process.

Process flow diagram of a typical amine treating process used in petroleum refineries, natural gas processing plants and other industrial facilities

Safety[edit]

Hydrogen sulfide is a highly toxic and flammable gas (flammable range: 4.3–46%). Being heavier than air, it tends to accumulate at the bottom of poorly ventilated spaces. Although very pungent at first (it smells like rotten eggs[48]), it quickly deadens the sense of smell, creating temporary anosmia,[49] so victims may be unaware of its presence until it is too late. Safe handling procedures are provided by its safety data sheet (SDS).[50]

Toxicity[edit]

Hydrogen sulfide is a broad-spectrum poison, meaning that it can poison several different systems in the body, although the nervous system is most affected. The toxicity of H
2
S
is comparable with that of carbon monoxide.[51] It binds with iron in the mitochondrial cytochrome enzymes, thus preventing cellular respiration. Its toxic properties were described in detail in 1843 by Justus von Liebig.[52]

Low-level exposure[edit]

Since hydrogen sulfide occurs naturally in the body, the environment, and the gut, enzymes exist to detoxify it. At some threshold level, believed to average around 300–350 ppm, the oxidative enzymes become overwhelmed. Many personal safety gas detectors, such as those used by utility, sewage and petrochemical workers, are set to alarm at as low as 5 to 10 ppm and to go into high alarm at 15 ppm. Detoxification is effected by oxidation to sulfate, which is harmless.[53] Hence, low levels of hydrogen sulfide may be tolerated indefinitely.

Exposure to lower concentrations can result in eye irritation, a sore throat and cough, nausea, shortness of breath, and fluid in the lungs (pulmonary edema).[51] These effects are believed to be due to hydrogen sulfide combining with alkali present in moist surface tissues to form sodium sulfide, a caustic.[54] These symptoms usually subside in a few weeks.

Long-term, low-level exposure may result in fatigue, loss of appetite, headaches, irritability, poor memory, and dizziness. Chronic exposure to low level H
2
S
(around 2 ppm) has been implicated in increased miscarriage and reproductive health issues among Russian and Finnish wood pulp workers,[55] but the reports have not (as of 1995) been replicated.

High-level exposure[edit]

Short-term, high-level exposure can induce immediate collapse, with loss of breathing and a high probability of death. If death does not occur, high exposure to hydrogen sulfide can lead to cortical pseudolaminar necrosis, degeneration of the basal ganglia and cerebral edema.[51] Although respiratory paralysis may be immediate, it can also be delayed up to 72 hours.[56] Diagnostic of extreme poisoning by H
2
S
is the discolouration of copper coins in the pockets of the victim.

Inhalation of H2S resulted in about 7 workplace deaths per year in the U.S. (2011–2017 data), second only to carbon monoxide (17 deaths per year) for workplace chemical inhalation deaths.[57]

Exposure thresholds[edit]

  • Exposure limits stipulated by the United States government:[58]
    • 10 ppm REL-Ceiling (NIOSH): recommended permissible exposure ceiling (the recommended level that must not be exceeded, except once for 10 min. in an 8-hour shift, if no other measurable exposure occurs)
    • 20 ppm PEL-Ceiling (OSHA): permissible exposure ceiling (the level that must not be exceeded, except once for 10 min. in an 8-hour shift, if no other measurable exposure occurs)
    • 50 ppm PEL-Peak (OSHA): peak permissible exposure (the level that must never be exceeded)
    • 100 ppm IDLH (NIOSH): immediately dangerous to life and health (the level that interferes with the ability to escape)
  • 0.00047 ppm or 0.47 ppb is the odor threshold, the point at which 50% of a human panel can detect the presence of an odor without being able to identify it.[59]
  • 10–20 ppm is the borderline concentration for eye irritation.
  • 50–100 ppm leads to eye damage.
  • At 100–150 ppm the olfactory nerve is paralyzed after a few inhalations, and the sense of smell disappears, often together with awareness of danger.[60][61]
  • 320–530 ppm leads to pulmonary edema with the possibility of death.[51]
  • 530–1000 ppm causes strong stimulation of the central nervous system and rapid breathing, leading to loss of breathing.
  • 800 ppm is the lethal concentration for 50% of humans for 5 minutes’ exposure (LC50).
  • Concentrations over 1000 ppm cause immediate collapse with loss of breathing, even after inhalation of a single breath.

Treatment[edit]

Treatment involves immediate inhalation of amyl nitrite, injections of sodium nitrite, or administration of 4-dimethylaminophenol in combination with inhalation of pure oxygen, administration of bronchodilators to overcome eventual bronchospasm, and in some cases hyperbaric oxygen therapy (HBOT).[51] HBOT has clinical and anecdotal support.[62][63][64]

Incidents[edit]

Hydrogen sulfide was used by the British Army as a chemical weapon during World War I. It was not considered to be an ideal war gas, but, while other gases were in short supply, it was used on two occasions in 1916.[65]

In 1975, a hydrogen sulfide release from an oil drilling operation in Denver City, Texas, killed nine people and caused the state legislature to focus on the deadly hazards of the gas. State Representative E L Short took the lead in endorsing an investigation by the Texas Railroad Commission and urged that residents be warned «by knocking on doors if necessary» of the imminent danger stemming from the gas. An exposed person may die from a second exposure to the gas, and a warning itself may be too late.[66]

On September 2, 2005, a leak in the propeller room of a Royal Caribbean Cruise Liner docked in Los Angeles resulted in the deaths of 3 crewmen due to a sewage line leak. As a result, all such compartments are now required to have a ventilation system.[67][68]

A dump of toxic waste containing hydrogen sulfide is believed to have caused 17 deaths and thousands of illnesses in Abidjan, on the West African coast, in the 2006 Côte d’Ivoire toxic waste dump.

In September 2008, three workers were killed and two suffered serious injury, including long term brain damage, at a mushroom growing company in Langley, British Columbia. A valve to a pipe that carried chicken manure, straw and gypsum to the compost fuel for the mushroom growing operation became clogged, and as workers unclogged the valve in a confined space without proper ventilation the hydrogen sulfide that had built up due to anaerobic decomposition of the material was released, poisoning the workers in the surrounding area.[69] Investigator said there could have been more fatalities if the pipe had been fully cleared and/or if the wind had changed directions.[70]

In 2014, levels of hydrogen sulfide as high as 83 ppm were detected at a recently built mall in Thailand called Siam Square One at the Siam Square area. Shop tenants at the mall reported health complications such as sinus inflammation, breathing difficulties and eye irritation. After investigation it was determined that the large amount of gas originated from imperfect treatment and disposal of waste water in the building.[71]

In November 2014, a substantial amount of hydrogen sulfide gas shrouded the central, eastern and southeastern parts of Moscow. Residents living in the area were urged to stay indoors by the emergencies ministry. Although the exact source of the gas was not known, blame had been placed on a Moscow oil refinery.[72]

In June 2016, a mother and her daughter were found deceased in their still-running 2006 Porsche Cayenne SUV against a guardrail on Florida’s Turnpike, initially thought to be victims of carbon monoxide poisoning.[73][74] Their deaths remained unexplained as the medical examiner waited for results of toxicology tests on the victims,[75] until urine tests revealed that hydrogen sulfide was the cause of death. A report from the Orange-Osceola Medical Examiner’s Office indicated that toxic fumes came from the Porsche’s starter battery, located under the front passenger seat.[76][77]

In January 2017, three utility workers in Key Largo, Florida, died one by one within seconds of descending into a narrow space beneath a manhole cover to check a section of paved street.[78] In an attempt to save the men, a firefighter who entered the hole without his air tank (because he could not fit through the hole with it) collapsed within seconds and had to be rescued by a colleague.[79] The firefighter was airlifted to Jackson Memorial Hospital and later recovered.[80][81] A Monroe County Sheriff officer initially determined that the space contained hydrogen sulfide and methane gas produced by decomposing vegetation.[82]

On May 24, 2018, two workers were killed, another seriously injured, and 14 others hospitalized by hydrogen sulfide inhalation at a Norske Skog paper mill in Albury, New South Wales.[83][84] An investigation by SafeWork NSW found that the gas was released from a tank used to hold process water. The workers were exposed at the end of a 3-day maintenance period. Hydrogen sulfide had built up in an upstream tank, which had been left stagnant and untreated with biocide during the maintenance period. These conditions allowed sulfate-reducing bacteria to grow in the upstream tank, as the water contained small quantities of wood pulp and fiber. The high rate of pumping from this tank into the tank involved in the incident caused hydrogen sulfide gas to escape from various openings around its top when pumping was resumed at the end of the maintenance period. The area above it was sufficiently enclosed for the gas to pool there, despite not being identified as a confined space by Norske Skog. One of the workers who was killed was exposed while investigating an apparent fluid leak in the tank, while the other who was killed and the worker who was badly injured were attempting to rescue the first after he collapsed on top of it. In a resulting criminal case, Norske Skog was accused of failing to ensure the health and safety of its workforce at the plant to a reasonably practicable extent. It plead guilty, and was fined AU$1,012,500 and ordered to fund the production of an anonymized educational video about the incident.[85][86][83][87]

In October 2019, an Odessa, Texas employee of Aghorn Operating Inc. and his wife were killed due to a water pump failure. Produced water with a high concentration of hydrogen sulfide was released by the pump. The worker died while responding to an automated phone call he had received alerting him to a mechanical failure in the pump, while his wife died after driving to the facility to check on him.[88] A CSB investigation cited lax safety practices at the facility, such as an informal lockout-tagout procedure and a nonfunctioning hydrogen sulfide alert system.[89]

Suicides[edit]

The gas, produced by mixing certain household ingredients, was used in a suicide wave in 2008 in Japan.[90] The wave prompted staff at Tokyo’s suicide prevention center to set up a special hotline during «Golden Week», as they received an increase in calls from people wanting to kill themselves during the annual May holiday.[91]

As of 2010, this phenomenon has occurred in a number of US cities, prompting warnings to those arriving at the site of the suicide.[92][93][94][95][96] These first responders, such as emergency services workers or family members are at risk of death or injury from inhaling the gas, or by fire.[97][98] Local governments have also initiated campaigns to prevent such suicides.

In 2020, H2S ingestion was used as a suicide method by Japanese pro wrestler Hana Kimura.[99]

Hydrogen sulfide in the natural environment[edit]

Microbial: The sulfur cycle[edit]

Sludge from a pond; the black color is due to metal sulfides

Hydrogen sulfide is a central participant in the sulfur cycle, the biogeochemical cycle of sulfur on Earth.[100]

In the absence of oxygen, sulfur-reducing and sulfate-reducing bacteria derive energy from oxidizing hydrogen or organic molecules by reducing elemental sulfur or sulfate to hydrogen sulfide. Other bacteria liberate hydrogen sulfide from sulfur-containing amino acids; this gives rise to the odor of rotten eggs and contributes to the odor of flatulence.

As organic matter decays under low-oxygen (or hypoxic) conditions (such as in swamps, eutrophic lakes or dead zones of oceans), sulfate-reducing bacteria will use the sulfates present in the water to oxidize the organic matter, producing hydrogen sulfide as waste. Some of the hydrogen sulfide will react with metal ions in the water to produce metal sulfides, which are not water-soluble. These metal sulfides, such as ferrous sulfide FeS, are often black or brown, leading to the dark color of sludge.

Several groups of bacteria can use hydrogen sulfide as fuel, oxidizing it to elemental sulfur or to sulfate by using dissolved oxygen, metal oxides (e.g., iron oxyhydroxides and manganese oxides), or nitrate as electron acceptors.[101]

The purple sulfur bacteria and the green sulfur bacteria use hydrogen sulfide as an electron donor in photosynthesis, thereby producing elemental sulfur. This mode of photosynthesis is older than the mode of cyanobacteria, algae, and plants, which uses water as electron donor and liberates oxygen.

The biochemistry of hydrogen sulfide is a key part of the chemistry of the iron-sulfur world. In this model of the origin of life on Earth, geologically produced hydrogen sulfide is postulated as an electron donor driving the reduction of carbon dioxide.[102]

Animals[edit]

Hydrogen sulfide is lethal to most animals, but a few highly specialized species (extremophiles) do thrive in habitats that are rich in this compound.[103]

In the deep sea, hydrothermal vents and cold seeps with high levels of hydrogen sulfide are home to a number of extremely specialized lifeforms, ranging from bacteria to fish.[which?][104] Because of the absence of sunlight at these depths, these ecosystems rely on chemosynthesis rather than photosynthesis.[105]

Freshwater springs rich in hydrogen sulfide are mainly home to invertebrates, but also include a small number of fish: Cyprinodon bobmilleri (a pupfish from Mexico), Limia sulphurophila (a poeciliid from the Dominican Republic), Gambusia eurystoma (a poeciliid from Mexico), and a few Poecilia (poeciliids from Mexico).[103][106] Invertebrates and microorganisms in some cave systems, such as Movile Cave, are adapted to high levels of hydrogen sulfide.[107]

Interstellar and planetary occurrence[edit]

Hydrogen sulfide has often been detected in the interstellar medium.[108] It also occurs in the clouds of planets in our solar system.[109][110]

Mass extinctions[edit]

A hydrogen sulfide bloom (green) stretching for about 150km along the coast of Namibia. As oxygen-poor water reaches the coast, bacteria in the organic-matter rich sediment produce hydrogen sulfide which is toxic to fish.

Hydrogen sulfide has been implicated in several mass extinctions that have occurred in the Earth’s past. In particular, a buildup of hydrogen sulfide in the atmosphere may have caused, or at least contributed to, the Permian-Triassic extinction event 252 million years ago.[111]

Organic residues from these extinction boundaries indicate that the oceans were anoxic (oxygen-depleted) and had species of shallow plankton that metabolized H
2
S
. The formation of H
2
S
may have been initiated by massive volcanic eruptions, which emitted carbon dioxide and methane into the atmosphere, which warmed the oceans, lowering their capacity to absorb oxygen that would otherwise oxidize H
2
S
. The increased levels of hydrogen sulfide could have killed oxygen-generating plants as well as depleted the ozone layer, causing further stress. Small H
2
S
blooms have been detected in modern times in the Dead Sea and in the Atlantic ocean off the coast of Namibia.[111]

See also[edit]

  • Hydrogen chalcogenide
  • Hydrogen sulfide chemosynthesis
  • Sewer gas
  • Targeted temperature management, also known as induced hypothermia – Medical procedure
  • Marsh gas

References[edit]

  1. ^ «Hydrogen Sulfide — PubChem Public Chemical Database». The PubChem Project. USA: National Center for Biotechnology Information.
  2. ^ a b Patnaik, Pradyot (2002). Handbook of Inorganic Chemicals. McGraw-Hill. ISBN 978-0-07-049439-8.
  3. ^ a b William M. Haynes (2016). CRC Handbook of Chemistry and Physics (97th ed.). Boca Raton: CRC Press. pp. 4–87. ISBN 978-1-4987-5429-3.
  4. ^ «Hydrogen sulfide». pubchem.ncbi.nlm.nih.gov.
  5. ^ Perrin, D.D. (1982). Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution (2nd ed.). Oxford: Pergamon Press.
  6. ^ Bruckenstein, S.; Kolthoff, I.M., in Kolthoff, I.M.; Elving, P.J. Treatise on Analytical Chemistry, Vol. 1, pt. 1; Wiley, NY, 1959, pp. 432–433.
  7. ^ a b Zumdahl, Steven S. (2009). Chemical Principles (6th ed.). Houghton Mifflin Company. p. A23. ISBN 978-0-618-94690-7.
  8. ^ a b c NIOSH Pocket Guide to Chemical Hazards. «#0337». National Institute for Occupational Safety and Health (NIOSH).
  9. ^ a b «Hydrogen sulfide». Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  10. ^ «Hydrogen sulfide». npi.gov.au.
  11. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  12. ^ Shackelford, R. E.; Li, Y.; Ghali, G. E.; Kevil, C. G. (2021). «Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation». Antioxidants. 10 (11): 1820. doi:10.3390/antiox10111820. PMC 8614844. PMID 34829691.
  13. ^ Reiffenstein, R. J.; Hulbert, W. C.; Roth, S. H. (1992). «Toxicology of Hydrogen Sulfide». Annual Review of Pharmacology and Toxicology. 32: 109–134. doi:10.1146/annurev.pa.32.040192.000545. PMID 1605565.
  14. ^ Bos, E. M; Van Goor, H; Joles, J. A; Whiteman, M; Leuvenink, H. G (2015). «Hydrogen sulfide: Physiological properties and therapeutic potential in ischaemia». British Journal of Pharmacology. 172 (6): 1479–1493. doi:10.1111/bph.12869. PMC 4369258. PMID 25091411.
  15. ^ May, P.M.; Batka, D.; Hefter, G.; Könignberger, E.; Rowland, D. (2018). «Goodbye to S2-«. Chem. Comm. 54 (16): 1980–1983. doi:10.1039/c8cc00187a. PMID 29404555.
  16. ^ JCE staff (March 2000). «Silver to Black — and Back». Journal of Chemical Education. 77 (3): 328A. Bibcode:2000JChEd..77R.328J. doi:10.1021/ed077p328a. ISSN 0021-9584.
  17. ^ Drozdov, A.; Eremets, M. I.; Troyan, I. A. (2014). «Conventional superconductivity at 190 K at high pressures». arXiv:1412.0460 [cond-mat.supr-con].
  18. ^ Cartlidge, Edwin (August 2015). «Superconductivity record sparks wave of follow-up physics». Nature. 524 (7565): 277. Bibcode:2015Natur.524..277C. doi:10.1038/nature.2015.18191. PMID 26289188.
  19. ^ Faraji, F. (1998). «The direct conversion of hydrogen sulfide to hydrogen and sulfur». International Journal of Hydrogen Energy. 23 (6): 451–456. doi:10.1016/S0360-3199(97)00099-2.
  20. ^ a b c Pouliquen, Francois; Blanc, Claude; Arretz, Emmanuel; Labat, Ives; Tournier-Lasserve, Jacques; Ladousse, Alain; Nougayrede, Jean; Savin, Gérard; Ivaldi, Raoul; Nicolas, Monique; Fialaire, Jean; Millischer, René; Azema, Charles; Espagno, Lucien; Hemmer, Henri; Perrot, Jacques (2000). «Hydrogen Sulfide». Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a13_467. ISBN 3527306730.
  21. ^ McPherson, William (1913). Laboratory manual. Boston: Ginn and Company. p. 445.
  22. ^ «Why Does My Water Smell Like Rotten Eggs? Hydrogen Sulfide and Sulfur Bacteria in Well Water». Minnesota Department of Health. Minnesota Department of Health. Archived from the original on 11 March 2015. Retrieved 1 December 2014.
  23. ^ a b c d e Hancock, John T. (2017). Cell signalling (Fourth ed.). Oxford, United Kingdom. ISBN 9780199658480. OCLC 947925636.
  24. ^ a b Huang, Caleb Weihao; Moore, Philip Keith (2015), «H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects», Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide, Springer International Publishing, vol. 230, pp. 3–25, doi:10.1007/978-3-319-18144-8_1, ISBN 9783319181431, PMID 26162827
  25. ^ a b c d Kabil, Omer; Banerjee, Ruma (10 February 2014). «Enzymology of H 2 S Biogenesis, Decay and Signaling». Antioxidants & Redox Signaling. 20 (5): 770–782. doi:10.1089/ars.2013.5339. PMC 3910450. PMID 23600844.
  26. ^ a b c Kabil, Omer; Vitvitsky, Victor; Xie, Peter; Banerjee, Ruma (15 July 2011). «The Quantitative Significance of the Transsulfuration Enzymes for H 2 S Production in Murine Tissues». Antioxidants & Redox Signaling. 15 (2): 363–372. doi:10.1089/ars.2010.3781. PMC 3118817. PMID 21254839.
  27. ^ Wallace, John L.; Wang, Rui (May 2015). «Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter». Nature Reviews Drug Discovery. 14 (5): 329–345. doi:10.1038/nrd4433. PMID 25849904. S2CID 5361233.
  28. ^ Powell, Chadwick R.; Dillon, Kearsley M.; Matson, John B. (2018). «A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications». Biochemical Pharmacology. 149: 110–123. doi:10.1016/j.bcp.2017.11.014. ISSN 0006-2952. PMC 5866188. PMID 29175421.
  29. ^ Szabo, Csaba (March 2018). «A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator». Biochemical Pharmacology. 149: 5–19. doi:10.1016/j.bcp.2017.09.010. PMC 5862769. PMID 28947277.
  30. ^ Szabo, Csaba; Papapetropoulos, Andreas (October 2017). «International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2 S Levels: H 2 S Donors and H 2 S Biosynthesis Inhibitors». Pharmacological Reviews. 69 (4): 497–564. doi:10.1124/pr.117.014050. PMC 5629631. PMID 28978633.
  31. ^ Wang, Rui (April 2012). «Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed». Physiological Reviews. 92 (2): 791–896. doi:10.1152/physrev.00017.2011. PMID 22535897. S2CID 21932297.
  32. ^ Li, Zhen; Polhemus, David J.; Lefer, David J. (17 August 2018). «Evolution of Hydrogen Sulfide Therapeutics to Treat Cardiovascular Disease». Circulation Research. 123 (5): 590–600. doi:10.1161/CIRCRESAHA.118.311134. PMID 30355137. S2CID 53027283.
  33. ^ Kimura, Hideo (February 2020). «Signalling by hydrogen sulfide and polysulfides via protein S ‐sulfuration». British Journal of Pharmacology. 177 (4): 720–733. doi:10.1111/bph.14579. PMC 7024735. PMID 30657595.
  34. ^ Khazaei, Ardeshir; Kazem-Rostami, Masoud; Moosavi-Zare, Ahmad; Bayat, Mohammad; Saednia, Shahnaz (August 2012). «Novel One-Pot Synthesis of Thiophenols from Related Triazenes under Mild Conditions». Synlett. 23 (13): 1893–1896. doi:10.1055/s-0032-1316557.
  35. ^ Stampler, Laura. «A Stinky Compound May Protect Against Cell Damage, Study Finds». Time. Time. Retrieved 1 December 2014.
  36. ^ «Coin Toning 101: The Differences between Naturally and Artificially Toned Coins». Original Skin Coins. Retrieved 2021-10-15.
  37. ^ Aslami, H; Schultz, MJ; Juffermans, NP (2009). «Potential applications of hydrogen sulfide-induced suspended animation». Current Medicinal Chemistry. 16 (10): 1295–303. doi:10.2174/092986709787846631. PMID 19355886.
  38. ^ «Hydrogen Sulphide In Well Water». Retrieved 4 September 2018.
  39. ^ Agency for Toxic Substances and Disease Registry (July 2006). «Toxicological Profile For Hydrogen Sulfide» (PDF). p. 154. Retrieved 2012-06-20.
  40. ^ OnePetro. «Home — OnePetro». onepetro.org. Archived from the original on 2013-10-14. Retrieved 2013-08-14.
  41. ^ «Hydrogen Sulfide» (PDF). Agency for Toxic Substances and Disease Registry. December 2016.
  42. ^ Jang, Yong-Chul; Townsend, Timothy (2001). «Sulfate leaching from recovered construction and demolition debris fines». Advances in Environmental Research. 5 (3): 203–217. doi:10.1016/S1093-0191(00)00056-3.
  43. ^ Cavinato, C. (2013) [2013]. «Anaerobic digestion fundamentals» (PDF).
  44. ^ Pokorna, Dana; Zabranska, Jana (November 2015). «Sulfur-oxidizing bacteria in environmental technology». Biotechnology Advances. 33 (6): 1246–1259. doi:10.1016/j.biotechadv.2015.02.007. PMID 25701621.
  45. ^ Lemley, Ann T.; Schwartz, John J.; Wagenet, Linda P. «Hydrogen Sulfide in Household Drinking Water» (PDF). Cornell University. Archived from the original (PDF) on 19 August 2019.
  46. ^ «Hydrogen Sulfide (Rotten Egg Odor) in Pennsylvania Groundwater Wells». Penn State. Penn State College of Agricultural Sciences. Archived from the original on 4 January 2015. Retrieved 1 December 2014.
  47. ^ McFarland, Mark L.; Provin, T. L. «Hydrogen Sulfide in Drinking Water Treatment Causes and Alternatives» (PDF). Texas A&M University. Retrieved 1 December 2014.
  48. ^ «Why Does My Water Smell Like Rotten Eggs?». Minnesota Department of Health. Retrieved 20 January 2020.
  49. ^ Contaminants, National Research Council (US) Committee on Emergency and Continuous Exposure Guidance Levels for Selected Submarine (2009). Hydrogen Sulfide. National Academies Press (US).
  50. ^ Iowa State University. «Hydrogen Sulfide Material Safety Data Sheet» (PDF). Department of Chemistry. Archived from the original (PDF) on 2009-03-27. Retrieved 2009-03-14.
  51. ^ a b c d e Lindenmann, J.; Matzi, V.; Neuboeck, N.; Ratzenhofer-Komenda, B.; Maier, A; Smolle-Juettner, F. M. (December 2010). «Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and hyperbaric oxygen». Diving and Hyperbaric Medicine. 40 (4): 213–217. PMID 23111938. Archived from the original on June 15, 2013. Retrieved 2013-06-07.{{cite journal}}: CS1 maint: unfit URL (link)
  52. ^ Harrison, J. Bower (1843-11-18). «Some Remarks on the Production of Sulphuretted Hydrogen Gas in the Alimentary Canal, and Its Effects on the System». Provincial Medical Journal and Retrospect of the Medical Sciences, BMJ. 7 (164): 127–129. JSTOR 25492480.
  53. ^ Ramasamy, S.; Singh, S.; Taniere, P.; Langman, M. J. S.; Eggo, M. C. (August 2006). «Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation». American Journal of Physiology. Gastrointestinal and Liver Physiology. 291 (2): G288–G296. doi:10.1152/ajpgi.00324.2005. PMID 16500920. S2CID 15443357.
  54. ^ Lewis, R.J. (1996). Sax’s Dangerous Properties of Industrial Materials (9th ed.). New York, NY: Van Nostrand Reinhold.[page needed]
  55. ^ Hemminki, K.; Niemi, M. L. (1982). «Community study of spontaneous abortions: relation to occupation and air pollution by sulfur dioxide, hydrogen sulfide, and carbon disulfide». Int. Arch. Occup. Environ. Health. 51 (1): 55–63. doi:10.1007/bf00378410. PMID 7152702. S2CID 2768183.
  56. ^ «The chemical suicide phenomenon». Firerescue1.com. 2011-02-07. Retrieved 2013-12-19.
  57. ^ «Fatal chemical inhalations in the workplace up in 2017». U.S. Bureau of Labor Statistics. Retrieved 15 April 2022.
  58. ^ «Hydrogen Sulfide — Hazards | Occupational Safety and Health Administration». www.osha.gov. Retrieved 2021-09-27.
  59. ^ Iowa State University Extension (May 2004). «The Science of Smell Part 1: Odor perception and physiological response» (PDF). PM 1963a. Retrieved 2012-06-20.
  60. ^ USEPA; Health and Environmental Effects Profile for Hydrogen Sulfide p.118-8 (1980) ECAO-CIN-026A
  61. ^ Zenz, C.; Dickerson, O.B.; Horvath, E.P. (1994). Occupational Medicine (3rd ed.). St. Louis, MO. p. 886.
  62. ^ Gerasimon, Gregg; Bennett, Steven; Musser, Jeffrey; Rinard, John (January 2007). «Acute hydrogen sulfide poisoning in a dairy farmer». Clinical Toxicology. 45 (4): 420–423. doi:10.1080/15563650601118010. PMID 17486486. S2CID 10952243.
  63. ^ Belley, R.; Bernard, N.; Côté, M; Paquet, F.; Poitras, J. (July 2005). «Hyperbaric oxygen therapy in the management of two cases of hydrogen sulfide toxicity from liquid manure». CJEM. 7 (4): 257–261. doi:10.1017/s1481803500014408. PMID 17355683.
  64. ^ Hsu, P; Li, H-W; Lin, Y-T (1987). «Acute hydrogen sulfide poisoning treated with hyperbaric oxygen». Journal of Hyperbaric Medicine. 2 (4): 215–221. Archived from the original on December 7, 2008.{{cite journal}}: CS1 maint: unfit URL (link)
  65. ^ Foulkes, Charles Howard (2001) [First published Blackwood & Sons, 1934]. «Gas!» The story of the special brigade. Published by Naval & Military P. p. 105. ISBN 978-1-84342-088-0.
  66. ^ Swindle, Howard (June 1975). «The Deadly Smell of Success». Texas Monthly. pp. 64–68, 96–97. Retrieved December 14, 2010.
  67. ^ «LA County Department of Public Health» (PDF). County of Los Angeles: Department of Public Health. Archived from the original (PDF) on 2017-02-18. Retrieved 2017-06-11.
  68. ^ Becerra, Hector; Pierson, David (2005-09-03). «Gas Kills 3 Crewmen on Ship». Los Angeles Times.
  69. ^ Ferguson, Dan (September 16, 2011). «Details of Langley mushroom farm tragedy finally disclosed». Abbotsford News. Retrieved April 13, 2020.
  70. ^ Theodore, Terri (May 8, 2012). «Dozens could have died because of owner’s negligence in B.C. mushroom farm incident: investigator». The Canadian Press. The Globe and Mail. Retrieved April 13, 2020.
  71. ^ «Do not breathe: Dangerous, toxic gas found at Siam Square One». Coconuts Bangkok. Coconuts Media. 2014-10-21. Retrieved 20 November 2014.
  72. ^ «Russian capital Moscow shrouded in noxious gas». BBC News. British Broadcasting Corporation. 2014-11-10. Retrieved 1 December 2014.
  73. ^ «Sources: Mom, daughter found dead in Porsche likely died from carbon monoxide». WFTV. 7 June 2016. Both had red skin and rash-like symptoms, and had vomited, sources said.
  74. ^ Salinger, Tobias (4 October 2016). «Woman, girl died after inhaling hydrogen sulfide, coroners say». New York Daily News. Retrieved 28 April 2017.
  75. ^ Lotan, Gal Tziperman (4 October 2016). «Hydrogen sulfide inhalation killed mother, toddler found on Florida’s Turnpike in June». Orlando Sentinel. Retrieved 28 April 2017.
  76. ^ Kealing, Bob. «Medical examiner confirms suspected cause of deaths in Turnpike mystery». Archived from the original on 2016-10-05. Retrieved 2016-10-04.
  77. ^ Bell, Lisa (19 March 2017). «Hidden car dangers you should be aware of». ClickOrlando.com. Produced by Donovan Myrie. WKMG-TV. Retrieved 28 April 2017. Porsche Cayennes, along with a few other vehicles, have their batteries in the passenger compartment.
  78. ^ «One by one, 3 utility workers descended into a manhole. One by one, they died». www.washingtonpost.com. Archived from the original on 2017-01-18.
  79. ^ Goodhue, David (17 January 2017). «Firefighter who tried to save 3 men in a manhole is fighting for his life». Miami Herald. Retrieved 28 April 2017.
  80. ^ «Key Largo firefighter takes first steps since nearly getting killed». WSVN. 18 January 2017.
  81. ^ «Firefighter who survived Key Largo rescue attempt that killed 3 leaves hospital». Sun Sentinel. The Associated Press. 26 January 2017.
  82. ^ Rabin, Charles; Goodhue, David (16 January 2017). «Three Keys utility workers die in wastewater trench». Miami Herald. Retrieved 28 April 2017.
  83. ^ a b Clantar, Claire (25 Sep 2020). «Former Victorian paper mill fined $1 million after deaths of two workers». 9News. Retrieved 30 May 2021.
  84. ^ «Two fatalities in suspected hydrogen sulfide gas leak at paper mill». Australian Institute of Health & Safety. 31 May 2018. Retrieved 30 May 2021.
  85. ^ Brescia, Paul (28 May 2018). «SafeWork investigating Norske Skog». Sprinter. Retrieved 30 May 2021.
  86. ^ SafeWork NSW v Norske Skog Paper Mills (Australia) Limited, NSWDC 559 (District Court of New South Wales 25 September 2020).
  87. ^ SafeWork NSW (29 Mar 2021). Incident Animation – Hazardous Gas (Motion picture). Archived from the original on 2021-10-30. Retrieved 30 May 2021.
  88. ^ «Feds Probe Fatal 2019 Hydrogen Sulfide Release in Texas». Industrial Fire World. 27 July 2020. Retrieved 29 May 2021.
  89. ^ «Aghorn Operating Waterflood Station Hydrogen Sulfide Release». U.S. Chemical Safety and Hazardous Investigation Board. 21 May 2021. Retrieved 29 May 2021.
  90. ^ «Dangerous Japanese ‘Detergent Suicide’ Technique Creeps Into U.S». Wired. March 13, 2009.
  91. ^ Namiki, Noriko (23 May 2008). «Terrible Twist in Japan Suicide Spates». ABC News.
  92. ^ http://info.publicintelligence.net/LARTTAChydrogensulfide.pdf[full citation needed]
  93. ^ http://info.publicintelligence.net/MAchemicalsuicide.pdf[full citation needed]
  94. ^ http://info.publicintelligence.net/illinoisH2Ssuicide.pdf[full citation needed]
  95. ^ http://info.publicintelligence.net/NYhydrogensulfide.pdf[full citation needed]
  96. ^ http://info.publicintelligence.net/KCTEWhydrogensulfide.pdf[full citation needed]
  97. ^ «Chemical Suicide on Campus» (PDF). www.maryland.gov. Archived from the original on January 3, 2012.
  98. ^ Scoville, Dean (April 2011). «Chemical Suicides». POLICE Magazine. Retrieved 2013-12-19.
  99. ^ Casey, Connor (26 May 2020). «Hana Kimura Cause Of Death Revealed». ComicBook.com. More details about her death have since come to light, as Dave Meltzer provided details about what happened on the night of her death during a recent Wrestling Observer Radio. According to Meltzer, Kimura died after ingesting hydrogen sulfide. He explained that concerns about her health first popped up when she posted a tweet early Saturday morning indicating that she was going to cause self-harm.
  100. ^ Barton, Larry L.; Fardeau, Marie-Laure; Fauque, Guy D. (2014). «Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation». The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. Vol. 14. pp. 237–277. doi:10.1007/978-94-017-9269-1_10. ISBN 978-94-017-9268-4. PMID 25416397.
  101. ^ Jørgensen, B. B.; Nelson, D. C. (2004). «Sulfide oxidation in marine sediments: Geochemistry meets microbiology». In Amend, J. P.; Edwards, K. J.; Lyons, T. W. (eds.). Sulfur Biogeochemistry – Past and Present. Geological Society of America. pp. 36–81.
  102. ^ Wächtershäuser, G (December 1988). «Before enzymes and templates: theory of surface metabolism». Microbiological Reviews. 52 (4): 452–484. doi:10.1128/MMBR.52.4.452-484.1988. PMC 373159. PMID 3070320.
  103. ^ a b Tobler, M; Riesch, R.; García de León, F. J.; Schlupp, I.; Plath, M. (2008). «Two endemic and endangered fishes, Poecilia sulphuraria (Álvarez, 1948) and Gambusia eurystoma Miller, 1975 (Poeciliidae, Teleostei) as only survivors in a small sulphidic habitat». Journal of Fish Biology. 72 (3): 523–533. doi:10.1111/j.1095-8649.2007.01716.x. S2CID 27303725.
  104. ^ Bernardino, Angelo F.; Levin, Lisa A.; Thurber, Andrew R.; Smith, Craig R. (2012). «Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls». PLOS ONE. 7 (4): e33515. Bibcode:2012PLoSO…733515B. doi:10.1371/journal.pone.0033515. PMC 3319539. PMID 22496753.
  105. ^ «Hydrothermal Vents». Marine Society of Australia. Retrieved 28 December 2014.
  106. ^ Palacios, Maura; Arias-Rodríguez, Lenín; Plath, Martin; Eifert, Constanze; Lerp, Hannes; Lamboj, Anton; Voelker, Gary; Tobler, Michael (2013). «The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid Fishes in Sulfide Springs». PLOS ONE. 8 (8): e71069. Bibcode:2013PLoSO…871069P. doi:10.1371/journal.pone.0071069. PMC 3745397. PMID 23976979.
  107. ^ Kumaresan, Deepak; Wischer, Daniela; Stephenson, Jason; Hillebrand-Voiculescu, Alexandra; Murrell, J. Colin (16 March 2014). «Microbiology of Movile Cave—A Chemolithoautotrophic Ecosystem». Geomicrobiology Journal. 31 (3): 186–193. doi:10.1080/01490451.2013.839764. S2CID 84472119.
  108. ^ Despois, D. (1997). «Radio Line Observations Of Molecular And Isotopic Species In Comet C/1995 O1 (Hale-Bopp)». Earth, Moon, and Planets. 79 (1/3): 103–124. Bibcode:1997EM&P…79..103D. doi:10.1023/A:1006229131864. S2CID 118540103.
  109. ^ Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno (May 2018). «Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere». Nature Astronomy. 2 (5): 420–427. Bibcode:2018NatAs…2..420I. doi:10.1038/s41550-018-0432-1. hdl:2381/42547. S2CID 102775371.
  110. ^ Lissauer, Jack J.; de Pater, Imke (2019). Fundamental Planetary Sciences : physics, chemistry, and habitability. New York, NY, USA: Cambridge University Press. pp. 149–152. ISBN 9781108411981.[page needed]
  111. ^ a b «Impact from the Deep». Scientific American. October 2006.

Additional resources[edit]

  • Committee on Medical and Biological Effects of Environmental Pollutants (1979). Hydrogen Sulfide. Baltimore: University Park Press. ISBN 978-0-8391-0127-7.
  • Siefers, Andrea (2010). A novel and cost-effective hydrogen sulfide removal technology using tire derived rubber particles (MS thesis). Iowa State University. Retrieved 8 February 2013.

External links[edit]

  • International Chemical Safety Card 0165
  • Concise International Chemical Assessment Document 53
  • National Pollutant Inventory — Hydrogen sulfide fact sheet
  • NIOSH Pocket Guide to Chemical Hazards
  • NACE (National Association of Corrosion Epal)

Сероводородная кислота

Сероводородная кислота

        слабая, двухосновная кислота, раствор сернистого водорода (См. Сернистый водород) H2S в воде. С. к. неустойчива: H2S медленно окисляется кислородом воздуха с выделением серы. Образует соли 2 типов — Сульфиды и гидросульфиды.

Большая советская энциклопедия. — М.: Советская энциклопедия.
1969—1978.

Смотреть что такое «Сероводородная кислота» в других словарях:

  • Сероводородная кислота — …   Википедия

  • Кислота — У этого термина существуют и другие значения, см. Кислота (значения) …   Википедия

  • Сернистый водород —         сероводород, H2S, простейшее соединение серы с водородом. Бесцветный газ, при большом разбавлении пахнет тухлыми яйцами.          Впервые подробно изучен К. Шееле в 1777. Содержится в вулканических газах (См. Вулканические газы), в… …   Большая советская энциклопедия

  • Список кислот и ангидридов — …   Википедия

  • Кислоты и ангидриды —       Служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не устанавл …   Википедия

  • Кислоты — У этого термина существуют и другие значения: Кислота (наркотик) Кислоты  один из основных классов химических соединений. Они получили своё название из за кислого вкуса большинства кислот, таких, как азотная или серная. По определению кислота … …   Википедия

  • Кисль — У этого термина существуют и другие значения: Кислота (наркотик) Кислоты  один из основных классов химических соединений. Они получили своё название из за кислого вкуса большинства кислот, таких, как азотная или серная. По определению кислота … …   Википедия

  • Кислотный остаток — Кислотный остаток  это анион, который является второй частью формулы сложного химического соединения. Они способны замещать определенное количество атомов или групп атомов. Ни у одного кислотного остатка нет свободных реакциоспособных… …   Википедия

  • Сероводород — Сероводород …   Википедия

  • Соединения серы — 1. Сульфид водорода (H2S). Очень токсичный бесцветный газ со зловонным запахом тухлых яиц. Хранится под давлением в стальных баллонах или в водном растворе (сероводородная кислота). Применяется в анализе, для очистки серной или соляной кислот,… …   Официальная терминология

Справочник содержит названия веществ и описания химических формул (в т.ч. структурные формулы и скелетные формулы).


Введите часть названия или формулу для поиска:

Общее число найденных записей: 1.
Показано записей: 1.

Сероводород

Брутто-формула:
H2S

CAS# 7783-06-4

Названия

Русский:

Сероводород
дигидросульфид
сернистый водород
сероводородная кислота
сульфид водорода(IUPAC)

English:

Dihydrogen monosulfide
Dihydrogen sulfide
Hydrogen sulfide
Hydrosulfuric acid
Sewer gas
Stink damp
Sulfane
Sulfur hydride
Sulfurated hydrogen
Sulfureted hydrogen
Sulfuretted hydrogen

Варианты формулы:

Реакции, в которых участвует Сероводород

  • 2H2S + 3O2 -> 2SO2 + 2H2O

  • 3SO3 + H2S -> 4SO2 + H2O

  • 2RbOH + H2S -> Rb2S + 2H2O

  • H2S + I2 -> S + 2HI

  • 8HI + H2SO4 -> 4I2 + H2S + 4H2O

Сероводород

Получение
сероводорода

  • Получение из простых веществ:

S + Н2 = H2S

  • Взаимодействие минеральных кислот и сульфидов металлов, расположенных в ряду напряжений левее железа:

FeS + 2HCI = H2S↑ + FeCl2

  • Действие концентрированной H2SO4 (без избытка) на щелочные и щелочно-земельные металлы:

5H2SO4(конц.) + 8Na = H2S↑ + 4Na2SO4 + 4H2О

  • Гидролиз некоторых сульфидов:

AI2S3 + 6Н2О = 3H2S↑ + 2Аl(ОН)3

  • Нагревание парафина с серой:

C40H82
+ 41S = 41Н2S+40С

Видео Получение и обнаружение сероводорода

Физические
свойства и строение сероводорода

Сероводород H2S – это бинарное летучее водородное соединение соединение с серой. H2S
— бесцветный ядовитый газ, с неприятным удушливым
запахом тухлых яиц. При концентрации > 3 г/м3 вызывает смертельное отравление.

Сероводород тяжелее воздуха и легко конденсируется в бесцветную жидкость. Растворимость в воде H2S при обычной температуре составляет 2,5.

В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода представляет собой сцепленные между собой атомы H-S-H с валентным углом 92,1о.

cтроение сероводорода

Качественная реакция для обнаружения сероводорода

Для
обнаружения анионов S2- и сероводорода используют
реакцию газообразного H2S с Pb(NO3)2:

H2S + Pb(NO3)2 = 2HNO3 + PbS↓ черный
осадок.

Влажная бумага, смоченная в растворе Pb(NO3)2 чернеет в присутствии H2S из-за получения черного осадка PbS.

Химические свойства серы

H2S является сильным восстановителем

При взаимодействии H2S с окислителями образуются различные вещества — S, SО2, H2SO4

  • Окисление кислородом воздуха:

2H2S + 3О2(избыток) = 2SО2↑ + 2Н2О

2H2S + О2(недостаток) = 2S↓ + 2Н2О

  • Окисление галогенами:

H2S + Br2 = S↓ + 2НВr

H2S + Cl2 → 2HCl + S↓

H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl

  • Взаимодействие с кислотами-окислителями:

3H2S + 8HNО3(разб.) = 3H2SO4 + 8NO + 4Н2О

H2S + 8HNО3(конц.) = H2SO4 + 8NО2↑ + 4Н2О

H2S + H2SO4(конц.) = S↓ + SО2↑ + 2Н2О

  • Взаимодействие со сложными окислителями:

5H2S + 2KMnO4 + 3H2SO4 = 5S↓ + 2MnSO4 + K2SO4 + 8Н2О

5H2S + 6KMnO4 + 9H2SO4 = 5SО2 + 6MnSO4 + 3K2SO4 + 14Н2О

H2S + 2FeCl3 = S↓ + 2FeCl2 + 2HCl

2H2S + SO2 = 2H2O + 3S

3H2S + K2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 7H2O

  • Сероводородная кислота H2S двухосновная кислота и диссоциирует по двум ступеням:

1-я ступень:
H2S → Н+ + HS

2-я ступень:
HS → Н+ + S2-

H2S очень слабая
кислота
, несмотря на это имеет характерные для кислот химические свойства. Взаимодействует:

  • с активными металлами

H2S + Mg = Н2↑ + MgS

  • с малоактивными металлами (Аg, Си, Нg) при совместном присутствии окислителей:

2H2S + 4Аg + O2 = 2Ag2S↓ + 2Н2O

  • с основными оксидами:

H2S + ВаО = BaS + Н2O

  • со щелочами:

H2S + NaOH(недостаток) = NaHS + Н2O

H2S + 2NaOH(избыток)  → Na2S + 2H2O

  • с аммиаком:

H2S + 2NH3(избыток) = (NH4)2S

  • с некоторыми солями сильных кислот, если образующийся сульфид металла нерастворим в воде и в сильных кислотах:

CuSO4 + H2S = CuS↓ + H2SO4

H2S + Pb(NO3)2 → PbS↓ + 2HNO3

Реакция
с нитратом свинца в растворе – это качественная реакция
на сероводород и сульфид-ионы.

Видео Взаимодействие сероводорода с нитратом свинца

Сульфиды

Получение сульфидов

  • Непосредственно из простых веществ:

S + Fe FeS

S + Mg → MgS

S + Ca → CaS

  • Взаимодействие H2S с растворами щелочей:

H2S + 2NaOH = 2H2O + Na2S

H2S + NaOH = H2O + NaHS

  • Взаимодействие H2S или (NH4)2S с растворами солей:

H2S + CuSO4 = CuS↓ + H2SO4

H2S + 2AgNO3 = Ag2S↓ + 2HNO3

Pb(NO3)2 + Н2S →  PbS↓ + 2НNO3

ZnSO4 + Na2S → ZnS↓ + Na2SO4

  • Восстановление сульфатов при прокаливании с углем:

Na2SO4 + 4С = Na2S + 4СО

Физические свойства сульфидов

Сульфиды – это бинарные соединения серы с элементами с меньшей электроотрицательностью, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).

По растворимости
в воде
и кислотах сульфиды классифицируют
на:

  • растворимые в воде —  сульфиды щелочных металлов и аммония;
  • нерастворимые в воде, но растворимые в минеральных кислотах — сульфиды металлов, расположенных до железа в ряду активности (белые и цветные сульфиды ZnS, MnS, FeS, CdS);
  • нерастворимые ни в воде, ни в минеральных кислотах — черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)
  • гидролизуемые водой — сульфиды трехвалентных металлов (алюминия и хрома (III))

По цвету сульфиды можно разделить на:

  • Чёрные – HgS, Ag2S, PbS, CuS, FeS,
    NiS;
  • Коричневые – SnS, Bi2S3;
  • Оранжевые – Sb2S3, Sb2S5;
  • Жёлтые – As2S3, As2S5,
    SnS2, CdS;
  • Розовые — MnS
  • Белые – ZnS, Al2S3, BaS,
    CaS;

Химические свойства сульфидов

Обратимый гидролиз сульфидов

  • Хорошо растворимыми в воде являются сульфиды щелочных металлов и аммония, но в водных растворах они в значительной степени подвергаются гидролизу. Реакция среды — сильнощелочная:

K2S + H2O ⇄ KHS + KOH

S2- + H2O → HS + ОН

  • Сульфиды щелочно-земельных металлов и Mg, при взаимодействии с водой подвергаются полному гидролизу и переходят в растворимые кислые соли — гидросульфиды:

2CaS + 2НОН
= Ca(HS)2 + Са(ОН)2

При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:

HS + H2O → H2S↑ + ОН

Необратимый
гидролиз сульфидов

  • Сульфиды некоторых металлов (Cr2S3, Fe2S3, Al2S3) подвергаются необратимому гидролизу, полностью разлагаясь в водных растворах:

Al2S3 + 6H2O = 3H2S↑ + 2AI(OH)3↓

Нерастворимые
сульфиды
гидролизу не подвергаются

NiS + HСl ≠

  • Некоторые из сульфидов растворяются в сильных кислотах:

FeS + 2HCI =
FeCl2 + H2S↑

ZnS + 2HCI =
ZnCl2 + H2S↑

CuS + 8HNO3 → CuSO4 + 8NO2 + 4H2O

CuS + 4H2SO4(конц. гор.) → CuSO4 + 4SO2 + 4H2O

MnS + 3HNO3 = MnSO4 + 8NO2 + 4H2O

  • Сульфиды Ag2S, HgS, Hg2S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.
  • Сульфиды обладают восстановительными свойствами и вступают в реакции с окислителями:

PbS + 4H2O2 → PbSO4 + 4H2O

СuS + Cl2 → CuCl2 + S

  • Окислительный обжиг сульфидов является
    важной стадией переработки сульфидного сырья в различных производствах

2ZnS + 3O2 = 2ZnO + 2SO2

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

2CuS + 3O2 → 2CuO + 2SO2

2Cr2S3 + 9O2 → 2Cr2O3 + 6SO2

Взаимодействия
сульфидов с растворимыми солями свинца, серебра, меди являются качественными на ион S2−:

Na2S + Pb(NO3)2 → PbS↓ + 2NaNO3

Na2S + 2AgNO3 → Ag2S↓ + 2NaNO3

Na2S + Cu(NO3)2 → CuS↓ + 2NaNO3

Оксид серы
(IV), диоксид серы, сернистый газ, сернистый ангидрид (SO2)

Способы получения сернистого газа

  • Окисление серы, сероводорода и сульфидов кислородом воздуха:

S + O2 → SO2

2H2S + 3O2 → 2SO2 + 2H2O

2CuS + 3O2 → 2SO2 + 2CuO

  • Действие высокой температуры на сульфиты (термическое разложение):

CaSO3 = СаО + SO2

  • Действие сильных кислот на сульфиты:

Na2SO3 + 2HCl = SO2 + Н2O + 2NaCI

  • Взаимодействие концентрированной H2SO4 с восстановителями, например с неактивными металлами:

2H2SO4 + Сu = SO2↑ + CuSO4 + 2Н2O

Физические
свойства сернистого газа

При обычной температуре SO2 — газ с резким запахом без цвета. В воде растворим хорошо — при 20°С в 1 л воды растворяется 40 л SO2.

Химические свойства сернистого газа

SO2 – типичный кислотный оксид. За счет того, что сера находится в промежуточной степени окисления (+4) SO2 может проявлять свойства как окислителя так и восстановителя.

  • При растворении в воде SO2 частично соединяется с молекулами воды с образованием слабой сернистой кислоты.

SO2 + H2O ↔ H2SO3

  • Как
    кислотный оксид, SO2 вступает
    в реакции с щелочами и оксидами щелочных и щелочноземельных металлов:

SO2 + СаО = CaSO3

SO2 + Na2O → Na2SO3

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Н2O + Na2SO3

  • При взаимодействии с окислителями SO2 проявляет восстановительные свойства. При этом степень окисления серы повышается:

2SO2 + O2 ↔ 2SO3

SO2 + Br2 + 2H2O → H2SO4 + 2HBr

SO2 + 2HNO3 → H2SO4 + 2NO2

SO2 + O3 → SO3 + O2

SO2 + PbO2 → PbSO4

5SO2 + 2H2O + 2KMnO4 → 2H2SO4 + 2MnSO4 + K2SO4

Обесцвечивание раствора перманганата калия KMnO4  является качественной реакцией для обнаружения сернистого газа и сульфит-иона

  • SO2 проявляет окислительные свойства при взаимодействии с сильными восстановителями, восстанавливаясь чаще всего до свободной серы:

SO2 + 2Н2S → 3S↓ + 2H2O

SO2 + 2CO → S↓ +2СО2

SO2 + С → S↓ + СO2

Оксид серы (VI), триоксид серы, серный ангидрид (SO3)

Способы получения серного ангидрида

  • SO3 можно получить из SO2 путем каталитического окисления последнего кислородом:

2SO2 + O2 ↔ 2SO3

  • Окислением SO2 другими окислителями:

SO2 + O3 → SO3 + O2

SO2 + NO2 → SO3 + NO

  • Разложением сульфата железа (III):

Fe2(SO4)3 → Fe2O3 + 3SO3

Физические
свойства серного ангидрида

При обычных условиях SO3 представляет собой бесцветную жидкость с характерным резким
запахом. На воздухе SO3 «дымит» и сильно
поглощает влагу.

SO3 – тяжелее
воздуха, хорошо растворим в воде.

SO3 ядовит!

Химические свойства серного
ангидрида

Оксид серы (VI) – это кислотный оксид.

  • Хорошо поглощает влагу и реагирует с водой образуя серную кислоту:

SO3 + H2O → H2SO4

  • Как
    кислотный оксид, SO3 взаимодействует с щелочами и
    основными оксидами, образуются средние или кислые соли:

SO3 + 2NaOH(избыток) → Na2SO4 + H2O

SO3 + NaOH(избыток) → NaHSO4

SO3 + MgO → MgSO4 (при сплавлении):

SO3 + ZnO = ZnSO4

  • SO3 проявляет
    сильные окислительные свойства, так
    как сера в находится в максимальной степени окисления (+6).

Вступает в реакции с восстановителями:

SO3 + 2KI → I2 + K2SO3

3SO3 + H2S → 4SO2 + H2O

5SO3 + 2P → P2O5 + 5SO2

  • При растворении в концентрированной
    серной кислоте образует олеум (раствор
    SO3 в H2SO4).

Сернистая кислота (H2SO3)

Способы
получения сернистой кислоты

При растворении в воде SO2 образует слабую сернистую кислоту, которая сразу частично разлагается:

SO2 + H2O ↔ H2SO3

Физические
свойства сернистой кислоты

Сернистая кислота H2SO3 двухосновная кислородсодержащая кислота. При обычных условиях неустойчива.

Валентность серы
в сернистой кислоте равна IV, а степень окисления
+4.

строение сернистой кислоты

Химические свойства сернистой кислоты

Общие свойства
кислот

  • Сернистая кислота – слабая кислота, диссоциирует в две стадии. Образует два типа солей:
  • кислые – гидросульфиты

H2SO3 ↔ HSO3 + H+

  • средние – сульфиты

HSO3↔ SO32- + H+

  • Сернистая кислота самопроизвольно распадается на SO2 и H2O:

H2SO3 ↔ SO2 + H2O

Соли сернистой кислоты, сульфиты и гидросульфиты

Способы
получения сульфитов

Соли сернистой кислоты получаются при взаимодействии SO2 с щелочами и оксидами щелочных и щелочноземельных металлов:

SO2 + СаО = CaSO3

SO2 + Na2O → Na2SO3

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Н2O + Na2SO3

Физические
свойства сульфитов

Сульфиты
щелочных металлов и аммония растворимы в воде, сульфиты остальных металлов — нерастворимы
или не существуют.

Гидросульфиты
металлов хорошо растворимы в Н2O, а некоторые из
них, такие как Ca(HSO3)2 существуют
только в растворе.

Химические свойства сульфитов

Cернистая кислота – двухосновная, образует нормальные (средние) соли — сульфиты Mex(SO3)y и кислые соли — гидросульфиты Me(HSO3)x.

  • Водные растворы сульфитов подвергаются гидролизу. Реакция среды – щелочная (окрашивают лакмус в синий цвет):

SO3 + Н2O = HSO3 + ОН

Na2SO3 + Н2O = NaHSO3 + NaOH

Реакции, протекающие без изменения степени окисления:

  • Реакция с сильными кислотами:

Na2SO3 + 2HCl = 2NaCl +
SO2↑ + Н2O

NaHSO3 + HCl = NaCl + SO2↑ + Н2O

  • Термическое разложение сульфитов:

CaSO3 = СаО + SO2

  • Нормальные сульфиты в водных растворах, при избытке SO2, переходят в гидросульфиты:

CaSO3 + SO2 + Н2O = Ca(HSO3)2

  • Ионно-обменные реакции с другими солями, протекающие с образованием нерастворимых сульфитов:

Na2SO3 + ZnCl2 = ZnSO3↓ + 2NaCl

Окислительно-восстановительные реакции

Сульфиты, также как и SO2, могут быть как восстановителями, так и окислителями, т.к. атомы серы в анионах находятся в промежуточной степени окисления +4

  • Окисление водных растворов сульфитов, и гидросульфитов до сульфатов:

Na2SO3 + Вr2 + Н2O = Na2SO4 + 2НВr

5K2SO3 + 2КМnO4 + 3H2SO4 = 6K2SO4 + 2MnSO4 + 3Н2O

Na2SO3 + HNO3 = 2NaNO3 + SO2 + H2O

  • Твердые сульфиты при хранении на воздухе также медленно окисляются до сульфатов:

2Na2SO3 + O2 = 2Na2SO4

  • При нагревании сухих сульфитов с активными восстановителями (С, Mg, Al, Zn) сульфиты превращаются в сульфиды:

Na2SO3 + ЗС = Na2S + ЗСО

  • При нагревании сухих сульфитов до высоких температур сульфиты диспропорционируют, превращаются в смесь сульфатов и сульфидов:

4K2SO3 = 3K2SO4 + K2S

Серная кислота (H2SO4)

Способы
получения серной кислоты

В промышленности серную кислоту производят из серы, сульфидов
металлов, сероводорода и др.

Наиболее часто серную кислоту получают из пирита FeS2.

Основные стадии получения серной кислоты включают:

1.Обжиг пирита в кислороде в печи для обжига с получением сернистого газа:

4FeS2 +
11O2 → 2Fe2O3 +
8SO2 + Q

2. Очистка полученного сернистого газа от примесей в циклоне, электрофильтре.

3. Осушка сернистого газа в сушильной башне

4. Нагрев очищенного газа в теплообменнике.

5. Окисление сернистого газа в серный ангидрид в контактном аппарате:

2SO2 + O2 ↔ 2SO3 + Q

6. Поглощение серного ангидрида серной кислотой в поглотительной башне – получение олеума.

производство серной кислоты

Физические
свойства, строение серной кислоты

При обычных условиях серная кислота – тяжелая бесцветная маслянистая жидкость, хорошо растворимая в воде. Максимальная плотность равна 1,84 г/мл

При растворении серной кислоты в воде выделяется большое количество теплоты. Поэтому, по правилам безопасности в лаборатории при приготовлении разбавленного раствора серной кислоты во избежание разбрызгивания необходимо наливать серную кислоту в воду тонкой струйкой по стеклянной палочке при постоянном перемешивании. Но не наоборот! 

Валентность серы в серной кислоте равна VI.

строение серной кислоты

Качественные
реакции для обнаружения серной кислоты и сульфат ионов

Для обнаружения сульфат-ионов используют реакцию с растворимыми солями бария. В результате взаимодействия, образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4 BaSO4↓ + 2NaCl

Видео Взаимодействие хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион).

Химические свойства серной кислоты

Серная кислота — сильная двухосновная кислота, образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

  • Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени и достаточно по второй ступени:

H2SO4 ⇄ H+ + HSO4

HSO4 ⇄ H+ + SO42–

Характерны все свойства кислот:

  • Реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами и аммиаком:

H2SO4 + MgO → MgSO4 + H2O

H2SO4 + КОН → KHSО4 + H2O

H2SO4 + 2КОН → К24 + 2H2O

3H2SO4 + 2Al(OH)3 → Al2(SO4)3 + 6H2O

H2SO4 + NH3 → NH4HSO4

  • Вытесняет более слабые кислоты из их солей в растворе (карбонаты, сульфиды и др.) и летучие кислоты из их солей (кроме солей HBr и HI):

Н2SO4 + 2NaHCO3 → Na2SO4 + CO2 + H2O

H2SO4 + Na2SiO3 → Na2SO4 + H2SiO3

  • Концентрированная серная кислота реагирует с твердыми солями, например нитратом натрия, хлорида натрия.

NaNO3(тв.) + H2SO4 → NaHSO4 + HNO3

NaCl(тв.) + H2SO4 → NaHSO4 + HCl

  • Вступает в обменные реакции с солями:

H2SO4 + BaCl2 → BaSO4 + 2HCl

  • Взаимодействует с металлами:

Разбавленная серная кислота взаимодействует с металлами, расположенными в ряду напряжения металлов до водорода. В результате реакции образуются соль и водород:

H2SO4(разб.) + Fe → FeSO4 + H2

H2SO4 + Zn = ZnSO4
+ H2

Концентрированная серная кислота — сильный окислитель. Реакция с металлами протекает без вытеснения водорода из кислоты. В зависимости от активности металла образуются различные продукты реакции:

  • Активные металлы и цинк при обычной температуре с концентрированной серной кислотой образуют соль, сероводород (или серу) и воду:

H2SO4 + Na = Na2SO4 + Н2S↑ + H2O

5H2SO4(конц.) + 4Zn → 4ZnSO4 + H2S↑ + 4H2O

  • Металлы средней активности с концентрированной H2SO4 образуют соль, серу и воду:

4H2SO4 + 3Mg → 3MgSO4 + S + 4H2O

  • Такие металлы, как железо Fe,
    алюминий Al, хром Cr пассивируются
    концентрированной
    серной кислотой на холоде. При нагревании,
    при удалении оксидной пленки реакция возможна.

6H2SO4(конц.) + 2Fe → Fe2(SO4)3 + 3SO2 + 6H2O

6H2SO4(конц.) + 2Al → Al2 (SO4)3 + Н2S↑ + 6H2O

  • Неактивные металлы восстанавливают концентрированную серную кислоту до сернистого газа:

2H2SO4(конц.) + Cu → CuSO4 + SO2 ↑ + 2H2O

2H2SO4(конц.) + Hg → HgSO4 + SO2 ↑ + 2H2O

2H2SO4(конц.) + 2Ag → Ag2SO4 + SO2↑+ 2H2O

взаимодействие серной кислоты с металлами
  • В реакциях с неметаллами концентрированная серная кислота также проявляет окислительные свойства:

5H2SO4(конц.) + 2P → 2H3PO4 + 5SO2↑ + 2H2O

2H2SO4(конц.) + С → СО2↑ + 2SO2↑ + 2H2O

2H2SO4(конц.) + S → 3SO2 ↑ + 2H2O

3H2SO4(конц.) + 2KBr → Br2↓ + SO2↑ + 2KHSO4 + 2H2O

5H2SO4(конц.) + 8KI → 4I2↓ + H2S↑ + K2SO4 + 4H2O

H2SO4(конц.) + 3H2S → 4S↓ + 4H2O (комнатная температура)

H2SO4(конц.) + H2S = S↓ + SО2↑ + 2Н2О (при нагревании)

H2SO4(конц.) + 2HBr = Br2 + SO2 + 2H2O

  • Концентрированная серная кислота широко используется в химических процессах как водоотнимающий агент, т.к. проявляет сильное водоотнимающее действие. В органической химии ее используют при получении спиртов, простых и сложных эфиров, альдегидов и т.д.

Соли серной кислоты, сульфаты, гидросульфаты

Способы
получения солей серной кислоты

Сульфаты можно получить при взаимодействии серной кислоты с металлами,
оксидами, гидроксидами (см. Химические свойства серной кислоты). А также при
взаимодействии с другими солями, если продуктом реакции является нерастворимое
соединение.

Физические
свойства солей серной кислоты

Кристаллы разного цвета. Многие средние и кислые сульфаты растворимы
в воде. Плохо растворяются или не растворяются в воде сульфаты многозарядных
щёлочноземельных металлов (BaSO4, RaSO4), сульфаты лёгких
щёлочноземельных металлов (CaSO4, SrSO4) и сульфат свинца.

Средние сульфаты щелочных металлов термически устойчивы. Кислые
сульфаты щелочных металлов при нагревании разлагаются.

Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова
соль

CaSO4 ∙ 2H2O − гипс

2CaSO4 xH2O –
алебастр

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Na2CO3 ∙ 10H2O −
кристаллическая сода

KАl(SO4)2 x 12H2O
– алюмокалиевые квасцы.

Химические свойства солей серной кислоты

Разложение сульфатов на различные классы соединений в зависимости от металла, входящего в состав соли.

  • Сульфаты щелочных металлов плавятся без разложения.
  • Кислые сульфаты щелочных металлов разлагаются с отщеплением воды:

2KHSO4 → K2S2O7
+ H2O↑.

  • Сульфаты металлов средней активности разлагаются на соответствующие оксиды:

ZnSO4
= ZnO + SO3

FeSO4
= 2Fe2O3 + 4SO2 + O2

2CuSO4 → 2CuO + SO2 + O2 (SO3)

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

2Cr2(SO4)3 → 2Cr2O3 + 6SO2 + 3O2

  • Сульфаты тяжёлых или малоактивных металлов разлагаются с образованием металла и кислорода:

HgSO4 = Hg + SO2 + O2

  • Некоторые сульфаты проявляют окислительные свойства и вступают в реакции с простыми веществами:

CaSO4 +
C = CaO + SO2 + CO

BaSO4 +
4C = BaS + 4CO

  • Как пишется сернистый газ
  • Как пишется сернистая кислота
  • Как пишется серенада или серенада
  • Как пишется серебряный перстень
  • Как пишется серебряный или серебренный