Как пишется стронций в химии

Strontium, 38Sr

Strontium destilled crystals.jpg
Strontium
Pronunciation
  • (STRON-tee-əm)
  • (STRON-shee-əm)
Appearance silvery white metallic; with a pale yellow tint[1]
Standard atomic weight Ar°(Sr)
  • 87.62±0.01
  • 87.62±0.01 (abridged)[2]
Strontium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ca

Sr

Ba
rubidium ← strontium → yttrium
Atomic number (Z) 38
Group group 2 (alkaline earth metals)
Period period 5
Block   s-block
Electron configuration [Kr] 5s2
Electrons per shell 2, 8, 18, 8, 2[3]
Physical properties
Phase at STP solid
Melting point 1050 K ​(777 °C, ​1431 °F)
Boiling point 1650 K ​(1377 °C, ​2511 °F)
Density (near r.t.) 2.64 g/cm3
when liquid (at m.p.) 2.375 g/cm3
Heat of fusion 7.43 kJ/mol
Heat of vaporization 141 kJ/mol
Molar heat capacity 26.4 J/(mol·K)
Vapor pressure

P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 796 882 990 1139 1345 1646
Atomic properties
Oxidation states +1,[4] +2 (a strongly basic oxide)
Electronegativity Pauling scale: 0.95
Ionization energies
  • 1st: 549.5 kJ/mol
  • 2nd: 1064.2 kJ/mol
  • 3rd: 4138 kJ/mol
Atomic radius empirical: 215 pm
Covalent radius 195±10 pm
Van der Waals radius 249 pm

Color lines in a spectral range

Spectral lines of strontium

Other properties
Natural occurrence primordial
Crystal structure ​face-centered cubic (fcc)

Face-centered cubic crystal structure for strontium

Thermal expansion 22.5 µm/(m⋅K) (at 25 °C)
Thermal conductivity 35.4 W/(m⋅K)
Electrical resistivity 132 nΩ⋅m (at 20 °C)
Magnetic ordering paramagnetic
Molar magnetic susceptibility −92.0×10−6 cm3/mol (298 K)[5]
Young’s modulus 15.7 GPa
Shear modulus 6.03 GPa
Poisson ratio 0.28
Mohs hardness 1.5
CAS Number 7440-24-6
History
Naming after the mineral strontianite, itself named after Strontian, Scotland
Discovery William Cruickshank (1787)
First isolation Humphry Davy (1808)
Main isotopes of strontium

  • v
  • e

Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
82Sr syn 25.36 d ε 82Rb
83Sr syn 1.35 d ε 83Rb
β+ 83Rb
γ
84Sr 0.56% stable
85Sr syn 64.84 d ε 85Rb
γ
86Sr 9.86% stable
87Sr 7.00% stable
88Sr 82.58% stable
89Sr syn 50.52 d β 89Y
90Sr trace 28.90 y β 90Y
 Category: Strontium

  • view
  • talk
  • edit

| references

Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to air. Strontium has physical and chemical properties similar to those of its two vertical neighbors in the periodic table, calcium and barium. It occurs naturally mainly in the minerals celestine and strontianite, and is mostly mined from these.

Both strontium and strontianite are named after Strontian, a village in Scotland near which the mineral was discovered in 1790 by Adair Crawford and William Cruickshank; it was identified as a new element the next year from its crimson-red flame test color. Strontium was first isolated as a metal in 1808 by Humphry Davy using the then newly discovered process of electrolysis. During the 19th century, strontium was mostly used in the production of sugar from sugar beets (see strontian process). At the peak of production of television cathode-ray tubes, as much as 75% of strontium consumption in the United States was used for the faceplate glass.[6] With the replacement of cathode-ray tubes with other display methods, consumption of strontium has dramatically declined.[6]

While natural strontium (which is mostly the isotope strontium-88) is stable, the synthetic strontium-90 is radioactive and is one of the most dangerous components of nuclear fallout, as strontium is absorbed by the body in a similar manner to calcium. Natural stable strontium, on the other hand, is not hazardous to health.

Characteristics[edit]

Strontium is a divalent silvery metal with a pale yellow tint whose properties are mostly intermediate between and similar to those of its group neighbors calcium and barium.[7] It is softer than calcium and harder than barium. Its melting (777 °C) and boiling (1377 °C) points are lower than those of calcium (842 °C and 1484 °C respectively); barium continues this downward trend in the melting point (727 °C), but not in the boiling point (1900 °C). The density of strontium (2.64 g/cm3) is similarly intermediate between those of calcium (1.54 g/cm3) and barium (3.594 g/cm3).[8] Three allotropes of metallic strontium exist, with transition points at 235 and 540 °C.[9]

The standard electrode potential for the Sr2+/Sr couple is −2.89 V, approximately midway between those of the Ca2+/Ca (−2.84 V) and Ba2+/Ba (−2.92 V) couples, and close to those of the neighboring alkali metals.[10] Strontium is intermediate between calcium and barium in its reactivity toward water, with which it reacts on contact to produce strontium hydroxide and hydrogen gas. Strontium metal burns in air to produce both strontium oxide and strontium nitride, but since it does not react with nitrogen below 380 °C, at room temperature it forms only the oxide spontaneously.[8] Besides the simple oxide SrO, the peroxide SrO2 can be made by direct oxidation of strontium metal under a high pressure of oxygen, and there is some evidence for a yellow superoxide Sr(O2)2.[11] Strontium hydroxide, Sr(OH)2, is a strong base, though it is not as strong as the hydroxides of barium or the alkali metals.[12] All four dihalides of strontium are known.[13]

Due to the large size of the heavy s-block elements, including strontium, a vast range of coordination numbers is known, from 2, 3, or 4 all the way to 22 or 24 in SrCd11 and SrZn13. The Sr2+ ion is quite large, so that high coordination numbers are the rule.[14] The large size of strontium and barium plays a significant part in stabilising strontium complexes with polydentate macrocyclic ligands such as crown ethers: for example, while 18-crown-6 forms relatively weak complexes with calcium and the alkali metals, its strontium and barium complexes are much stronger.[15]

Organostrontium compounds contain one or more strontium–carbon bonds. They have been reported as intermediates in Barbier-type reactions.[16][17][18] Although strontium is in the same group as magnesium, and organomagnesium compounds are very commonly used throughout chemistry, organostrontium compounds are not similarly widespread because they are more difficult to make and more reactive. Organostrontium compounds tend to be more similar to organoeuropium or organosamarium compounds due to the similar ionic radii of these elements (Sr2+ 118 pm; Eu2+ 117 pm; Sm2+ 122 pm). Most of these compounds can only be prepared at low temperatures; bulky ligands tend to favor stability. For example, strontium dicyclopentadienyl, Sr(C5H5)2, must be made by directly reacting strontium metal with mercurocene or cyclopentadiene itself; replacing the C5H5 ligand with the bulkier C5(CH3)5 ligand on the other hand increases the compound’s solubility, volatility, and kinetic stability.[19]

Because of its extreme reactivity with oxygen and water, strontium occurs naturally only in compounds with other elements, such as in the minerals strontianite and celestine. It is kept under a liquid hydrocarbon such as mineral oil or kerosene to prevent oxidation; freshly exposed strontium metal rapidly turns a yellowish color with the formation of the oxide. Finely powdered strontium metal is pyrophoric, meaning that it will ignite spontaneously in air at room temperature. Volatile strontium salts impart a bright red color to flames, and these salts are used in pyrotechnics and in the production of flares.[8] Like calcium and barium, as well as the alkali metals and the divalent lanthanides europium and ytterbium, strontium metal dissolves directly in liquid ammonia to give a dark blue solution of solvated electrons.[7]

Isotopes[edit]

Natural strontium is a mixture of four stable isotopes: 84Sr, 86Sr, 87Sr, and 88Sr.[8] Their abundance increases with increasing mass number and the heaviest, 88Sr, makes up about 82.6% of all natural strontium, though the abundance varies due to the production of radiogenic 87Sr as the daughter of long-lived beta-decaying 87Rb.[20] This is the basis of rubidium–strontium dating. Of the unstable isotopes, the primary decay mode of the isotopes lighter than 85Sr is electron capture or positron emission to isotopes of rubidium, and that of the isotopes heavier than 88Sr is electron emission to isotopes of yttrium. Of special note are 89Sr and 90Sr. The former has a half-life of 50.6 days and is used to treat bone cancer due to strontium’s chemical similarity and hence ability to replace calcium.[21][22] While 90Sr (half-life 28.90 years) has been used similarly, it is also an isotope of concern in fallout from nuclear weapons and nuclear accidents due to its production as a fission product. Its presence in bones can cause bone cancer, cancer of nearby tissues, and leukemia.[23] The 1986 Chernobyl nuclear accident contaminated about 30,000 km2 with greater than 10 kBq/m2 with 90Sr, which accounts for about 5% of the 90Sr which was in the reactor core.[24]

History[edit]

Strontium is named after the Scottish village of Strontian (Gaelic Sròn an t-Sìthein), where it was discovered in the ores of the lead mines.[25]

In 1790, Adair Crawford, a physician engaged in the preparation of barium, and his colleague William Cruickshank, recognised that the Strontian ores exhibited properties that differed from those in other «heavy spars» sources.[26] This allowed Crawford to conclude on page 355 «… it is probable indeed, that the scotch mineral is a new species of earth which has not hitherto been sufficiently examined.» The physician and mineral collector Friedrich Gabriel Sulzer analysed together with Johann Friedrich Blumenbach the mineral from Strontian and named it strontianite. He also came to the conclusion that it was distinct from the witherite and contained a new earth (neue Grunderde).[27] In 1793 Thomas Charles Hope, a professor of chemistry at the University of Glasgow studied the mineral[28][29] and proposed the name strontites.[30][31][32] He confirmed the earlier work of Crawford and recounted: «… Considering it a peculiar earth I thought it necessary to give it an name. I have called it Strontites, from the place it was found; a mode of derivation in my opinion, fully as proper as any quality it may possess, which is the present fashion.» The element was eventually isolated by Sir Humphry Davy in 1808 by the electrolysis of a mixture containing strontium chloride and mercuric oxide, and announced by him in a lecture to the Royal Society on 30 June 1808.[33] In keeping with the naming of the other alkaline earths, he changed the name to strontium.[34][35][36][37][38]

The first large-scale application of strontium was in the production of sugar from sugar beet. Although a crystallisation process using strontium hydroxide was patented by Augustin-Pierre Dubrunfaut in 1849[39] the large scale introduction came with the improvement of the process in the early 1870s. The German sugar industry used the process well into the 20th century. Before World War I the beet sugar industry used 100,000 to 150,000 tons of strontium hydroxide for this process per year.[40] The strontium hydroxide was recycled in the process, but the demand to substitute losses during production was high enough to create a significant demand initiating mining of strontianite in the Münsterland. The mining of strontianite in Germany ended when mining of the celestine deposits in Gloucestershire started.[41] These mines supplied most of the world strontium supply from 1884 to 1941. Although the celestine deposits in the Granada basin were known for some time the large scale mining did not start before the 1950s.[42]

During atmospheric nuclear weapons testing, it was observed that strontium-90 is one of the nuclear fission products with a relatively high yield. The similarity to calcium and the chance that the strontium-90 might become enriched in bones made research on the metabolism of strontium an important topic.[43][44]

Occurrence[edit]

The mineral celestine (SrSO4)

Strontium commonly occurs in nature, being the 15th most abundant element on Earth (its heavier congener barium being the 14th), estimated to average approximately 360 parts per million in the Earth’s crust[45] and is found chiefly as the sulfate mineral celestine (SrSO4) and the carbonate strontianite (SrCO3). Of the two, celestine occurs much more frequently in deposits of sufficient size for mining. Because strontium is used most often in the carbonate form, strontianite would be the more useful of the two common minerals, but few deposits have been discovered that are suitable for development.[46] Because of the way it reacts with air and water, strontium only exists in nature when combined to form minerals. Naturally occurring strontium is stable, but its synthetic isotope Sr-90 is only produced by nuclear fallout.

In groundwater strontium behaves chemically much like calcium. At intermediate to acidic pH Sr2+ is the dominant strontium species. In the presence of calcium ions, strontium commonly forms coprecipitates with calcium minerals such as calcite and anhydrite at an increased pH. At intermediate to acidic pH, dissolved strontium is bound to soil particles by cation exchange.[47]

The mean strontium content of ocean water is 8 mg/L.[48][49] At a concentration between 82 and 90 μmol/L of strontium, the concentration is considerably lower than the calcium concentration, which is normally between 9.6 and 11.6 mmol/L.[50][51] It is nevertheless much higher than that of barium, 13 μg/L.[8]

Production[edit]

Grey and white world map with China colored green representing 50%, Spain colored blue-green representing 30%, Mexico colored light blue representing 20%, Argentina colored dark blue representing below 5% of strontium world production.

Strontium producers in 2014[52]

The three major producers of strontium as celestine as of 2015 are China (150,000 t), Spain (90,000 t), and Mexico (70,000 t); Argentina (10,000 t) and Morocco (2,500 t) are smaller producers. Although strontium deposits occur widely in the United States, they have not been mined since 1959.[52]

A large proportion of mined celestine (SrSO4) is converted to the carbonate by two processes. Either the celestine is directly leached with sodium carbonate solution or the celestine is roasted with coal to form the sulfide. The second stage produces a dark-coloured material containing mostly strontium sulfide. This so-called «black ash» is dissolved in water and filtered. Strontium carbonate is precipitated from the strontium sulfide solution by introduction of carbon dioxide.[53] The sulfate is reduced to the sulfide by the carbothermic reduction:

SrSO4 + 2 C → SrS + 2 CO2

About 300,000 tons are processed in this way annually.[54]

The metal is produced commercially by reducing strontium oxide with aluminium. The strontium is distilled from the mixture.[54] Strontium metal can also be prepared on a small scale by electrolysis of a solution of strontium chloride in molten potassium chloride:[10]

Sr2+ + 2
e
→ Sr
2 Cl → Cl2 + 2
e

Applications[edit]

Cathode-ray tube (CRT) display made from strontium and barium oxide-containing glass. This application used to consume most of the world’s production of strontium.

Consuming 75% of production, the primary use for strontium was in glass for colour television cathode-ray tubes,[54] where it prevented X-ray emission.[55][56] This application for strontium has been declining because CRTs are being replaced by other display methods. This decline has a significant influence on the mining and refining of strontium.[46] All parts of the CRT must absorb X-rays. In the neck and the funnel of the tube, lead glass is used for this purpose, but this type of glass shows a browning effect due to the interaction of the X-rays with the glass. Therefore, the front panel is made from a different glass mixture with strontium and barium to absorb the X-rays. The average values for the glass mixture determined for a recycling study in 2005 is 8.5% strontium oxide and 10% barium oxide.[57]

Because strontium is so similar to calcium, it is incorporated in the bone. All four stable isotopes are incorporated, in roughly the same proportions they are found in nature. However, the actual distribution of the isotopes tends to vary greatly from one geographical location to another. Thus, analyzing the bone of an individual can help determine the region it came from.[58][59] This approach helps to identify the ancient migration patterns and the origin of commingled human remains in battlefield burial sites.[60]

87Sr/86Sr ratios are commonly used to determine the likely provenance areas of sediment in natural systems, especially in marine and fluvial environments. Dasch (1969) showed that surface sediments of Atlantic displayed 87Sr/86Sr ratios that could be regarded as bulk averages of the 87Sr/86Sr ratios of geological terrains from adjacent landmasses.[61] A good example of a fluvial-marine system to which Sr isotope provenance studies have been successfully employed is the River Nile-Mediterranean system.[62] Due to the differing ages of the rocks that constitute the majority of the Blue and White Nile, catchment areas of the changing provenance of sediment reaching the River Nile Delta and East Mediterranean Sea can be discerned through strontium isotopic studies. Such changes are climatically controlled in the Late Quaternary.[62]

More recently, 87Sr/86Sr ratios have also been used to determine the source of ancient archaeological materials such as timbers and corn in Chaco Canyon, New Mexico.[63][64] 87Sr/86Sr ratios in teeth may also be used to track animal migrations.[65][66]

Strontium aluminate is frequently used in glow in the dark toys, as it is chemically and biologically inert.[citation needed]

red fireworks

Strontium salts are added to fireworks in order to create red colors

Strontium carbonate and other strontium salts are added to fireworks to give a deep red colour.[67] This same effect identifies strontium cations in the flame test. Fireworks consume about 5% of the world’s production.[54] Strontium carbonate is used in the manufacturing of hard ferrite magnets.[68][69]

Strontium chloride is sometimes used in toothpastes for sensitive teeth. One popular brand includes 10% total strontium chloride hexahydrate by weight.[70] Small amounts are used in the refining of zinc to remove small amounts of lead impurities.[8] The metal itself has a limited use as a getter, to remove unwanted gases in vacuums by reacting with them, although barium may also be used for this purpose.[10]

The ultra-narrow optical transition between the [Kr]5s2 1S0 electronic ground state and the metastable [Kr]5s5p 3P0 excited state of 87Sr is one of the leading candidates for the future re-definition of the second in terms of an optical transition as opposed to the current definition derived from a microwave transition between different hyperfine ground states of 133Cs.[71] Current optical atomic clocks operating on this transition already surpass the precision and accuracy of the current definition of the second.

Radioactive strontium[edit]

89Sr is the active ingredient in Metastron,[72] a radiopharmaceutical used for bone pain secondary to metastatic bone cancer. The strontium is processed like calcium by the body, preferentially incorporating it into bone at sites of increased osteogenesis. This localization focuses the radiation exposure on the cancerous lesion.[22]

RTGs from Soviet-era lighthouses

90Sr has been used as a power source for radioisotope thermoelectric generators (RTGs). 90Sr produces approximately 0.93 watts of heat per gram (it is lower for the form of 90Sr used in RTGs, which is strontium fluoride).[73] However, 90Sr has one third the lifetime and a lower density than 238Pu, another RTG fuel. The main advantage of 90Sr is that it is cheaper than 238Pu and is found in nuclear waste. The Soviet Union deployed nearly 1000 of these RTGs on its northern coast as a power source for lighthouses and meteorology stations.[74][75]

Biological role[edit]

Strontium

Hazards
GHS labelling:

Pictograms

GHS02: FlammableGHS07: Exclamation mark

Signal word

Danger

Hazard statements

H261, H315

Precautionary statements

P223, P231+P232, P370+P378, P422[76]
NFPA 704 (fire diamond)

NFPA 704 four-colored diamond

2

0

2

W

Acantharea, a relatively large group of marine radiolarian protozoa, produce intricate mineral skeletons composed of strontium sulfate.[77] In biological systems, calcium is substituted to a small extent by strontium.[78]
In the human body, most of the absorbed strontium is deposited in the bones. The ratio of strontium to calcium in human bones is between 1:1000 and 1:2000, roughly in the same range as in the blood serum.[79]

Effect on the human body[edit]

The human body absorbs strontium as if it were its lighter congener calcium. Because the elements are chemically very similar, stable strontium isotopes do not pose a significant health threat. The average human has an intake of about two milligrams of strontium a day.[80] In adults, strontium consumed tends to attach only to the surface of bones, but in children, strontium can replace calcium in the mineral of the growing bones and thus lead to bone growth problems.[81]

The biological half-life of strontium in humans has variously been reported as from 14 to 600 days,[82][83] 1,000 days,[84] 18 years,[85] 30 years[86] and, at an upper limit, 49 years.[87] The wide-ranging published biological half-life figures are explained by strontium’s complex metabolism within the body. However, by averaging all excretion paths, the overall biological half-life is estimated to be about 18 years.[88] The elimination rate of strontium is strongly affected by age and sex, due to differences in bone metabolism.[89]

The drug strontium ranelate aids bone growth, increases bone density, and lessens the incidence of vertebral, peripheral, and hip fractures.[90][91] However, strontium ranelate also increases the risk of venous thromboembolism, pulmonary embolism, and serious cardiovascular disorders, including myocardial infarction. Its use is therefore now restricted.[92] Its beneficial effects are also questionable, since the increased bone density is partially caused by the increased density of strontium over the calcium which it replaces. Strontium also bioaccumulates in the body.[93] Despite restrictions on strontium ranelate, strontium is still contained in some supplements.[94][95] There is not much scientific evidence on risks of strontium chloride when taken by mouth. Those with a personal or family history of blood clotting disorders are advised to avoid strontium.[94][95]

Strontium has been shown to inhibit sensory irritation when applied topically to the skin.[96][97] Topically applied, strontium has been shown to accelerate the recovery rate of the epidermal permeability barrier (skin barrier).[98]

Nuclear waste[edit]

Strontium-90 is a radioactive fission product produced by nuclear reactors used in nuclear power. It is a major component of high level radioactivity of nuclear waste and spent nuclear fuel. Its 29-year half life is short enough that its decay heat has been used to power arctic lighthouses, but long enough that it can take hundreds of years to decay to safe levels. Exposure from contaminated water and food may increase the risk of leukemia, bone cancer[99] and primary hyperparathyroidism.[100]

Remediation[edit]

Algae has shown selectivity for strontium in studies, where most plants used in bioremediation have not shown selectivity between calcium and strontium, often becoming saturated with calcium, which is greater in quantity and also present in nuclear waste.[99]

Researchers have looked at the bioaccumulation of strontium by Scenedesmus spinosus (algae) in simulated wastewater. The study claims a highly selective biosorption capacity for strontium of S. spinosus, suggesting that it may be appropriate for use of nuclear wastewater.[101]

A study of the pond alga Closterium moniliferum using non-radioactive strontium found that varying the ratio of barium to strontium in water improved strontium selectivity.[99]

See also[edit]

References[edit]

  1. ^ Greenwood and Earnshaw, p. 112
  2. ^ «Standard Atomic Weights: Strontium». CIAAW. 1969.
  3. ^ «Periodic Table of Elements: Strontium — Sr (EnvironmentalChemistry.com)». environmentalchemistry.com. Retrieved 7 December 2022.
  4. ^ Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). «High-Resolution Infrared Emission Spectrum of Strontium Monofluoride» (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
  5. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  6. ^ a b «Mineral Resource of the Month: Strontium». U.S. Geological Survey. 8 December 2014. Retrieved 16 August 2015.
  7. ^ a b Greenwood and Earnshaw, pp. 112–13
  8. ^ a b c d e f C. R. Hammond The elements (pp. 4–35) in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  9. ^ Ropp, Richard C. (31 December 2012). Encyclopedia of the Alkaline Earth Compounds. p. 16. ISBN 978-0-444-59553-9.
  10. ^ a b c Greenwood and Earnshaw, p. 111
  11. ^ Greenwood and Earnshaw, p. 119
  12. ^ Greenwood and Earnshaw, p. 121
  13. ^ Greenwood and Earnshaw, p. 117
  14. ^ Greenwood and Earnshaw, p. 115
  15. ^ Greenwood and Earnshaw, p. 124
  16. ^ Miyoshi, N.; Kamiura, K.; Oka, H.; Kita, A.; Kuwata, R.; Ikehara, D.; Wada, M. (2004). «The Barbier-Type Alkylation of Aldehydes with Alkyl Halides in the Presence of Metallic Strontium». Bulletin of the Chemical Society of Japan. 77 (2): 341. doi:10.1246/bcsj.77.341.
  17. ^ Miyoshi, N.; Ikehara, D.; Kohno, T.; Matsui, A.; Wada, M. (2005). «The Chemistry of Alkylstrontium Halide Analogues: Barbier-type Alkylation of Imines with Alkyl Halides». Chemistry Letters. 34 (6): 760. doi:10.1246/cl.2005.760.
  18. ^ Miyoshi, N.; Matsuo, T.; Wada, M. (2005). «The Chemistry of Alkylstrontium Halide Analogues, Part 2: Barbier-Type Dialkylation of Esters with Alkyl Halides». European Journal of Organic Chemistry. 2005 (20): 4253. doi:10.1002/ejoc.200500484.
  19. ^ Greenwood and Earnshaw, pp. 136–37
  20. ^ Greenwood and Earnshaw, p. 19
  21. ^ Halperin, Edward C.; Perez, Carlos A.; Brady, Luther W. (2008). Perez and Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins. pp. 1997–. ISBN 978-0-7817-6369-1. Retrieved 19 July 2011.
  22. ^ a b Bauman, Glenn; Charette, Manya; Reid, Robert; Sathya, Jinka (2005). «Radiopharmaceuticals for the palliation of painful bone metastases – a systematic review». Radiotherapy and Oncology. 75 (3): 258.E1–258.E13. doi:10.1016/j.radonc.2005.03.003. PMID 16299924.
  23. ^ «Strontium | Radiation Protection | US EPA». EPA. 24 April 2012. Retrieved 18 June 2012.
  24. ^ «Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter I – The site and accident sequence» (PDF). OECD-NEA. 2002. Retrieved 3 June 2015.
  25. ^ Murray, W. H. (1977). The Companion Guide to the West Highlands of Scotland. London: Collins. ISBN 978-0-00-211135-5.
  26. ^ Crawford, Adair (1790). «On the medicinal properties of the muriated barytes». Medical Communications. 2: 301–59.
  27. ^ Sulzer, Friedrich Gabriel; Blumenbach, Johann Friedrich (1791). «Über den Strontianit, ein Schottisches Foßil, das ebenfalls eine neue Grunderde zu enthalten scheint». Bergmännisches Journal: 433–36.
  28. ^ «Thomas Charles Hope, MD, FRSE, FRS (1766-1844) — School of Chemistry». www.chem.ed.ac.uk.
  29. ^ Doyle, W.P. «Thomas Charles Hope, MD, FRSE, FRS (1766–1844)». The University of Edinburgh. Archived from the original on 2 June 2013.
  30. ^ Although Thomas C. Hope had investigated strontium ores since 1791, his research was published in: Hope, Thomas Charles (1798). «Account of a mineral from Strontian and of a particular species of earth which it contains». Transactions of the Royal Society of Edinburgh. 4 (2): 3–39. doi:10.1017/S0080456800030726. S2CID 251579302.
  31. ^ Murray, T. (1993). «Elementary Scots: The Discovery of Strontium». Scottish Medical Journal. 38 (6): 188–89. doi:10.1177/003693309303800611. PMID 8146640. S2CID 20396691.
  32. ^ Hope, Thomas Charles (1794). «Account of a mineral from Strontian and of a particular species of earth which it contains». Transactions of the Royal Society of Edinburgh. 3 (2): 141–49. doi:10.1017/S0080456800020275. S2CID 251579281.
  33. ^ Davy, H. (1808). «Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia». Philosophical Transactions of the Royal Society of London. 98: 333–70. Bibcode:1808RSPT…98..333D. doi:10.1098/rstl.1808.0023.
  34. ^ Taylor, Stuart (19 June 2008). «Strontian gets set for anniversary». Lochaber News. Archived from the original on 13 January 2009.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  35. ^ Weeks, Mary Elvira (1932). «The discovery of the elements: X. The alkaline earth metals and magnesium and cadmium». Journal of Chemical Education. 9 (6): 1046–57. Bibcode:1932JChEd…9.1046W. doi:10.1021/ed009p1046.
  36. ^ Partington, J. R. (1942). «The early history of strontium». Annals of Science. 5 (2): 157. doi:10.1080/00033794200201411.
  37. ^ Partington, J. R. (1951). «The early history of strontium. Part II». Annals of Science. 7: 95. doi:10.1080/00033795100202211.
  38. ^ Many other early investigators examined strontium ore, among them: (1) Martin Heinrich Klaproth, «Chemische Versuche über die Strontianerde» (Chemical experiments on strontian ore), Crell’s Annalen (September 1793) no. ii, pp. 189–202 ; and «Nachtrag zu den Versuchen über die Strontianerde» (Addition to the Experiments on Strontian Ore), Crell’s Annalen (February 1794) no. i, p. 99 ; also (2) Kirwan, Richard (1794). «Experiments on a new earth found near Stronthian in Scotland». The Transactions of the Royal Irish Academy. 5: 243–56.
  39. ^ Fachgruppe Geschichte Der Chemie, Gesellschaft Deutscher Chemiker (2005). Metalle in der Elektrochemie. pp. 158–62.
  40. ^ Heriot, T. H. P (2008). «strontium saccharate process». Manufacture of Sugar from the Cane and Beet. ISBN 978-1-4437-2504-0.
  41. ^ Börnchen, Martin. «Der Strontianitbergbau im Münsterland». Archived from the original on 11 December 2014. Retrieved 9 November 2010.
  42. ^ Martin, Josèm; Ortega-Huertas, Miguel; Torres-Ruiz, Jose (1984). «Genesis and evolution of strontium deposits of the granada basin (Southeastern Spain): Evidence of diagenetic replacement of a stromatolite belt». Sedimentary Geology. 39 (3–4): 281. Bibcode:1984SedG…39..281M. doi:10.1016/0037-0738(84)90055-1.
  43. ^ «Chain Fission Yields». iaea.org.
  44. ^ Nordin, B. E. (1968). «Strontium Comes of Age». British Medical Journal. 1 (5591): 566. doi:10.1136/bmj.1.5591.566. PMC 1985251.
  45. ^ Turekian, K. K.; Wedepohl, K. H. (1961). «Distribution of the elements in some major units of the Earth’s crust». Geological Society of America Bulletin. 72 (2): 175–92. Bibcode:1961GSAB…72..175T. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
  46. ^ a b Ober, Joyce A. «Mineral Commodity Summaries 2010: Strontium» (PDF). United States Geological Survey. Retrieved 14 May 2010.
  47. ^ Heuel-Fabianek, B. (2014). «Partition Coefficients (Kd) for the Modelling of Transport Processes of Radionuclides in Groundwater» (PDF). Berichte des Forschungszentrums Jülich. 4375. ISSN 0944-2952.
  48. ^ Stringfield, V. T. (1966). «Strontium». Artesian water in Tertiary limestone in the southeastern States. Geological Survey Professional Paper. United States Government Printing Office. pp. 138–39.
  49. ^ Angino, Ernest E.; Billings, Gale K.; Andersen, Neil (1966). «Observed variations in the strontium concentration of sea water». Chemical Geology. 1: 145. Bibcode:1966ChGeo…1..145A. doi:10.1016/0009-2541(66)90013-1.
  50. ^ Sun, Y.; Sun, M.; Lee, T.; Nie, B. (2005). «Influence of seawater Sr content on coral Sr/Ca and Sr thermometry». Coral Reefs. 24: 23. doi:10.1007/s00338-004-0467-x. S2CID 31543482.
  51. ^ Kogel, Jessica Elzea; Trivedi, Nikhil C.; Barker, James M. (5 March 2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses. ISBN 978-0-87335-233-8.
  52. ^ a b Ober, Joyce A. «Mineral Commodity Summaries 2015: Strontium» (PDF). United States Geological Survey. Retrieved 26 March 2016.
  53. ^ Kemal, Mevlüt; Arslan, V.; Akar, A.; Canbazoglu, M. (1996). Production of SrCO3 by black ash process: Determination of reductive roasting parameters. p. 401. ISBN 978-90-5410-829-0.
  54. ^ a b c d MacMillan, J. Paul; Park, Jai Won; Gerstenberg, Rolf; Wagner, Heinz; Köhler, Karl and Wallbrecht, Peter (2002) «Strontium and Strontium Compounds» in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a25_321.
  55. ^ «Cathode Ray Tube Glass-To-Glass Recycling» (PDF). ICF Incorporated, USEP Agency. Archived from the original (PDF) on 19 December 2008. Retrieved 7 January 2012.
  56. ^ Ober, Joyce A.; Polyak, Désirée E. «Mineral Yearbook 2007: Strontium» (PDF). United States Geological Survey. Retrieved 14 October 2008.
  57. ^ Méar, F.; Yot, P.; Cambon, M.; Ribes, M. (2006). «The characterization of waste cathode-ray tube glass». Waste Management. 26 (12): 1468–76. doi:10.1016/j.wasman.2005.11.017. PMID 16427267.
  58. ^ Price, T. Douglas; Schoeninger, Margaret J.; Armelagos, George J. (1985). «Bone chemistry and past behavior: an overview». Journal of Human Evolution. 14 (5): 419–47. doi:10.1016/S0047-2484(85)80022-1.
  59. ^ Steadman, Luville T.; Brudevold, Finn; Smith, Frank A. (1958). «Distribution of strontium in teeth from different geographic areas». The Journal of the American Dental Association. 57 (3): 340–44. doi:10.14219/jada.archive.1958.0161. PMID 13575071.
  60. ^ Schweissing, Matthew Mike; Grupe, Gisela (2003). «Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria». Journal of Archaeological Science. 30 (11): 1373–83. doi:10.1016/S0305-4403(03)00025-6.
  61. ^ Dasch, J. (1969). «Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks». Geochimica et Cosmochimica Acta. 33 (12): 1521–52. Bibcode:1969GeCoA..33.1521D. doi:10.1016/0016-7037(69)90153-7.
  62. ^ a b Krom, M. D.; Cliff, R.; Eijsink, L. M.; Herut, B.; Chester, R. (1999). «The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes». Marine Geology. 155 (3–4): 319–30. Bibcode:1999MGeol.155..319K. doi:10.1016/S0025-3227(98)00130-3.
  63. ^ Benson, L.; Cordell, L.; Vincent, K.; Taylor, H.; Stein, J.; Farmer, G. & Kiyoto, F. (2003). «Ancient maize from Chacoan great houses: where was it grown?». Proceedings of the National Academy of Sciences. 100 (22): 13111–15. Bibcode:2003PNAS..10013111B. doi:10.1073/pnas.2135068100. PMC 240753. PMID 14563925.
  64. ^ English NB; Betancourt JL; Dean JS; Quade J. (October 2001). «Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico». Proc Natl Acad Sci USA. 98 (21): 11891–96. Bibcode:2001PNAS…9811891E. doi:10.1073/pnas.211305498. PMC 59738. PMID 11572943.
  65. ^ Barnett-Johnson, Rachel; Grimes, Churchill B.; Royer, Chantell F.; Donohoe, Christopher J. (2007). «Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags». Canadian Journal of Fisheries and Aquatic Sciences. 64 (12): 1683–92. doi:10.1139/F07-129.
  66. ^ Porder, S.; Paytan, A. & E.A. Hadly (2003). «Mapping the origin of faunal assemblages using strontium isotopes». Paleobiology. 29 (2): 197–204. doi:10.1666/0094-8373(2003)029<0197:MTOOFA>2.0.CO;2. S2CID 44206756.
  67. ^ «Chemistry of Firework Colors – How Fireworks Are Colored». Chemistry.about.com. 10 April 2012. Retrieved 14 April 2012.
  68. ^ «Ferrite Permanent Magnets». Arnold Magnetic Technologies. Archived from the original on 14 May 2012. Retrieved 18 January 2014.
  69. ^ «Barium Carbonate». Chemical Products Corporation. Archived from the original on 6 October 2014. Retrieved 18 January 2014.
  70. ^ Ghom (1 December 2005). Textbook of Oral Medicine. p. 885. ISBN 978-81-8061-431-6.
  71. ^ CartlidgeMar. 1, Edwin; 2018; Pm, 12:00 (28 February 2018). «With better atomic clocks, scientists prepare to redefine the second». Science | AAAS. Retrieved 10 February 2019.{{cite web}}: CS1 maint: numeric names: authors list (link)
  72. ^ «FDA ANDA Generic Drug Approvals». Food and Drug Administration.
  73. ^ «What are the fuels for radioisotope thermoelectric generators?». qrg.northwestern.edu.
  74. ^ Doyle, James (30 June 2008). Nuclear safeguards, security and nonproliferation: achieving security with technology and policy. p. 459. ISBN 978-0-7506-8673-0.
  75. ^ O’Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.; Howe, S. D.; Atkinson, H. V. (2008). «Safe radioisotope thermoelectric generators and heat sources for space applications». Journal of Nuclear Materials. 377 (3): 506–21. Bibcode:2008JNuM..377..506O. doi:10.1016/j.jnucmat.2008.04.009.
  76. ^ «Strontium 343730». Sigma-Aldrich.
  77. ^ De Deckker, Patrick (2004). «On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios». Hydrobiologia. 517 (1–3): 1. doi:10.1023/B:HYDR.0000027333.02017.50. S2CID 42526332.
  78. ^ Pors Nielsen, S. (2004). «The biological role of strontium». Bone. 35 (3): 583–88. doi:10.1016/j.bone.2004.04.026. PMID 15336592.
  79. ^ Cabrera, Walter E.; Schrooten, Iris; De Broe, Marc E.; d’Haese, Patrick C. (1999). «Strontium and Bone». Journal of Bone and Mineral Research. 14 (5): 661–68. doi:10.1359/jbmr.1999.14.5.661. PMID 10320513. S2CID 32627349.
  80. ^ Emsley, John (2011). Nature’s building blocks: an A–Z guide to the elements. Oxford University Press. p. 507. ISBN 978-0-19-960563-7.
  81. ^ Agency for Toxic Substances and Disease Registry (21 January 2015). «ATSDR – Public Health Statement: Strontium». cdc.gov. Agency for Toxic Substances and Disease Registry. Retrieved 17 November 2016.
  82. ^ Tiller, B. L. (2001), «4.5 Fish and Wildlife Surveillance» (PDF), Hanford Site 2001 Environmental Report, DOE, archived from the original (PDF) on 11 May 2013, retrieved 14 January 2014
  83. ^ Driver, C. J. (1994), Ecotoxicity Literature Review of Selected Hanford Site Contaminants (PDF), DOE, doi:10.2172/10136486, OSTI 10136486, retrieved 14 January 2014
  84. ^ «Freshwater Ecology and Human Influence». Area IV Envirothon. Archived from the original on 1 January 2014. Retrieved 14 January 2014.
  85. ^ «Radioisotopes That May Impact Food Resources» (PDF). Epidemiology, Health and Social Services, State of Alaska. Archived from the original on 21 August 2014. Retrieved 14 January 2014.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  86. ^ «Human Health Fact Sheet: Strontium» (PDF). Argonne National Laboratory. October 2001. Archived from the original (PDF) on 24 January 2014. Retrieved 14 January 2014.
  87. ^ «Biological Half-life». HyperPhysics. Retrieved 14 January 2014.
  88. ^ Glasstone, Samuel; Dolan, Philip J. (1977). «XII: Biological Effects» (PDF). The effects of Nuclear Weapons. p. 605. Retrieved 14 January 2014.
  89. ^ Shagina, N. B.; Bougrov, N. G.; Degteva, M. O.; Kozheurov, V. P.; Tolstykh, E. I. (2006). «An application of in vivo whole body counting technique for studying strontium metabolism and internal dose reconstruction for the Techa River population». Journal of Physics: Conference Series. 41 (1): 433–40. Bibcode:2006JPhCS..41..433S. doi:10.1088/1742-6596/41/1/048. S2CID 32732782.
  90. ^ Meunier P. J.; Roux C.; Seeman E.; Ortolani, S.; Badurski, J. E.; Spector, T. D.; Cannata, J.; Balogh, A.; Lemmel, E. M.; Pors-Nielsen, S.; Rizzoli, R.; Genant, H. K.; Reginster, J. Y. (January 2004). «The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis» (PDF). New England Journal of Medicine. 350 (5): 459–68. doi:10.1056/NEJMoa022436. hdl:2268/7937. PMID 14749454.
  91. ^ Reginster JY; Seeman E; De Vernejoul MC; Adami, S.; Compston, J.; Phenekos, C.; Devogelaer, J. P.; Diaz Curiel, M.; Sawicki, A.; Goemaere, S.; Sorensen, O. H.; Felsenberg, D.; Meunier, P. J. (May 2005). «Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study» (PDF). The Journal of Clinical Endocrinology & Metabolism. 90 (5): 2816–22. doi:10.1210/jc.2004-1774. PMID 15728210.
  92. ^ «Strontium ranelate: cardiovascular risk – restricted indication and new monitoring requirements». Medicines and Healthcare products Regulatory Agency, UK. March 2014.
  93. ^ Price, Charles T.; Langford, Joshua R.; Liporace, Frank A. (5 April 2012). «Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet». Open Orthop. J. 6: 143–49. doi:10.2174/1874325001206010143. PMC 3330619. PMID 22523525.
  94. ^ a b «Strontium». WebMD. Retrieved 20 November 2017.
  95. ^ a b «Strontium for Osteoporosis». WebMD. Retrieved 20 November 2017.
  96. ^ Hahn, G.S. (1999). «Strontium Is a Potent and Selective Inhibitor of Sensory Irritation» (PDF). Dermatologic Surgery. 25 (9): 689–94. doi:10.1046/j.1524-4725.1999.99099.x. PMID 10491058. Archived from the original (PDF) on 31 May 2016.
  97. ^ Hahn, G.S. (2001). Anti-irritants for Sensory Irritation. Handbook of Cosmetic Science and Technology. p. 285. ISBN 978-0-8247-0292-2.
  98. ^ Kim, Hyun Jeong; Kim, Min Jung; Jeong, Se Kyoo (2006). «The Effects of Strontium Ions on Epidermal Permeability Barrier». The Korean Dermatological Association, Korean Journal of Dermatology. 44 (11): 1309.
  99. ^ a b c Potera, Carol (2011). «HAZARDOUS WASTE: Pond Algae Sequester Strontium-90». Environ Health Perspect. 119 (6): A244. doi:10.1289/ehp.119-a244. PMC 3114833. PMID 21628117.
  100. ^ Boehm, BO; Rosinger, S; Belyi, D; Dietrich, JW (18 August 2011). «The parathyroid as a target for radiation damage». The New England Journal of Medicine. 365 (7): 676–8. doi:10.1056/NEJMc1104982. PMID 21848480.
  101. ^ Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan (2014). «Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models». Int J Environ Res Public Health. 11 (6): 6099–6118. doi:10.3390/ijerph110606099. PMC 4078568. PMID 24919131.

Bibliography[edit]

  • Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.

External links[edit]

  • WebElements.com – Strontium
  • Strontium at The Periodic Table of Videos (University of Nottingham)
Strontium, 38Sr

Strontium destilled crystals.jpg
Strontium
Pronunciation
  • (STRON-tee-əm)
  • (STRON-shee-əm)
Appearance silvery white metallic; with a pale yellow tint[1]
Standard atomic weight Ar°(Sr)
  • 87.62±0.01
  • 87.62±0.01 (abridged)[2]
Strontium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ca

Sr

Ba
rubidium ← strontium → yttrium
Atomic number (Z) 38
Group group 2 (alkaline earth metals)
Period period 5
Block   s-block
Electron configuration [Kr] 5s2
Electrons per shell 2, 8, 18, 8, 2[3]
Physical properties
Phase at STP solid
Melting point 1050 K ​(777 °C, ​1431 °F)
Boiling point 1650 K ​(1377 °C, ​2511 °F)
Density (near r.t.) 2.64 g/cm3
when liquid (at m.p.) 2.375 g/cm3
Heat of fusion 7.43 kJ/mol
Heat of vaporization 141 kJ/mol
Molar heat capacity 26.4 J/(mol·K)
Vapor pressure

P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 796 882 990 1139 1345 1646
Atomic properties
Oxidation states +1,[4] +2 (a strongly basic oxide)
Electronegativity Pauling scale: 0.95
Ionization energies
  • 1st: 549.5 kJ/mol
  • 2nd: 1064.2 kJ/mol
  • 3rd: 4138 kJ/mol
Atomic radius empirical: 215 pm
Covalent radius 195±10 pm
Van der Waals radius 249 pm

Color lines in a spectral range

Spectral lines of strontium

Other properties
Natural occurrence primordial
Crystal structure ​face-centered cubic (fcc)

Face-centered cubic crystal structure for strontium

Thermal expansion 22.5 µm/(m⋅K) (at 25 °C)
Thermal conductivity 35.4 W/(m⋅K)
Electrical resistivity 132 nΩ⋅m (at 20 °C)
Magnetic ordering paramagnetic
Molar magnetic susceptibility −92.0×10−6 cm3/mol (298 K)[5]
Young’s modulus 15.7 GPa
Shear modulus 6.03 GPa
Poisson ratio 0.28
Mohs hardness 1.5
CAS Number 7440-24-6
History
Naming after the mineral strontianite, itself named after Strontian, Scotland
Discovery William Cruickshank (1787)
First isolation Humphry Davy (1808)
Main isotopes of strontium

  • v
  • e

Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
82Sr syn 25.36 d ε 82Rb
83Sr syn 1.35 d ε 83Rb
β+ 83Rb
γ
84Sr 0.56% stable
85Sr syn 64.84 d ε 85Rb
γ
86Sr 9.86% stable
87Sr 7.00% stable
88Sr 82.58% stable
89Sr syn 50.52 d β 89Y
90Sr trace 28.90 y β 90Y
 Category: Strontium

  • view
  • talk
  • edit

| references

Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to air. Strontium has physical and chemical properties similar to those of its two vertical neighbors in the periodic table, calcium and barium. It occurs naturally mainly in the minerals celestine and strontianite, and is mostly mined from these.

Both strontium and strontianite are named after Strontian, a village in Scotland near which the mineral was discovered in 1790 by Adair Crawford and William Cruickshank; it was identified as a new element the next year from its crimson-red flame test color. Strontium was first isolated as a metal in 1808 by Humphry Davy using the then newly discovered process of electrolysis. During the 19th century, strontium was mostly used in the production of sugar from sugar beets (see strontian process). At the peak of production of television cathode-ray tubes, as much as 75% of strontium consumption in the United States was used for the faceplate glass.[6] With the replacement of cathode-ray tubes with other display methods, consumption of strontium has dramatically declined.[6]

While natural strontium (which is mostly the isotope strontium-88) is stable, the synthetic strontium-90 is radioactive and is one of the most dangerous components of nuclear fallout, as strontium is absorbed by the body in a similar manner to calcium. Natural stable strontium, on the other hand, is not hazardous to health.

Characteristics[edit]

Strontium is a divalent silvery metal with a pale yellow tint whose properties are mostly intermediate between and similar to those of its group neighbors calcium and barium.[7] It is softer than calcium and harder than barium. Its melting (777 °C) and boiling (1377 °C) points are lower than those of calcium (842 °C and 1484 °C respectively); barium continues this downward trend in the melting point (727 °C), but not in the boiling point (1900 °C). The density of strontium (2.64 g/cm3) is similarly intermediate between those of calcium (1.54 g/cm3) and barium (3.594 g/cm3).[8] Three allotropes of metallic strontium exist, with transition points at 235 and 540 °C.[9]

The standard electrode potential for the Sr2+/Sr couple is −2.89 V, approximately midway between those of the Ca2+/Ca (−2.84 V) and Ba2+/Ba (−2.92 V) couples, and close to those of the neighboring alkali metals.[10] Strontium is intermediate between calcium and barium in its reactivity toward water, with which it reacts on contact to produce strontium hydroxide and hydrogen gas. Strontium metal burns in air to produce both strontium oxide and strontium nitride, but since it does not react with nitrogen below 380 °C, at room temperature it forms only the oxide spontaneously.[8] Besides the simple oxide SrO, the peroxide SrO2 can be made by direct oxidation of strontium metal under a high pressure of oxygen, and there is some evidence for a yellow superoxide Sr(O2)2.[11] Strontium hydroxide, Sr(OH)2, is a strong base, though it is not as strong as the hydroxides of barium or the alkali metals.[12] All four dihalides of strontium are known.[13]

Due to the large size of the heavy s-block elements, including strontium, a vast range of coordination numbers is known, from 2, 3, or 4 all the way to 22 or 24 in SrCd11 and SrZn13. The Sr2+ ion is quite large, so that high coordination numbers are the rule.[14] The large size of strontium and barium plays a significant part in stabilising strontium complexes with polydentate macrocyclic ligands such as crown ethers: for example, while 18-crown-6 forms relatively weak complexes with calcium and the alkali metals, its strontium and barium complexes are much stronger.[15]

Organostrontium compounds contain one or more strontium–carbon bonds. They have been reported as intermediates in Barbier-type reactions.[16][17][18] Although strontium is in the same group as magnesium, and organomagnesium compounds are very commonly used throughout chemistry, organostrontium compounds are not similarly widespread because they are more difficult to make and more reactive. Organostrontium compounds tend to be more similar to organoeuropium or organosamarium compounds due to the similar ionic radii of these elements (Sr2+ 118 pm; Eu2+ 117 pm; Sm2+ 122 pm). Most of these compounds can only be prepared at low temperatures; bulky ligands tend to favor stability. For example, strontium dicyclopentadienyl, Sr(C5H5)2, must be made by directly reacting strontium metal with mercurocene or cyclopentadiene itself; replacing the C5H5 ligand with the bulkier C5(CH3)5 ligand on the other hand increases the compound’s solubility, volatility, and kinetic stability.[19]

Because of its extreme reactivity with oxygen and water, strontium occurs naturally only in compounds with other elements, such as in the minerals strontianite and celestine. It is kept under a liquid hydrocarbon such as mineral oil or kerosene to prevent oxidation; freshly exposed strontium metal rapidly turns a yellowish color with the formation of the oxide. Finely powdered strontium metal is pyrophoric, meaning that it will ignite spontaneously in air at room temperature. Volatile strontium salts impart a bright red color to flames, and these salts are used in pyrotechnics and in the production of flares.[8] Like calcium and barium, as well as the alkali metals and the divalent lanthanides europium and ytterbium, strontium metal dissolves directly in liquid ammonia to give a dark blue solution of solvated electrons.[7]

Isotopes[edit]

Natural strontium is a mixture of four stable isotopes: 84Sr, 86Sr, 87Sr, and 88Sr.[8] Their abundance increases with increasing mass number and the heaviest, 88Sr, makes up about 82.6% of all natural strontium, though the abundance varies due to the production of radiogenic 87Sr as the daughter of long-lived beta-decaying 87Rb.[20] This is the basis of rubidium–strontium dating. Of the unstable isotopes, the primary decay mode of the isotopes lighter than 85Sr is electron capture or positron emission to isotopes of rubidium, and that of the isotopes heavier than 88Sr is electron emission to isotopes of yttrium. Of special note are 89Sr and 90Sr. The former has a half-life of 50.6 days and is used to treat bone cancer due to strontium’s chemical similarity and hence ability to replace calcium.[21][22] While 90Sr (half-life 28.90 years) has been used similarly, it is also an isotope of concern in fallout from nuclear weapons and nuclear accidents due to its production as a fission product. Its presence in bones can cause bone cancer, cancer of nearby tissues, and leukemia.[23] The 1986 Chernobyl nuclear accident contaminated about 30,000 km2 with greater than 10 kBq/m2 with 90Sr, which accounts for about 5% of the 90Sr which was in the reactor core.[24]

History[edit]

Strontium is named after the Scottish village of Strontian (Gaelic Sròn an t-Sìthein), where it was discovered in the ores of the lead mines.[25]

In 1790, Adair Crawford, a physician engaged in the preparation of barium, and his colleague William Cruickshank, recognised that the Strontian ores exhibited properties that differed from those in other «heavy spars» sources.[26] This allowed Crawford to conclude on page 355 «… it is probable indeed, that the scotch mineral is a new species of earth which has not hitherto been sufficiently examined.» The physician and mineral collector Friedrich Gabriel Sulzer analysed together with Johann Friedrich Blumenbach the mineral from Strontian and named it strontianite. He also came to the conclusion that it was distinct from the witherite and contained a new earth (neue Grunderde).[27] In 1793 Thomas Charles Hope, a professor of chemistry at the University of Glasgow studied the mineral[28][29] and proposed the name strontites.[30][31][32] He confirmed the earlier work of Crawford and recounted: «… Considering it a peculiar earth I thought it necessary to give it an name. I have called it Strontites, from the place it was found; a mode of derivation in my opinion, fully as proper as any quality it may possess, which is the present fashion.» The element was eventually isolated by Sir Humphry Davy in 1808 by the electrolysis of a mixture containing strontium chloride and mercuric oxide, and announced by him in a lecture to the Royal Society on 30 June 1808.[33] In keeping with the naming of the other alkaline earths, he changed the name to strontium.[34][35][36][37][38]

The first large-scale application of strontium was in the production of sugar from sugar beet. Although a crystallisation process using strontium hydroxide was patented by Augustin-Pierre Dubrunfaut in 1849[39] the large scale introduction came with the improvement of the process in the early 1870s. The German sugar industry used the process well into the 20th century. Before World War I the beet sugar industry used 100,000 to 150,000 tons of strontium hydroxide for this process per year.[40] The strontium hydroxide was recycled in the process, but the demand to substitute losses during production was high enough to create a significant demand initiating mining of strontianite in the Münsterland. The mining of strontianite in Germany ended when mining of the celestine deposits in Gloucestershire started.[41] These mines supplied most of the world strontium supply from 1884 to 1941. Although the celestine deposits in the Granada basin were known for some time the large scale mining did not start before the 1950s.[42]

During atmospheric nuclear weapons testing, it was observed that strontium-90 is one of the nuclear fission products with a relatively high yield. The similarity to calcium and the chance that the strontium-90 might become enriched in bones made research on the metabolism of strontium an important topic.[43][44]

Occurrence[edit]

The mineral celestine (SrSO4)

Strontium commonly occurs in nature, being the 15th most abundant element on Earth (its heavier congener barium being the 14th), estimated to average approximately 360 parts per million in the Earth’s crust[45] and is found chiefly as the sulfate mineral celestine (SrSO4) and the carbonate strontianite (SrCO3). Of the two, celestine occurs much more frequently in deposits of sufficient size for mining. Because strontium is used most often in the carbonate form, strontianite would be the more useful of the two common minerals, but few deposits have been discovered that are suitable for development.[46] Because of the way it reacts with air and water, strontium only exists in nature when combined to form minerals. Naturally occurring strontium is stable, but its synthetic isotope Sr-90 is only produced by nuclear fallout.

In groundwater strontium behaves chemically much like calcium. At intermediate to acidic pH Sr2+ is the dominant strontium species. In the presence of calcium ions, strontium commonly forms coprecipitates with calcium minerals such as calcite and anhydrite at an increased pH. At intermediate to acidic pH, dissolved strontium is bound to soil particles by cation exchange.[47]

The mean strontium content of ocean water is 8 mg/L.[48][49] At a concentration between 82 and 90 μmol/L of strontium, the concentration is considerably lower than the calcium concentration, which is normally between 9.6 and 11.6 mmol/L.[50][51] It is nevertheless much higher than that of barium, 13 μg/L.[8]

Production[edit]

Grey and white world map with China colored green representing 50%, Spain colored blue-green representing 30%, Mexico colored light blue representing 20%, Argentina colored dark blue representing below 5% of strontium world production.

Strontium producers in 2014[52]

The three major producers of strontium as celestine as of 2015 are China (150,000 t), Spain (90,000 t), and Mexico (70,000 t); Argentina (10,000 t) and Morocco (2,500 t) are smaller producers. Although strontium deposits occur widely in the United States, they have not been mined since 1959.[52]

A large proportion of mined celestine (SrSO4) is converted to the carbonate by two processes. Either the celestine is directly leached with sodium carbonate solution or the celestine is roasted with coal to form the sulfide. The second stage produces a dark-coloured material containing mostly strontium sulfide. This so-called «black ash» is dissolved in water and filtered. Strontium carbonate is precipitated from the strontium sulfide solution by introduction of carbon dioxide.[53] The sulfate is reduced to the sulfide by the carbothermic reduction:

SrSO4 + 2 C → SrS + 2 CO2

About 300,000 tons are processed in this way annually.[54]

The metal is produced commercially by reducing strontium oxide with aluminium. The strontium is distilled from the mixture.[54] Strontium metal can also be prepared on a small scale by electrolysis of a solution of strontium chloride in molten potassium chloride:[10]

Sr2+ + 2
e
→ Sr
2 Cl → Cl2 + 2
e

Applications[edit]

Cathode-ray tube (CRT) display made from strontium and barium oxide-containing glass. This application used to consume most of the world’s production of strontium.

Consuming 75% of production, the primary use for strontium was in glass for colour television cathode-ray tubes,[54] where it prevented X-ray emission.[55][56] This application for strontium has been declining because CRTs are being replaced by other display methods. This decline has a significant influence on the mining and refining of strontium.[46] All parts of the CRT must absorb X-rays. In the neck and the funnel of the tube, lead glass is used for this purpose, but this type of glass shows a browning effect due to the interaction of the X-rays with the glass. Therefore, the front panel is made from a different glass mixture with strontium and barium to absorb the X-rays. The average values for the glass mixture determined for a recycling study in 2005 is 8.5% strontium oxide and 10% barium oxide.[57]

Because strontium is so similar to calcium, it is incorporated in the bone. All four stable isotopes are incorporated, in roughly the same proportions they are found in nature. However, the actual distribution of the isotopes tends to vary greatly from one geographical location to another. Thus, analyzing the bone of an individual can help determine the region it came from.[58][59] This approach helps to identify the ancient migration patterns and the origin of commingled human remains in battlefield burial sites.[60]

87Sr/86Sr ratios are commonly used to determine the likely provenance areas of sediment in natural systems, especially in marine and fluvial environments. Dasch (1969) showed that surface sediments of Atlantic displayed 87Sr/86Sr ratios that could be regarded as bulk averages of the 87Sr/86Sr ratios of geological terrains from adjacent landmasses.[61] A good example of a fluvial-marine system to which Sr isotope provenance studies have been successfully employed is the River Nile-Mediterranean system.[62] Due to the differing ages of the rocks that constitute the majority of the Blue and White Nile, catchment areas of the changing provenance of sediment reaching the River Nile Delta and East Mediterranean Sea can be discerned through strontium isotopic studies. Such changes are climatically controlled in the Late Quaternary.[62]

More recently, 87Sr/86Sr ratios have also been used to determine the source of ancient archaeological materials such as timbers and corn in Chaco Canyon, New Mexico.[63][64] 87Sr/86Sr ratios in teeth may also be used to track animal migrations.[65][66]

Strontium aluminate is frequently used in glow in the dark toys, as it is chemically and biologically inert.[citation needed]

red fireworks

Strontium salts are added to fireworks in order to create red colors

Strontium carbonate and other strontium salts are added to fireworks to give a deep red colour.[67] This same effect identifies strontium cations in the flame test. Fireworks consume about 5% of the world’s production.[54] Strontium carbonate is used in the manufacturing of hard ferrite magnets.[68][69]

Strontium chloride is sometimes used in toothpastes for sensitive teeth. One popular brand includes 10% total strontium chloride hexahydrate by weight.[70] Small amounts are used in the refining of zinc to remove small amounts of lead impurities.[8] The metal itself has a limited use as a getter, to remove unwanted gases in vacuums by reacting with them, although barium may also be used for this purpose.[10]

The ultra-narrow optical transition between the [Kr]5s2 1S0 electronic ground state and the metastable [Kr]5s5p 3P0 excited state of 87Sr is one of the leading candidates for the future re-definition of the second in terms of an optical transition as opposed to the current definition derived from a microwave transition between different hyperfine ground states of 133Cs.[71] Current optical atomic clocks operating on this transition already surpass the precision and accuracy of the current definition of the second.

Radioactive strontium[edit]

89Sr is the active ingredient in Metastron,[72] a radiopharmaceutical used for bone pain secondary to metastatic bone cancer. The strontium is processed like calcium by the body, preferentially incorporating it into bone at sites of increased osteogenesis. This localization focuses the radiation exposure on the cancerous lesion.[22]

RTGs from Soviet-era lighthouses

90Sr has been used as a power source for radioisotope thermoelectric generators (RTGs). 90Sr produces approximately 0.93 watts of heat per gram (it is lower for the form of 90Sr used in RTGs, which is strontium fluoride).[73] However, 90Sr has one third the lifetime and a lower density than 238Pu, another RTG fuel. The main advantage of 90Sr is that it is cheaper than 238Pu and is found in nuclear waste. The Soviet Union deployed nearly 1000 of these RTGs on its northern coast as a power source for lighthouses and meteorology stations.[74][75]

Biological role[edit]

Strontium

Hazards
GHS labelling:

Pictograms

GHS02: FlammableGHS07: Exclamation mark

Signal word

Danger

Hazard statements

H261, H315

Precautionary statements

P223, P231+P232, P370+P378, P422[76]
NFPA 704 (fire diamond)

NFPA 704 four-colored diamond

2

0

2

W

Acantharea, a relatively large group of marine radiolarian protozoa, produce intricate mineral skeletons composed of strontium sulfate.[77] In biological systems, calcium is substituted to a small extent by strontium.[78]
In the human body, most of the absorbed strontium is deposited in the bones. The ratio of strontium to calcium in human bones is between 1:1000 and 1:2000, roughly in the same range as in the blood serum.[79]

Effect on the human body[edit]

The human body absorbs strontium as if it were its lighter congener calcium. Because the elements are chemically very similar, stable strontium isotopes do not pose a significant health threat. The average human has an intake of about two milligrams of strontium a day.[80] In adults, strontium consumed tends to attach only to the surface of bones, but in children, strontium can replace calcium in the mineral of the growing bones and thus lead to bone growth problems.[81]

The biological half-life of strontium in humans has variously been reported as from 14 to 600 days,[82][83] 1,000 days,[84] 18 years,[85] 30 years[86] and, at an upper limit, 49 years.[87] The wide-ranging published biological half-life figures are explained by strontium’s complex metabolism within the body. However, by averaging all excretion paths, the overall biological half-life is estimated to be about 18 years.[88] The elimination rate of strontium is strongly affected by age and sex, due to differences in bone metabolism.[89]

The drug strontium ranelate aids bone growth, increases bone density, and lessens the incidence of vertebral, peripheral, and hip fractures.[90][91] However, strontium ranelate also increases the risk of venous thromboembolism, pulmonary embolism, and serious cardiovascular disorders, including myocardial infarction. Its use is therefore now restricted.[92] Its beneficial effects are also questionable, since the increased bone density is partially caused by the increased density of strontium over the calcium which it replaces. Strontium also bioaccumulates in the body.[93] Despite restrictions on strontium ranelate, strontium is still contained in some supplements.[94][95] There is not much scientific evidence on risks of strontium chloride when taken by mouth. Those with a personal or family history of blood clotting disorders are advised to avoid strontium.[94][95]

Strontium has been shown to inhibit sensory irritation when applied topically to the skin.[96][97] Topically applied, strontium has been shown to accelerate the recovery rate of the epidermal permeability barrier (skin barrier).[98]

Nuclear waste[edit]

Strontium-90 is a radioactive fission product produced by nuclear reactors used in nuclear power. It is a major component of high level radioactivity of nuclear waste and spent nuclear fuel. Its 29-year half life is short enough that its decay heat has been used to power arctic lighthouses, but long enough that it can take hundreds of years to decay to safe levels. Exposure from contaminated water and food may increase the risk of leukemia, bone cancer[99] and primary hyperparathyroidism.[100]

Remediation[edit]

Algae has shown selectivity for strontium in studies, where most plants used in bioremediation have not shown selectivity between calcium and strontium, often becoming saturated with calcium, which is greater in quantity and also present in nuclear waste.[99]

Researchers have looked at the bioaccumulation of strontium by Scenedesmus spinosus (algae) in simulated wastewater. The study claims a highly selective biosorption capacity for strontium of S. spinosus, suggesting that it may be appropriate for use of nuclear wastewater.[101]

A study of the pond alga Closterium moniliferum using non-radioactive strontium found that varying the ratio of barium to strontium in water improved strontium selectivity.[99]

See also[edit]

References[edit]

  1. ^ Greenwood and Earnshaw, p. 112
  2. ^ «Standard Atomic Weights: Strontium». CIAAW. 1969.
  3. ^ «Periodic Table of Elements: Strontium — Sr (EnvironmentalChemistry.com)». environmentalchemistry.com. Retrieved 7 December 2022.
  4. ^ Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). «High-Resolution Infrared Emission Spectrum of Strontium Monofluoride» (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
  5. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  6. ^ a b «Mineral Resource of the Month: Strontium». U.S. Geological Survey. 8 December 2014. Retrieved 16 August 2015.
  7. ^ a b Greenwood and Earnshaw, pp. 112–13
  8. ^ a b c d e f C. R. Hammond The elements (pp. 4–35) in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  9. ^ Ropp, Richard C. (31 December 2012). Encyclopedia of the Alkaline Earth Compounds. p. 16. ISBN 978-0-444-59553-9.
  10. ^ a b c Greenwood and Earnshaw, p. 111
  11. ^ Greenwood and Earnshaw, p. 119
  12. ^ Greenwood and Earnshaw, p. 121
  13. ^ Greenwood and Earnshaw, p. 117
  14. ^ Greenwood and Earnshaw, p. 115
  15. ^ Greenwood and Earnshaw, p. 124
  16. ^ Miyoshi, N.; Kamiura, K.; Oka, H.; Kita, A.; Kuwata, R.; Ikehara, D.; Wada, M. (2004). «The Barbier-Type Alkylation of Aldehydes with Alkyl Halides in the Presence of Metallic Strontium». Bulletin of the Chemical Society of Japan. 77 (2): 341. doi:10.1246/bcsj.77.341.
  17. ^ Miyoshi, N.; Ikehara, D.; Kohno, T.; Matsui, A.; Wada, M. (2005). «The Chemistry of Alkylstrontium Halide Analogues: Barbier-type Alkylation of Imines with Alkyl Halides». Chemistry Letters. 34 (6): 760. doi:10.1246/cl.2005.760.
  18. ^ Miyoshi, N.; Matsuo, T.; Wada, M. (2005). «The Chemistry of Alkylstrontium Halide Analogues, Part 2: Barbier-Type Dialkylation of Esters with Alkyl Halides». European Journal of Organic Chemistry. 2005 (20): 4253. doi:10.1002/ejoc.200500484.
  19. ^ Greenwood and Earnshaw, pp. 136–37
  20. ^ Greenwood and Earnshaw, p. 19
  21. ^ Halperin, Edward C.; Perez, Carlos A.; Brady, Luther W. (2008). Perez and Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins. pp. 1997–. ISBN 978-0-7817-6369-1. Retrieved 19 July 2011.
  22. ^ a b Bauman, Glenn; Charette, Manya; Reid, Robert; Sathya, Jinka (2005). «Radiopharmaceuticals for the palliation of painful bone metastases – a systematic review». Radiotherapy and Oncology. 75 (3): 258.E1–258.E13. doi:10.1016/j.radonc.2005.03.003. PMID 16299924.
  23. ^ «Strontium | Radiation Protection | US EPA». EPA. 24 April 2012. Retrieved 18 June 2012.
  24. ^ «Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter I – The site and accident sequence» (PDF). OECD-NEA. 2002. Retrieved 3 June 2015.
  25. ^ Murray, W. H. (1977). The Companion Guide to the West Highlands of Scotland. London: Collins. ISBN 978-0-00-211135-5.
  26. ^ Crawford, Adair (1790). «On the medicinal properties of the muriated barytes». Medical Communications. 2: 301–59.
  27. ^ Sulzer, Friedrich Gabriel; Blumenbach, Johann Friedrich (1791). «Über den Strontianit, ein Schottisches Foßil, das ebenfalls eine neue Grunderde zu enthalten scheint». Bergmännisches Journal: 433–36.
  28. ^ «Thomas Charles Hope, MD, FRSE, FRS (1766-1844) — School of Chemistry». www.chem.ed.ac.uk.
  29. ^ Doyle, W.P. «Thomas Charles Hope, MD, FRSE, FRS (1766–1844)». The University of Edinburgh. Archived from the original on 2 June 2013.
  30. ^ Although Thomas C. Hope had investigated strontium ores since 1791, his research was published in: Hope, Thomas Charles (1798). «Account of a mineral from Strontian and of a particular species of earth which it contains». Transactions of the Royal Society of Edinburgh. 4 (2): 3–39. doi:10.1017/S0080456800030726. S2CID 251579302.
  31. ^ Murray, T. (1993). «Elementary Scots: The Discovery of Strontium». Scottish Medical Journal. 38 (6): 188–89. doi:10.1177/003693309303800611. PMID 8146640. S2CID 20396691.
  32. ^ Hope, Thomas Charles (1794). «Account of a mineral from Strontian and of a particular species of earth which it contains». Transactions of the Royal Society of Edinburgh. 3 (2): 141–49. doi:10.1017/S0080456800020275. S2CID 251579281.
  33. ^ Davy, H. (1808). «Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia». Philosophical Transactions of the Royal Society of London. 98: 333–70. Bibcode:1808RSPT…98..333D. doi:10.1098/rstl.1808.0023.
  34. ^ Taylor, Stuart (19 June 2008). «Strontian gets set for anniversary». Lochaber News. Archived from the original on 13 January 2009.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  35. ^ Weeks, Mary Elvira (1932). «The discovery of the elements: X. The alkaline earth metals and magnesium and cadmium». Journal of Chemical Education. 9 (6): 1046–57. Bibcode:1932JChEd…9.1046W. doi:10.1021/ed009p1046.
  36. ^ Partington, J. R. (1942). «The early history of strontium». Annals of Science. 5 (2): 157. doi:10.1080/00033794200201411.
  37. ^ Partington, J. R. (1951). «The early history of strontium. Part II». Annals of Science. 7: 95. doi:10.1080/00033795100202211.
  38. ^ Many other early investigators examined strontium ore, among them: (1) Martin Heinrich Klaproth, «Chemische Versuche über die Strontianerde» (Chemical experiments on strontian ore), Crell’s Annalen (September 1793) no. ii, pp. 189–202 ; and «Nachtrag zu den Versuchen über die Strontianerde» (Addition to the Experiments on Strontian Ore), Crell’s Annalen (February 1794) no. i, p. 99 ; also (2) Kirwan, Richard (1794). «Experiments on a new earth found near Stronthian in Scotland». The Transactions of the Royal Irish Academy. 5: 243–56.
  39. ^ Fachgruppe Geschichte Der Chemie, Gesellschaft Deutscher Chemiker (2005). Metalle in der Elektrochemie. pp. 158–62.
  40. ^ Heriot, T. H. P (2008). «strontium saccharate process». Manufacture of Sugar from the Cane and Beet. ISBN 978-1-4437-2504-0.
  41. ^ Börnchen, Martin. «Der Strontianitbergbau im Münsterland». Archived from the original on 11 December 2014. Retrieved 9 November 2010.
  42. ^ Martin, Josèm; Ortega-Huertas, Miguel; Torres-Ruiz, Jose (1984). «Genesis and evolution of strontium deposits of the granada basin (Southeastern Spain): Evidence of diagenetic replacement of a stromatolite belt». Sedimentary Geology. 39 (3–4): 281. Bibcode:1984SedG…39..281M. doi:10.1016/0037-0738(84)90055-1.
  43. ^ «Chain Fission Yields». iaea.org.
  44. ^ Nordin, B. E. (1968). «Strontium Comes of Age». British Medical Journal. 1 (5591): 566. doi:10.1136/bmj.1.5591.566. PMC 1985251.
  45. ^ Turekian, K. K.; Wedepohl, K. H. (1961). «Distribution of the elements in some major units of the Earth’s crust». Geological Society of America Bulletin. 72 (2): 175–92. Bibcode:1961GSAB…72..175T. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
  46. ^ a b Ober, Joyce A. «Mineral Commodity Summaries 2010: Strontium» (PDF). United States Geological Survey. Retrieved 14 May 2010.
  47. ^ Heuel-Fabianek, B. (2014). «Partition Coefficients (Kd) for the Modelling of Transport Processes of Radionuclides in Groundwater» (PDF). Berichte des Forschungszentrums Jülich. 4375. ISSN 0944-2952.
  48. ^ Stringfield, V. T. (1966). «Strontium». Artesian water in Tertiary limestone in the southeastern States. Geological Survey Professional Paper. United States Government Printing Office. pp. 138–39.
  49. ^ Angino, Ernest E.; Billings, Gale K.; Andersen, Neil (1966). «Observed variations in the strontium concentration of sea water». Chemical Geology. 1: 145. Bibcode:1966ChGeo…1..145A. doi:10.1016/0009-2541(66)90013-1.
  50. ^ Sun, Y.; Sun, M.; Lee, T.; Nie, B. (2005). «Influence of seawater Sr content on coral Sr/Ca and Sr thermometry». Coral Reefs. 24: 23. doi:10.1007/s00338-004-0467-x. S2CID 31543482.
  51. ^ Kogel, Jessica Elzea; Trivedi, Nikhil C.; Barker, James M. (5 March 2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses. ISBN 978-0-87335-233-8.
  52. ^ a b Ober, Joyce A. «Mineral Commodity Summaries 2015: Strontium» (PDF). United States Geological Survey. Retrieved 26 March 2016.
  53. ^ Kemal, Mevlüt; Arslan, V.; Akar, A.; Canbazoglu, M. (1996). Production of SrCO3 by black ash process: Determination of reductive roasting parameters. p. 401. ISBN 978-90-5410-829-0.
  54. ^ a b c d MacMillan, J. Paul; Park, Jai Won; Gerstenberg, Rolf; Wagner, Heinz; Köhler, Karl and Wallbrecht, Peter (2002) «Strontium and Strontium Compounds» in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a25_321.
  55. ^ «Cathode Ray Tube Glass-To-Glass Recycling» (PDF). ICF Incorporated, USEP Agency. Archived from the original (PDF) on 19 December 2008. Retrieved 7 January 2012.
  56. ^ Ober, Joyce A.; Polyak, Désirée E. «Mineral Yearbook 2007: Strontium» (PDF). United States Geological Survey. Retrieved 14 October 2008.
  57. ^ Méar, F.; Yot, P.; Cambon, M.; Ribes, M. (2006). «The characterization of waste cathode-ray tube glass». Waste Management. 26 (12): 1468–76. doi:10.1016/j.wasman.2005.11.017. PMID 16427267.
  58. ^ Price, T. Douglas; Schoeninger, Margaret J.; Armelagos, George J. (1985). «Bone chemistry and past behavior: an overview». Journal of Human Evolution. 14 (5): 419–47. doi:10.1016/S0047-2484(85)80022-1.
  59. ^ Steadman, Luville T.; Brudevold, Finn; Smith, Frank A. (1958). «Distribution of strontium in teeth from different geographic areas». The Journal of the American Dental Association. 57 (3): 340–44. doi:10.14219/jada.archive.1958.0161. PMID 13575071.
  60. ^ Schweissing, Matthew Mike; Grupe, Gisela (2003). «Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria». Journal of Archaeological Science. 30 (11): 1373–83. doi:10.1016/S0305-4403(03)00025-6.
  61. ^ Dasch, J. (1969). «Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks». Geochimica et Cosmochimica Acta. 33 (12): 1521–52. Bibcode:1969GeCoA..33.1521D. doi:10.1016/0016-7037(69)90153-7.
  62. ^ a b Krom, M. D.; Cliff, R.; Eijsink, L. M.; Herut, B.; Chester, R. (1999). «The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes». Marine Geology. 155 (3–4): 319–30. Bibcode:1999MGeol.155..319K. doi:10.1016/S0025-3227(98)00130-3.
  63. ^ Benson, L.; Cordell, L.; Vincent, K.; Taylor, H.; Stein, J.; Farmer, G. & Kiyoto, F. (2003). «Ancient maize from Chacoan great houses: where was it grown?». Proceedings of the National Academy of Sciences. 100 (22): 13111–15. Bibcode:2003PNAS..10013111B. doi:10.1073/pnas.2135068100. PMC 240753. PMID 14563925.
  64. ^ English NB; Betancourt JL; Dean JS; Quade J. (October 2001). «Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico». Proc Natl Acad Sci USA. 98 (21): 11891–96. Bibcode:2001PNAS…9811891E. doi:10.1073/pnas.211305498. PMC 59738. PMID 11572943.
  65. ^ Barnett-Johnson, Rachel; Grimes, Churchill B.; Royer, Chantell F.; Donohoe, Christopher J. (2007). «Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags». Canadian Journal of Fisheries and Aquatic Sciences. 64 (12): 1683–92. doi:10.1139/F07-129.
  66. ^ Porder, S.; Paytan, A. & E.A. Hadly (2003). «Mapping the origin of faunal assemblages using strontium isotopes». Paleobiology. 29 (2): 197–204. doi:10.1666/0094-8373(2003)029<0197:MTOOFA>2.0.CO;2. S2CID 44206756.
  67. ^ «Chemistry of Firework Colors – How Fireworks Are Colored». Chemistry.about.com. 10 April 2012. Retrieved 14 April 2012.
  68. ^ «Ferrite Permanent Magnets». Arnold Magnetic Technologies. Archived from the original on 14 May 2012. Retrieved 18 January 2014.
  69. ^ «Barium Carbonate». Chemical Products Corporation. Archived from the original on 6 October 2014. Retrieved 18 January 2014.
  70. ^ Ghom (1 December 2005). Textbook of Oral Medicine. p. 885. ISBN 978-81-8061-431-6.
  71. ^ CartlidgeMar. 1, Edwin; 2018; Pm, 12:00 (28 February 2018). «With better atomic clocks, scientists prepare to redefine the second». Science | AAAS. Retrieved 10 February 2019.{{cite web}}: CS1 maint: numeric names: authors list (link)
  72. ^ «FDA ANDA Generic Drug Approvals». Food and Drug Administration.
  73. ^ «What are the fuels for radioisotope thermoelectric generators?». qrg.northwestern.edu.
  74. ^ Doyle, James (30 June 2008). Nuclear safeguards, security and nonproliferation: achieving security with technology and policy. p. 459. ISBN 978-0-7506-8673-0.
  75. ^ O’Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.; Howe, S. D.; Atkinson, H. V. (2008). «Safe radioisotope thermoelectric generators and heat sources for space applications». Journal of Nuclear Materials. 377 (3): 506–21. Bibcode:2008JNuM..377..506O. doi:10.1016/j.jnucmat.2008.04.009.
  76. ^ «Strontium 343730». Sigma-Aldrich.
  77. ^ De Deckker, Patrick (2004). «On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios». Hydrobiologia. 517 (1–3): 1. doi:10.1023/B:HYDR.0000027333.02017.50. S2CID 42526332.
  78. ^ Pors Nielsen, S. (2004). «The biological role of strontium». Bone. 35 (3): 583–88. doi:10.1016/j.bone.2004.04.026. PMID 15336592.
  79. ^ Cabrera, Walter E.; Schrooten, Iris; De Broe, Marc E.; d’Haese, Patrick C. (1999). «Strontium and Bone». Journal of Bone and Mineral Research. 14 (5): 661–68. doi:10.1359/jbmr.1999.14.5.661. PMID 10320513. S2CID 32627349.
  80. ^ Emsley, John (2011). Nature’s building blocks: an A–Z guide to the elements. Oxford University Press. p. 507. ISBN 978-0-19-960563-7.
  81. ^ Agency for Toxic Substances and Disease Registry (21 January 2015). «ATSDR – Public Health Statement: Strontium». cdc.gov. Agency for Toxic Substances and Disease Registry. Retrieved 17 November 2016.
  82. ^ Tiller, B. L. (2001), «4.5 Fish and Wildlife Surveillance» (PDF), Hanford Site 2001 Environmental Report, DOE, archived from the original (PDF) on 11 May 2013, retrieved 14 January 2014
  83. ^ Driver, C. J. (1994), Ecotoxicity Literature Review of Selected Hanford Site Contaminants (PDF), DOE, doi:10.2172/10136486, OSTI 10136486, retrieved 14 January 2014
  84. ^ «Freshwater Ecology and Human Influence». Area IV Envirothon. Archived from the original on 1 January 2014. Retrieved 14 January 2014.
  85. ^ «Radioisotopes That May Impact Food Resources» (PDF). Epidemiology, Health and Social Services, State of Alaska. Archived from the original on 21 August 2014. Retrieved 14 January 2014.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  86. ^ «Human Health Fact Sheet: Strontium» (PDF). Argonne National Laboratory. October 2001. Archived from the original (PDF) on 24 January 2014. Retrieved 14 January 2014.
  87. ^ «Biological Half-life». HyperPhysics. Retrieved 14 January 2014.
  88. ^ Glasstone, Samuel; Dolan, Philip J. (1977). «XII: Biological Effects» (PDF). The effects of Nuclear Weapons. p. 605. Retrieved 14 January 2014.
  89. ^ Shagina, N. B.; Bougrov, N. G.; Degteva, M. O.; Kozheurov, V. P.; Tolstykh, E. I. (2006). «An application of in vivo whole body counting technique for studying strontium metabolism and internal dose reconstruction for the Techa River population». Journal of Physics: Conference Series. 41 (1): 433–40. Bibcode:2006JPhCS..41..433S. doi:10.1088/1742-6596/41/1/048. S2CID 32732782.
  90. ^ Meunier P. J.; Roux C.; Seeman E.; Ortolani, S.; Badurski, J. E.; Spector, T. D.; Cannata, J.; Balogh, A.; Lemmel, E. M.; Pors-Nielsen, S.; Rizzoli, R.; Genant, H. K.; Reginster, J. Y. (January 2004). «The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis» (PDF). New England Journal of Medicine. 350 (5): 459–68. doi:10.1056/NEJMoa022436. hdl:2268/7937. PMID 14749454.
  91. ^ Reginster JY; Seeman E; De Vernejoul MC; Adami, S.; Compston, J.; Phenekos, C.; Devogelaer, J. P.; Diaz Curiel, M.; Sawicki, A.; Goemaere, S.; Sorensen, O. H.; Felsenberg, D.; Meunier, P. J. (May 2005). «Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study» (PDF). The Journal of Clinical Endocrinology & Metabolism. 90 (5): 2816–22. doi:10.1210/jc.2004-1774. PMID 15728210.
  92. ^ «Strontium ranelate: cardiovascular risk – restricted indication and new monitoring requirements». Medicines and Healthcare products Regulatory Agency, UK. March 2014.
  93. ^ Price, Charles T.; Langford, Joshua R.; Liporace, Frank A. (5 April 2012). «Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet». Open Orthop. J. 6: 143–49. doi:10.2174/1874325001206010143. PMC 3330619. PMID 22523525.
  94. ^ a b «Strontium». WebMD. Retrieved 20 November 2017.
  95. ^ a b «Strontium for Osteoporosis». WebMD. Retrieved 20 November 2017.
  96. ^ Hahn, G.S. (1999). «Strontium Is a Potent and Selective Inhibitor of Sensory Irritation» (PDF). Dermatologic Surgery. 25 (9): 689–94. doi:10.1046/j.1524-4725.1999.99099.x. PMID 10491058. Archived from the original (PDF) on 31 May 2016.
  97. ^ Hahn, G.S. (2001). Anti-irritants for Sensory Irritation. Handbook of Cosmetic Science and Technology. p. 285. ISBN 978-0-8247-0292-2.
  98. ^ Kim, Hyun Jeong; Kim, Min Jung; Jeong, Se Kyoo (2006). «The Effects of Strontium Ions on Epidermal Permeability Barrier». The Korean Dermatological Association, Korean Journal of Dermatology. 44 (11): 1309.
  99. ^ a b c Potera, Carol (2011). «HAZARDOUS WASTE: Pond Algae Sequester Strontium-90». Environ Health Perspect. 119 (6): A244. doi:10.1289/ehp.119-a244. PMC 3114833. PMID 21628117.
  100. ^ Boehm, BO; Rosinger, S; Belyi, D; Dietrich, JW (18 August 2011). «The parathyroid as a target for radiation damage». The New England Journal of Medicine. 365 (7): 676–8. doi:10.1056/NEJMc1104982. PMID 21848480.
  101. ^ Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan (2014). «Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models». Int J Environ Res Public Health. 11 (6): 6099–6118. doi:10.3390/ijerph110606099. PMC 4078568. PMID 24919131.

Bibliography[edit]

  • Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.

External links[edit]

  • WebElements.com – Strontium
  • Strontium at The Periodic Table of Videos (University of Nottingham)
Стронций
Мягкий серебристо-белый металл
Стронций
Название, символ, номер Стронций / Strontium (Sr), 38
Атомная масса
(молярная масса)
87,62(1) а. е. м. (г/моль)
Электронная конфигурация [Kr] 5s2
Радиус атома 215 пм
Ковалентный радиус 191 пм
Радиус иона (+2e) 112 пм
Электроотрицательность 0,95 (шкала Полинга)
Электродный потенциал −2,89
Степени окисления 2
Энергия ионизации
(первый электрон)
 549,0 (5,69) кДж/моль (эВ)
Плотность (при н. у.) 2,54 г/см³
Температура плавления 1042 K
Температура кипения 1657 K
Уд. теплота плавления 9,20 кДж/моль
Уд. теплота испарения 144 кДж/моль
Молярная теплоёмкость 26,79 Дж/(K·моль)
Молярный объём 33,7 см³/моль
Структура решётки кубическая гранецентрированая
Параметры решётки 6,080 Å
Температура Дебая 147 K
Теплопроводность (300 K) (35,4) Вт/(м·К)
Номер CAS 7440-24-6

Стронций — химический элемент с атомным номером 38. Принадлежит к 2-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе II группы, или к группе IIA), находится в пятом периоде таблицы. Атомная масса элемента 87,62(1) а. е. м.. Обозначается символом Sr (от лат. Strontium). Простое вещество стронций — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе
    • 2.1 Месторождения
  • 3 Получение
  • 4 Физические свойства
  • 5 Химические свойства
  • 6 Применение
    • 6.1 Металлургия
    • 6.2 Металлотермия
    • 6.3 Магнитные материалы
    • 6.4 Пиротехника
    • 6.5 Ядерная энергетика
    • 6.6 Высокотемпературная сверхпроводимость
    • 6.7 Вакуумные электронные приборы
    • 6.8 Химические источники тока
    • 6.9 Медицина
  • 7 Биологическая роль
    • 7.1 Влияние на организм человека
  • 8 Изотопы
    • 8.1 Стронций-90

Стронций

История и происхождение названия

Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Стронти́ан (англ. Strontian, гэльск. Sròn an t-Sìthein), давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено в 1787 году Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году.

Нахождение в природе

В свободном виде стронций не встречается ввиду его высокой химической активности. Он входит в состав около 40 минералов. Из них наиболее важный — целестин SrSO4 (51,2 % Sr). Добывают также стронцианит SrCO3 (64,4 % Sr). Эти два минерала имеют промышленное значение. Чаще всего стронций присутствует как примесь в различных кальциевых минералах.

Среди прочих минералов стронция:

  • SrAl3(AsO4)SO4(OH)6 — кеммлицит;
  • Sr2Al(CO3)F5 — стенонит;
  • SrAl2(CO3)2(OH)4·H2O — стронциодрессерит;
  • SrAl3(PO4)2(OH)5·H2O  — гойясит;
  • Sr2Al(PO4)2OH — гудкенит;
  • SrAl3(PO4)SO·4(OH)6 — сванбергит;
  • Sr(AlSiO4)2 — слосонит;
  • Sr(AlSi3O8)2·5H2O  — брюстерит;
  • Sr5(AsO4)3F — ферморит;
  • Sr2(B14O23)·8H2O  — стронциоджинорит;
  • Sr2(B5O9)Cl·H2O  — стронциохильгардит;
  • SrFe3(PO4)2(OH)5·H2O  — люсуньит;
  • SrMn2(VO4)24H2O  — сантафеит;
  • Sr5(PO4)3OH — беловит;
  • SrV(Si2O7) — харадаит;
  • SrB2Si2O8 — пековит.

По уровню физической распространённости в земной коре стронций занимает 23-е место — его массовая доля составляет 0,014 % (в литосфере — 0,045 %). Мольная доля металла в земной коре 0,0029 %.
Стронций содержится в морской воде (8 мг/л).

Месторождения

Известны месторождения в Калифорнии, Аризоне (США); Новой Гранаде; Турции, Иране, Китае, Мексике, Канаде, Малави.

В России обнаружены, но в настоящее время не разрабатываются месторождения стронциевых руд: Синие камни (Дагестан), Мазуевское (Пермский край), Табольское (Тульская область), а также месторождения в Бурятии, Иркутской области, Красноярском крае, Якутии и на Курильских островах.

Получение

Существуют три способа получения металлического стронция:

  • термическое разложение некоторых соединений;
  • электролиз;
  • восстановление оксида или хлорида.

Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.

Электролитическое получение стронция электролизом расплава смеси SrCl2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к лёгкому воспламенению.

Физические свойства

Стронций — мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.

Полиморфен — известны три его модификации. До 215 °С устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605 °С — гексагональная (β-Sr), выше 605 °С — кубическая объёмноцентрированная модификация (γ-Sr).

Температура плавления: 768 °С, температура кипения: 1390 °С.

Химические свойства

Стронций в своих соединениях всегда проявляет степень окисления +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В). Энергично реагирует с водой, образуя гидроксид:

 Sr + 2H2O → Sr(OH)2 + H2

Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H2SO4, HNO3) реагирует слабо.

Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой, помимо оксида SrO, всегда присутствуют пероксид SrO2 и нитрид Sr3N2. При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

Энергично реагирует с неметаллами — серой, фосфором, галогенами. Взаимодействует с водородом (выше 200 °С), азотом (выше 400 °С). Практически не реагирует со щелочами.

При высоких температурах реагирует с CO2, образуя карбид:

 5Sr + 2CO2 → SrC2 + 4SrO

Легкорастворимы соли стронция с анионами Cl, I, NO3. Соли с анионами F, SO42−, CO32−, PO43− малорастворимы.

Из-за высокой химической активности стронция его хранят в закрытой стеклянной посуде под слоем керосина.

Применение

Основные области применения стронция и его химических соединений — это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.

Металлургия

Стронций применяется для легирования меди и некоторых её сплавов, для введения в аккумуляторные свинцовые сплавы, для десульфурации чугуна, меди и сталей.

Металлотермия

Стронций чистотой 99,99—99,999 % применяется для восстановления урана.

Магнитные материалы

Магнитотвёрдые ферриты стронция широко употребляются в качестве материалов для производства постоянных магнитов.

Пиротехника

В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в карминово-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.

Ядерная энергетика

Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и, в частности, разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.

Высокотемпературная сверхпроводимость

Оксид стронция применяется в качестве компонента сверхпроводящих керамик.

Вакуумные электронные приборы

Оксид стронция, в составе твёрдого раствора оксидов других щёлочноземельных металлов — бария и кальция (BaO, CaO), используется в качестве активного слоя катодов косвенного накала в вакуумных электронных приборах.

Химические источники тока

Фторид стронция используется в качестве компонента твёрдотельных фторионных аккумуляторных батарей с большой энергоёмкостью и энергоплотностью.

Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий — для анодов гальванических элементов.

Медицина

Изотоп с атомной массой 89, имеющий период полураспада 50,55 суток, применяется (в виде хлорида) в качестве противоопухолевого средства.

Биологическая роль

Влияние на организм человека

Не следует путать действие на организм человека природного стронция (не радиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция.

Стронций природный — составная часть микроорганизмов, растений и животных. Стронций является аналогом кальция, поэтому он наиболее эффективно откладывается в костной ткани. В мягких тканях задерживается менее 1 %. Стронций с большой скоростью накапливается в организме детей до четырёхлетнего возраста, когда идёт активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы.

Пути попадания:

  1. вода (предельно допустимая концентрация стронция в воде в РФ — 8 мг/л, а в США — 4 мг/л)
  2. пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)
  3. интратрахеальное поступление
  4. через кожу (накожное)
  5. ингаляционное (через лёгкие)
  6. люди, работа которых связана со стронцием (в медицине радиоактивный стронций используют в качестве аппликаторов при лечении кожных и глазных болезней.

Основные области применения:

  • природного стронция — радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, производство магнитных материалов;
  • радиоактивного — производство атомных электрических батарей, атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и другое).

Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина D, неполноценное питание, нарушения соотношения микроэлементов таких, как барий, молибден, селен и другие). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» — поражение и деформацию суставов, задержку роста и другие нарушения.

Радиоактивный стронций практически всегда негативно воздействует на организм человека. Откладываясь в костях, он облучает костную ткань и костный мозг, что увеличивает риск заболевания злокачественными опухолями костей, а при поступлении большого количества может вызвать лучевую болезнь.

Изотопы

Основная статья: Изотопы стронция

В природе стронций встречается в виде смеси четырёх стабильных изотопов 84Sr (0,56(2) %), 86Sr (9,86(20) %), 87Sr (7,00(20) %), 88Sr (82,58(35) %). Проценты указаны по числу атомов. Известны также радиоактивные изотопы стронция с массовым числом от 73 до 105. Лёгкие изотопы (до 85Sr включительно, а также изомер 87mSr) испытывают электронный захват, распадаясь в соответствующие изотопы рубидия. Тяжёлые изотопы, начиная с 89Sr, испытывают β-распад, переходя в соответствующие изотопы иттрия. Наиболее долгоживущим и важным в практическом плане среди радиоактивных изотопов стронция является 90Sr.

Стронций-90

Основная статья: Стронций-90

Изотоп стронция 90Sr является радиоактивным с периодом полураспада 28,78 года. 90Sr претерпевает β-распад, переходя в радиоактивный 90Y (период полураспада 64 часа), который, в свою очередь, распадается в стабильный цирконий-90. Полный распад стронция-90, попавшего в окружающую среду, произойдёт лишь через несколько сотен лет.

90Sr образуется при ядерных взрывах и внутри ядерного реактора во время его работы. Образование стронция-90 при этом происходит как непосредственно в результате деления ядер урана и плутония, так и в результате бета-распада короткоживущих ядер с массовым числом A = 90 (в цепочке 90Se → 90Br → 90Kr → 90Rb → 90Sr), образующихся при делении.

Применяется в производстве радиоизотопных источников энергии в виде титаната стронция (плотность 4,8 г/см³, а энерговыделение — около 0,54 Вт/см³).

Периодическая система химических элементов Д. И. Менделеева

  1 2                             3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Uue Ubn Ubu Ubb Ubt Ubq Ubp Ubh Ubs  

Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Соединения стронция

Алюминат стронция (SrAl2O4)
Борид стронция (SrB6)
Бромат стронция Sr(BrO3)2
Бромид стронция (SrBr2)
Гидрид стронция (SrH2)
Гидрокарбонат стронция (Sr(HCO3)2)
Гидроксид стронция (Sr(OH)2)
Йодид стронция (SrI2)
Карбид стронция (SrC2)
Карбонат стронция (SrCO3)
Нитрат стронция (Sr(NO3)2)
Нитрид стронция (Sr3N2)
Оксид стронция (SrO)
Ортоарсенат стронция (Sr3(AsO4)2)
Ортосиликат стронция (Sr2SiO4)
Фосфат стронция (Sr3(PO4)2)
Пероксид стронция (SrO2)
Перхлорат стронция (Sr(ClO4)2)
Полисульфид стронция (SrS4)
Рутенат стронция (Sr2RuO4)
Силицид стронция (Sr2Si)
Сульфат стронция (SrSO4)
Сульфид стронция (SrS)
Сульфит стронция (SrSO3)
Титанат стронция (SrTiO3)
Феррит стронция (Sr(FeO2)2) Фосфид стронция (Sr3P2)
Фторид стронция (SrF2)
Хлорид стронция (SrCl2)
38 РубидийСтронцийИттрий

Периодическая система элементов

38Sr

Cubic-face-centered.svg

Electron shell 038 Strontium.svg

Внешний вид простого вещества

Strontium destilled crystals.jpg
Мягкий серебристо-белый металл

Свойства атома
Имя, символ, номер

Стронций / Strontium (Sr), 38

Атомная масса
(молярная масса)

87,62 а. е. м. (г/моль)

Электронная конфигурация

[Kr] 5s2

Радиус атома

215 пм

Химические свойства
Ковалентный радиус

191 пм

Радиус иона

(+2e) 112 пм

Электроотрицательность

0,95 (шкала Полинга)

Электродный потенциал

−2,89

Степени окисления

2

Энергия ионизации
(первый электрон)

549,0 (5,69) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

2,54 г/см³

Температура плавления

1 042 K

Температура кипения

1657 K

Теплота плавления

9,20 кДж/моль

Теплота испарения

144 кДж/моль

Молярная теплоёмкость

26,79[1] Дж/(K·моль)

Молярный объём

33,7 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки

6,080 Å

Температура Дебая

[2] 147 K

Прочие характеристики
Теплопроводность

(300 K) (35,4) Вт/(м·К)

Стро́нций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе
    • 2.1 Месторождения
  • 3 Получение
  • 4 Физические свойства
  • 5 Химические свойства
  • 6 Применение
    • 6.1 Металлургия
    • 6.2 Металлотермия
    • 6.3 Магнитные материалы
    • 6.4 Пиротехника
    • 6.5 Атомноводородная энергетика
    • 6.6 Высокотемпературная сверхпроводимость
    • 6.7 Вакуумные электронные приборы
    • 6.8 Химические источники тока
    • 6.9 Медицина
  • 7 Биологическая роль
    • 7.1 Влияние на организм человека
  • 8 Изотопы
    • 8.1 Стронций-90
  • 9 Примечания
  • 10 Ссылки

История и происхождение названия

Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Строншиан, давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено в 1787 году Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году.

Нахождение в природе

В свободном виде стронций не встречается. Он входит в состав около 40 минералов. Из них наиболее важный — целестин SrSO4 (51,2 % Sr). Добывают также стронцианит SrCO3 (64,4 % Sr). Эти два минерала имеют промышленное значение. Чаще всего стронций присутствует как примесь в различных кальциевых минералах.

Среди прочих минералов стронция:

  • SrAl3(AsO4)SO4(OH)6 — кеммлицит;
  • Sr2Al(CO3)F5 — стенонит;
  • SrAl2(CO3)2(OH)4•Н2О — стронциодрессерит;
  • SrAl3(PO4)2(OH)5•Н2О — гойясит;
  • Sr2Al(PO4)2OH — гудкенит;
  • SrAl3(PO4)SO4(OH)6 — сванбергит;
  • Sr(AlSiO4)2 — слосонит;
  • Sr(AlSi3O8)2•5Н2О — брюстерит;
  • Sr5(AsO4)3F — ферморит;
  • Sr2(B14O23)•8Н2О — стронциоджинорит;
  • Sr2(B5O9)Cl•Н2О — стронциохильгардит;
  • SrFe3(PO4)2(OH)5•Н2О — люсуньит;
  • SrMn2(VO4)2•4Н2О — сантафеит;
  • Sr5(PO4)3OH — беловит;
  • SrV(Si2O7) — харадаит.

По уровню физической распространённости в земной коре стронций занимает 23-е место — его массовая доля составляет 0,014 % (в литосфере — 0,045 %). Мольная доля металла в земной коре 0,0029 %. Стронций содержится в морской воде (8 мг/л)[3].

В природе стронций встречается в виде смеси 4 стабильных изотопов 84Sr (0,56 %), 86Sr (9,86 %), 87Sr (7,02 %), 88Sr (82,56 %).

Месторождения

Известны месторождения стронция в Калифорнии, Аризоне (США); России и других странах[4][5].

Получение

Существуют 3 способа получения металлического стронция:

  • термическое разложение некоторых соединений
  • электролиз
  • восстановление оксида или хлорида

Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.

Электролитическое получение стронция электролизом расплава смеси SrCl2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.

Физические свойства

Стронций — мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.

Полиморфен — известны три его модификации. До 215оС устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605оС — гексагональная (β-Sr), выше 605оС — кубическая объемно-центрированная модификация (γ-Sr).

Температура плавления — 768оС, Температура кипения — 1390оС.

Химические свойства

Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В). Энергично реагирует с водой, образуя гидроксид:

mathsf{Sr + 2H_2O rightarrow Sr(OH)_2 + H_2uparrow}

Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H2SO4, HNO3) реагирует слабо.

Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO2 и нитрид Sr3N2. При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

Энергично реагирует с неметаллами — серой, фосфором, галогенами. Взаимодействует с водородом (выше 200оС), азотом (выше 400оС). Практически не реагирует с щелочами.

При высоких температурах реагирует с CO2, образуя карбид:

mathsf{5Sr + 2CO_2 rightarrow SrC_2 + 4SrO}

Легкорастворимы соли стронция с анионами Cl, I, NO3. Соли с анионами F, SO42−, CO32−, PO43− малорастворимы.

Применение

Основные области применения стронция и его химических соединений — это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.

Металлургия

Стронций применяется для легирования меди и некоторых её сплавов, для введения в аккумуляторные свинцовые сплавы, для десульфурации чугуна, меди и сталей.

Металлотермия

Стронций чистотой 99,99—99,999 % применяется для восстановления урана.

Магнитные материалы

Магнитотвёрдые ферриты стронция широко употребляются в качестве материалов для производства постоянных магнитов.

Пиротехника

В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в карминово-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.

Атомноводородная энергетика

Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.

Высокотемпературная сверхпроводимость

Оксид стронция применяется в качестве компонента сверхпроводящих керамик.

Вакуумные электронные приборы

Оксид стронция, в составе твёрдого раствора оксидов других щёлочноземельных металлов — бария и кальция (BaO, CaO), используется в качестве активного слоя катодов косвенного накала в вакуумных электронных приборах.

Химические источники тока

Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с большой энергоемкостью и энергоплотностью.

Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.

Медицина

Изотоп с атомной массой 89, имеющий период полураспада 50,55 суток, применяется (в виде хлорида) в качестве противоопухолевого средства[6][7].

Биологическая роль

Влияние на организм человека

Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция[8].

Стронций природный — составная часть микроорганизмов, растений и животных. Стронций является аналогом кальция, поэтому он наиболее эффективно откладывается в костной ткани. В мягких тканях задерживается менее 1 %. Стронций с большой скоростью накапливается в организме детей до четырёхлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы.

Пути попадания:

  1. вода (предельно допустимая концентрация стронция в воде в РФ — 8 мг/л, а в США — 4 мг/л[8])
  2. пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)
  3. интратрахеальное поступление
  4. через кожу (накожное)
  5. ингаляционное (через лёгкие)
  6. люди, работа которых связана со стронцием (в медицине радиоактивный стронций используют в качестве аппликаторов при лечении кожных и глазных болезней. Основные области применения природного стронция — это радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, пр-во магнитных материалов, радиоактивного — пр-во атомных электрических батарей. атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и др.)

Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» — поражение и деформация суставов, задержка роста и другие нарушения.

Радиоактивный стронций практически всегда негативно воздействует на организм человека. Откладываясь в костной ткани, он облучает костную ткань и костный мозг, что увеличивает риск заболевания раком костного мозга, а при поступлении большого количества может вызвать лучевую болезнь.

Изотопы

Стронций-90

Изотоп стронция 90Sr является радиоактивным с периодом полураспада 28.9 лет. 90Sr претерпевает β-распад, переходя в радиоактивный 90Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90Sr образуется при ядерных взрывах и внутри ядерного реактора во время его работы.

Применяется в производстве радиоизотопных источников тока в виде титаната стронция (плотность 4,8 г/см³, а энерговыделение около 0,54 Вт/см³).

Примечания

  1. Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1995. — Т. 4. — С. 441. — 639 с. — 20 000 экз. — ISBN 5—85270—092—4
  2. Стронций на Integral Scientist Modern Standard Periodic Table
  3. J.P. Riley and Skirrow G. Chemical Oceanography V. I, 1965
  4. Рубидий — Свойства химических элементов
  5. NR2.Com.Ua: Пермская область. Пермские месторождения стронция могут вызвать снижение мировых цен на это полезное ископаемо / 22.08.00 / Новый Регион — Россия
  6. Журнал ABC — Стронция-89 хлорид — Стронция хлорид [89Sr]
  7. Диссертация на тему «Современная тактика системной радиотерапии хлоридом стронция-89 в комплексном лечении больных с метастатическим поражением костей.» автореферат по специал …
  8. 1 2 Токсикологические данные стронция

Ссылки

  • Стронций на Webelements
  • Стронций в Популярной библиотеке химических элементов
Периодическая система химических элементов Д. И. Менделеева
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
Щелочные металлы  Щёлочноземельные металлы  Лантаноиды Актиноиды Переходные металлы Другие металлы Металлоиды Другие неметаллы Галогены Инертные газы
 Просмотр этого шаблона Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Элементы расположены в порядке возрастания стандартного электродного потенциала.

Соединения стронция

Алюминат стронция (SrAl2O4) • Борид стронция (SrB6) • Бромат стронция Sr(BrO3)2 • Бромид стронция (SrBr2) • Гидрид стронция (SrH2) • Гидрокарбонат стронция (Sr(HCO3)2) • Гидроксид стронция (Sr(OH)2) • Иодид стронция (SrI2) • SrI2 • Карбид стронция (SrC2) • Карбонат стронция (SrCO3) • Нитрат стронция (Sr(NO3)2) • Нитрид стронция (Sr3N2) • Оксид стронция (SrO) • Ортоарсенат стронция (Sr3(AsO4)2) • Ортосиликат стронция (Sr2SiO4) • Фосфат стронция (Sr3(PO4)2) • Пероксид стронция (SrO2) • Перхлорат стронция (Sr(ClO4)2) • Полисульфид стронция (SrS4) • Рутенат стронция (Sr2RuO4) • Силицид стронция (Sr2Si) • Сульфат стронция (SrSO4) • Сульфид стронция (SrS) • Сульфит стронция (SrSO3) • Титанат стронция (SrTiO3) • Феррит стронция (Sr(FeO2)2) Фосфид стронция (Sr3P2) • Фторид стронция (SrF2) • Хлорид стронция (SrCl2)

Стронций

Стро́нций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

История и происхождение названия

Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Строншиан, давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено в 1787 году Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году.

Получение

Существуют 3 способа получения металлического стронция:

1. термическое разложение некоторых соединений
2. электролиз
3. восстановление оксида или хлорида

Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.

Электролитическое получение стронция электролизом расплава смеси SrCl2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.

Химические свойства

Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В). Энергично реагирует с водой, образуя гидроксид:

Sr + 2H2O = Sr(OH)2 + H2

Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H2SO4, HNO3) реагирует слабо.

Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO2 и нитрид Sr3N2. При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

Энергично реагирует с неметаллами — серой, фосфором, галогенами. Взаимодействует с водородом (выше 200оС), азотом (выше 400оС). Практически не реагирует с щелочами.

При высоких температурах реагирует с CO2, образуя карбид:

5Sr + 2CO2 = SrC2 + 4SrO

Легкорастворимы соли стронция с анионами Cl, I, NO3. Соли с анионами F, SO42-, CO32-, PO43- малорастворимы.


Источник: Википедия

Другие заметки по химии

Физические свойства

Стронций Sr это щелочноземельный металл. Светло-желтый, ковкий. Реакционноспособный; Сильный восстановитель.

Относительная молекулярная масса Mr = 87,62; относительная плотность для твердого и жидкого состояния d = 2,63; tпл = 768º C; tкип = 1390º C.

Способ получения 

1. В результате реакции между оксидом стронция и алюминием при 1200º С образуются стронций и алюминат стронция :

4SrO + 2Al = 3Sr + Sr(AlO2)2

2. Хлорид стронция взаимодействует с алюминием при 600 — 700º С образуя стронций и хлорид стронция:

3SrCl2 + 2Al = 3Sr + 2AlCl3

3. В результате электролиза жидкого хлорида стронция образуется стронций и хлор:

SrCl2 = Sr + Cl2

4. Сульфид стронция разлагается при температуре выше 2000º С с образованием стронция и серы:

SrS = Sr + S

Качественная реакция

Окрашивает пламя газовой горелки в ярко-красный цвет.

Химические свойства

1. Стронций — сильный восстановитель. Поэтому он реагирует почти со всеми неметаллами:

1.1. Стронций взаимодействует с азотом при 450 — 500º С образуя нитрид стронция:

3Sr + N2 = Sr3N2

1.2. Стронций сгорает в кислороде (воздухе) при выше 250º С с образованием оксида стронция:

2Sr + O2 = 2SrO

1.3. Стронций активно реагирует при 200 — 400º С с хлором. При этом образуется хлорид стронция:

Sr + Cl2 = SrCl2

1.4. С водородом стронций реагирует при температуре 200 — 500º C с образованием гидрида стронция:

Sr + H2 = SrH2

1.5. Стронций вступает в реакцию при 500º С с углеродом и образует карбид стронция:

Sr + 2C = SrC2

2. Стронций активно взаимодействует со сложными веществами:

2.1. Стронций реагирует при комнатной температуре  с водой. Взаимодействие стронция с водой приводит к образованию гидроксида стронция и газа водорода:

Sr + 2H2O = Sr(OH)2↓ + H2↑,

2.2. Стронций взаимодействует с кислотами:

2.2.1. Стронций реагирует с разбавленной соляной кислотой, при этом образуются хлорид стронция и водород:

Sr  +  2HCl  =  SrCl2  +  H2

2.2.2. Реагируя с разбавленной азотной кислотой стронций образует нитрат стронция, оксид азота (I) и воду:

4Sr + 10HNO3= 4Sr(NO3)2 + N2O↑ + 5H2O,

а если стронций будет взаимодействовать с очень разбавленной азотной кислотой, то на выходе будет образовываться нитрат стронция, нитрат аммония и вода:

4Sr + 10HNO3 = 4Sr(NO3)2 + NH4NO3 + 3H2O

2.3. Стронций вступает в реакцию с газом аммиаком при 600 — 650º С. В результате данной реакции образуется нитрид стронция.

в результате взаимодействия жидкого аммиака и стронция в присутствии катализатора Pt происходит образование амида стронция и воды

Sr + 2NH3 = Sr(NH2)2↓ + H2

Стронций в таблице менделеева занимает 38 место, в 5 периоде.

Символ Sr
Номер 38
Атомный вес 87.6200000
Латинское название Strontium
Русское название Стронций

Как самостоятельно построить электронную конфигурацию? Ответ здесь

Электронная схема стронция

Sr: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2

Короткая запись:
Sr: [Kr]5s2

Одинаковую электронную конфигурацию имеют
атом стронция и
Rb-1, Zr+2, Tc+5

Порядок заполнения оболочек атома стронция (Sr) электронами:
1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d →
5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p.

На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ — до 6, на
‘d’ — до 10 и на ‘f’ до 14

Стронций имеет 38 электронов,
заполним электронные оболочки в описанном выше порядке:

2 электрона на 1s-подуровне

2 электрона на 2s-подуровне

6 электронов на 2p-подуровне

2 электрона на 3s-подуровне

6 электронов на 3p-подуровне

2 электрона на 4s-подуровне

10 электронов на 3d-подуровне

6 электронов на 4p-подуровне

2 электрона на 5s-подуровне

Степень окисления стронция

Атомы стронция в соединениях имеют степени окисления 2.

Степень окисления — это условный заряд атома в соединении: связь в молекуле
между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается
заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается,
то степень окисления положительная.

Ионы стронция

Валентность Sr

Атомы стронция в соединениях проявляют валентность II.

Валентность стронция характеризует способность атома Sr к образованию хмических связей.
Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании
химических соединений называются валентными электронами. Более обширное определение валентности это:

Число химических связей, которыми данный атом соединён с другими атомами

Валентность не имеет знака.

Квантовые числа Sr

Квантовые числа определяются последним электроном в конфигурации,
для атома Sr эти числа имеют значение N = 5, L = 0, Ml = 1, Ms = -½

Видео заполнения электронной конфигурации (gif):

Как записать электронную схему стронция

Результат:
электронная схема стронция

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать.
Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo.
Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии
ионизации для каждого последующего электрона.

Энергия ионизации Sr:
Eo = 549 кДж/моль

— Что такое ион читайте в статье.


Перейти к другим элементам таблицы менделеева

Где Sr в таблице менделеева?

Таблица Менделеева

Скачать таблицу менделеева в хорошем качестве

Этот металл полезен и опасен. Без стронция не обходятся металлурги, ядерщики, онкологи. Но зашкаливающая химическая активность требует осторожности при работе с ним.

Стронций

Содержание

  1. Что представляет собой
  2. История
  3. Стронций в природе
  4. Физико-химические характеристики
  5. Месторождения
  6. Технология получения
  7. Где используется
  8. Природный
  9. Радиоактивный
  10. Биологическое воздействие
  11. Стоимость

Что представляет собой

Стронций – это элемент №38 периодической системы Д. Менделеева:

  • Серебристый металл наделен утилитарными достоинствами: мягок (режется ножом), ковок, пластичен.
  • Зарегистрированы три модификации вещества. У каждой свой температурный диапазон и структура кристаллической решетки.
  • На Земле встречается в виде конгломерата изотопов. Четыре стабильны, 73-105 радиоактивны. Самый долгоживущий и важный для человека – стронций-90.
  • Относится к щелочноземельным металлам.

Международное обозначение-символ – Sr (Strontium).

История

Название, под которым элемент вошел в историю науки, происходит от минерала стронцианит.

Его добывали в Шотландии, недалеко от деревушки Стронтиан. Исследуя в 1787 году минерал, ученые Вильям Крюйкшенк и Адер Кроуфорд выделили оксид неизвестного металла.

Получение чистого стронция через 20 лет – заслуга патриарха британской химии Хемфри Дэви.

Стронций в природе

Химически гиперактивный стронций в свободном виде на планете не обнаружен.

Металл стронций

Это компонент четырех десятков минералов, чаще кальциевых. Из них промышленный интерес представляют стронцианит и целестин (стронция 64% и 51%). У них простой состав, облегчающий переработку сырья. Например, стронцианит – это карбонат стронция с формулой SrCO3.

Стронций – 23-й по распространенности химический элемент. Тонна земной коры содержит 450 г вещества, литр морской воды – 8 мг.

Физико-химические характеристики

Физические и химические свойства обусловили расположение  щелочноземельного металла в таблице элементов – между кальцием и барием:

  • По электрохимическим характеристикам он среди самых активных.
  • Растворяясь в аммиаке, делает жидкость густо-синей.
  • Нагреваясь на воздухе, загорается.
  • Порошок стронция в обычных условиях воспламеняется.
  • Реакция с водой протекает бурно.
  • Так же реагирует с неметаллами, «неуязвим» для щелочей.
  • Взаимодействие с газами начинается с 200°C.
  • Взаимодействие с кислотами определяется их концентрацией.
  • Во влажном микроклимате покрывается желтоватой оксидной пленкой.

Главный недостаток вещества – химическая активность в обычных условиях. Его держат в плотно закрываемой стеклянной таре, залив бензином, керосином, другим углеводородом.

Свойства атома
Название, символ, номер Стронций / Strontium (Sr), 38
Атомная масса
(молярная масса)
87,62(1) а. е. м. (г/моль)
Электронная конфигурация [Kr] 5s2
Радиус атома 215 пм
Химические свойства
Ковалентный радиус 191 пм
Радиус иона (+2e) 112 пм
Электроотрицательность 0,95 (шкала Полинга)
Электродный потенциал −2,89
Степени окисления 2
Энергия ионизации
(первый электрон)
 549,0 (5,69) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 2,54 г/см³
Температура плавления 1042 K
Температура кипения 1657 K
Уд. теплота плавления 9,20 кДж/моль
Уд. теплота испарения 144 кДж/моль
Молярная теплоёмкость 26,79 Дж/(K·моль)
Молярный объём 33,7 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая гранецентрированая
Параметры решётки 6,080 Å
Температура Дебая 147 K
Прочие характеристики
Теплопроводность (300 K) (35,4) Вт/(м·К)
Номер CAS 7440-24-6

Соли стронция окрашивают пламя насыщенно-красным цветом. Данный признак позволяет отличить его от других элементов.

Месторождения

Залежи стронциевого сырья разрабатывают США, Канада, Китай, Турция, Иран, Мексика.

В России месторождения тоже есть: Дагестан, Бурятия, Якутия,  Красноярский, Пермский края, Тульская, Иркутская области. Плюс Курилы. Но они не используются: импорт выгоднее. Хотя ресурсы оцениваются в 160 млн. тонн.

Технология получения

Разработано три способа получения металла:

  1. Термовоздействие. Разложению подвергают гидрид либо нитрид. Получается «пыль» из стронция, которая самовоспламеняется даже при комнатной температуре.
  2. Электролиз. Воздействие на расплавленную смесь хлоридов стронция и натрия. Продукта мало, он отягощен примесями.
  3. Восстановление. Оксид восстанавливается алюминием, затем очищается.

Недостатки, присущие первым двум способам, обусловили востребованность третьего.

Мягкий серебристо-белый металл

Мягкий серебристо-белый металл

Восстановление оксида алюминием при высоких температурах – главный промышленный метод получения металла.

Где используется

Сфера применения вещества зависит от модификации (природный либо радиоактивный). В гражданский оборот попадает радиационно безопасная продукция. Используется  стронций как металл, его соединения и сплавы с другими металлами.

Природный

Нашел широкое применение в традиционном промышленном ассортименте и новых технологиях:

  • Металлурги легируют стронцием медь, ее сплавы; добавляют к свинцу в аккумуляторах; очищают от серы сталь, чугун, медь.
  • Чистым стронцием (99,99+%) восстанавливают уран.
  • Железистые соединения – материал магнитов.
  • Оксид – компонент керамики-сверхпроводника.
  • Сплавы – компонент энергоемких аккумуляторных батарей (включая атомные).
  • Стронциевая добавка к стеклу делает его «щитом» на пути излучения. Это свойство используют при производстве экранов радаров, телевизоров, гаджетов.
  • Хлорид металла добавляют к зубной пасте для укрепления зубной эмали.

Металл востребован пиротехниками. Благодаря его соединениям получаются карминово-красные вспышки салюта. Недаром гуру отечественной минералогии академик А.Е. Ферсман окрестил его «металлом красных огней». Сплав с магнием добавляют к составу для сигнальных ракет.

В медицине природным веществом лечат остеопороз.

Глобальный годовой объем потребления стронция – 390-410 тысяч тонн (металл плюс карбонат).

Радиоактивный

Уранат вещества – компонент при добыче водорода для нужд энергетики (атомно-водородный сегмент).

Применение Стронция-90

Применение Стронция-90

Титанат стронция-90 используют при производстве источников энергии.

Хлоридом стронция-89 уничтожают онкологию, терапевтический эффект сохраняется до полугода. Материал применяют дерматологи, офтальмологи.

Биологическое воздействие

Для живых организмов приемлемо воздействие природного стронция:

  • Он не радиоактивен, с малой токсичностью.
  • Подобно кальцию, 99% вещества аккумулируется скелетом. Особо быстро накапливается организмом детей младше четырех лет: костная ткань активно формируется в этом возрасте.
  • Вещество попадает в организм с водой, пищей, через кожу, легкие, дыхательные пути.

По стандартам РФ, литр воды не должен содержать больше 8 мг стронция.

Он есть в зелени, зерновых, помидорах, свекле, редисе, луке, капусте.

Негативное влияние стронция возможно при следующих обстоятельствах:

  1. Работа на предприятии по его переработке.
  2. Нарушение баланса микроэлементов (нехватка кальция, витамина D) из-за неполноценного питания либо других болезней. Результат – деформация суставов, замедление роста у детей (стронциевый рахит).

Радиоактивный стронций смертельно опасен. Он  поражает скелет, костный мозг, провоцируя онкологию.

Стоимость

На российском рынке представлена продукция разного состава.

Цена (руб./ кг):

  • метацирконат – 6 793 – 7 150;
  • углекислый – 145;
  • хлористый – 500;
  • азотнокислый – 290.

На вольфрамат и чистый металл цены договорные.

Содержание статьи

  • История открытия элемента.
  • Характеристика простого вещества и промышленное получение металлического стронция.
  • Соединения стронция.
  • Биологическая роль стронция.
  • Применение стронция-90.

СТРОНЦИЙ – (Strontium) Sr – химический элемент 2-й (IIa) группы Периодиче-ской системы, щелочноземельный элемент. Атомный номер 38, относительная атомная масса 87,62.

Природный стронций состоит из четырех стабильных изотопов 88Sr (82,56%), 86Sr (9,86%), 87Sr (7,02%) и 84Sr (0,56%). Распространенность изотопов стронция варьируетcя в связи с образованием 87Sr за счет распада природного 87Rb. По этой причине точный изотопный состав стронция в породе или минерале, которые содержат рубидий, зависит от возраста и отношения Rb/Sr в данной породе или минерале.

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в том числе 90Sr (Т 1/2 = 29,12 года), образующийся при делении урана. Степень окисления +2, очень редко +1.

История открытия элемента.

Свое название стронций получил от минерала стронцианита, найденного в 1787 в свинцовом руднике около Стронциана (Шотландия). В 1790 английским химиком Адером Кроуфордом (Crawford Ader) (1748–1795) было показано, что стронцианит содержит новую, еще неизвестную «землю». Эту особенность стронцианита установил также и немецкий химик Мартин Генрих Клапрот (Klaproth Martin Heinrich) (1743–1817). Английский химик Т.Хоп (Hope T.) в 1791 доказал, что в стронцианите содержится новый элемент. Он четко разграничил соединения бария, стронция и кальция, используя, помимо других методов, характерную окраску пламени: желто-зеленую для бария, ярко-красную для стронция и оранжево-красную для кальция.

Независимо от западных ученых, петербургский академик Тобиаш (Товий Егорович) Ловиц (1757–1804) в 1792, исследуя минерал барит, пришел к заключению, что в нем, помимо оксида бария, в качестве примеси находится и «стронцианова земля». Он сумел извлечь из тяжелого шпата более 100 г новой «земли» и исследовал ее свойства. Результаты этой работы были опубликованы в 1795. Ловиц писал тогда: «Я был приятно поражен, когда прочел… прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление… Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей… Мне оставалось только проверить… замечательное свойство стронциановой земли – окрашивать спиртовое пламя в карминово-красный цвет, и, действительно, моя соль… обладала в полной мере этим свойством».

В свободном виде стронций первым выделил английский химик и физик Гемфри Дэви в 1808. Металлический стронций был получен при электролизе его увлажненного гидроксида. Выделявшийся на катоде стронций соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Распространенность стронция в природе и его промышленное получение. Содержание стронция в земной коре составляет 0,0384%. Он является пятнадцатым по распространенности и следует сразу за барием, немного уступая фтору. В свободном виде стронций не встречается. Он образует около 40 минералов. Наиболее важный из них – целестин SrSO4. Добывают также стронцианит SrCO3. Стронций присутствует в качестве изоморфной примеси в различных магниевых, кальциевых и бариевых минералах.

Стронций содержится и в природных водах. В морской воде его концентрация составляет 0,1 мг/л. Это означает, что в водах Мирового океана содержатся миллиарды тонн стронция. Минеральные воды, содержащие стронций, считают перспективным сырьем для выделения этого элемента. В океане часть стронция концентрируется в железомарганцевых конкрециях (4900 т в год). Стронций накапливается также простейшими морскими организмами – радиоляриями, скелет которых построен из SrSO4.

Общее содержание стронция в почвах составляет 0,035 масс. %. Хорошими аккумуляторами стронция на суше являются многие растения, особенно бобовые.

Доскональная оценка мировых промышленных ресурсов стронция не проводилась, но полагают, что они превышают 1 млрд. т.

Наиболее крупные залежи целестина – в Мексике, Испании и Турции. В России подобные месторождения есть в Хакассии, Пермской и Тульской области. Однако потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%. Специалисты считают, что добыча стронция в недавно открытом Кишертском месторождении (Пермская область) может повлиять на ситуацию на мировом рынке этого продукта. Цена на пермский стронций может оказаться примерно в 1,5 раза ниже, чем на американский, стоимость которого сейчас составляет около 1200 долл. за тонну.

Характеристика простого вещества и промышленное получение металлического стронция.

Металлический стронций имеет серебристо-белую окраску. В неочищенном состоянии он окрашен в бледно-желтый цвет. Это сравнительно мягкий металл, легко режется ножом. При комнатной температуре стронций имеет кубическую гранецентрированную решетку (a-Sr); при температуре выше 231° С превращается в гексагональную модификацию (b-Sr); при 623° С переходит в кубическую объёмноцентрированную модификацию (g-Sr). Стронций относится к легким металлам, плотность его a-формы 2,63г/см3 (20° С). Температура плавления стронция равна 768° С, температура кипения составляет 1390° С.

Являясь щелочноземельным металлом, стронций активно реагирует с неметаллами. При комнатной температуре металлический стронций покрывается пленкой из оксида и пероксида. При нагревании на воздухе воспламеняется. Стронций легко образует нитрид, гидрид и карбид. При повышенных температурах стронций реагирует с диоксидом углерода:

5Sr + 2CO2 = SrC2 + 4SrO

Металлический стронций взаимодействует с водой и кислотами, выделяя из них водород:

Sr + 2H3O+ = Sr2+ + H2­ + 2H2O

Реакция не идет в тех случаях, когда образуются малорастворимые соли.

Стронций растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Sr(NH3)6, постепенно разлагающийся до амида Sr(NH2)2.

Для получения металлического стронция из природного сырья целестиновый концентрат сначала восстанавливают при нагревании углем до сульфида стронция. Затем сульфид стронция обрабатывают соляной кислотой, а полученный хлорид стронция обезвоживают. Стронцианитовый концентрат разлагают обжигом при 1200° С, а затем растворяют образовавшийся оксид стронция в воде или кислотах. Нередко стронцианит сразу растворяют в азотной или соляной кислоте.

Металлический стронций получают электролизом смеси расплавленных хлорида стронция (85%) и хлорида калия или аммония (15%) на никелевом или железном катоде при 800° С. Полученный этим методом стронций обычно содержит 0,3–0,4% калия.

Используют также высокотемпературное восстановление оксида стронция алюминием:

4SrO + 2Al = 3Sr + SrO·Al2O3

Для металлотермического восстановления оксида стронция применяют также кремний или ферросилиций. Процесс ведут при 1000° С в вакууме в стальной трубке. Хлорид стронция восстанавливают металлическим магнием в атмосфере водорода.

Крупнейшими производителями стронция являются Мексика, Испания, Турция и Великобритания.

Несмотря на довольно большое содержание в земной коре, широкого применения металлический стронций еще не нашел. Как и другие щелочноземельные металлы, он способен очищать черный металл от вредных газов и примесей. Это свойство дает стронцию перспективу применения в металлургии. Кроме того, стронций является легирующей добавкой к сплавам магния, алюминия, свинца, никеля и меди.

Металлический стронций поглощает многие газы и поэтому используется в качестве геттера в электровакуумной технике.

Соединения стронция.

Преобладающая степень окисления (+2) для стронция обусловлена, в первую очередь, его электронной конфигурацией. Он образует многочисленные бинарные соединения и соли. В воде хорошо растворимы хлорид, бромид, иодид, ацетат и некоторые другие соли стронция. Большинство солей стронция мало растворимы; среди них сульфат, фторид, карбонат, оксалат. Малорастворимые соли стронция легко получаются обменными реакциями в водном растворе.

Многие соединения стронция имеют необычное строение. Например, изолированные молекулы галогенидов стронция заметно изогнуты. Валентный угол составляет ~120° для SrF2 и ~115° – для SrCl2. Это явление можно объяснить с помощью sd- (а не sp-) гибридизации.

Оксид стронция SrO получают прокаливанием карбоната или дегидратацией гидроксида при температуре красного каления. Энергия решетки и температура плавления этого соединения (2665° С) очень высоки.

При прокаливании оксида стронция в кислородной среде при высоком давлении образуется пероксид SrO2. Получен также желтый надпероксид Sr(O2)2. При взаимодействии с водой оксид стронция образует гидроксид Sr(OH)2.

Оксид стронция – компонент оксидных катодов (эмиттеров электронов в электровакуумных приборах). Он входит в состав стекла кинескопов цветных телевизоров (поглощает рентгеновское излучение), высокотемпературных сверхпроводников, пиротехнических смесей. Его применяют как исходное вещество для получения металлического стронция.

В 1920 американец Хилл впервые применил матовую глазурь, в состав которой входили оксиды стронция, кальция и цинка, однако этот факт остался незамеченным, и новая глазурь не стала конкурентом традиционных свинцовых глазурей. Лишь в годы Второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. Это вызвало лавину исследований: в разных странах появились десятки рецептур стронциевых глазурей. Стронциевые глазури не только менее вредны по сравнению со свинцовыми, но и более доступны (карбонат стронция в 3,5 раза дешевле свинцового сурика). При этом им свойственны все положительные качества свинцовых глазурей. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе оксидов кремния и стронция готовят также эмали – непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» – разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280–1300° C, затем температуру снижают до 150–220° C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800–850° C – соли плавятся в трещинах и герметизируют их.

Гидроксид стронция Sr(OH)2 считают умеренно сильным основанием. Он не очень хорошо растворим в воде, поэтому его можно осадить при действии концентрированного раствора щелочи:

SrCl2 + 2KOH(конц) = Sr(OH) 2Ї + 2KCl

При обработке кристаллического гидроксида стронция пероксидом водорода образуется SrO2·8H2O.

Гидроксид стронция может применяться для выделения сахара из патоки, однако обычно используют более дешевый гидроксид кальция.

Карбонат стронция SrCO3 мало растворим в воде (2·10–3 г в 100 г при 25° С). В присутствии избытка диоксида углерода в растворе он превращается в гидрокарбонат Sr(HCO3)2.

При нагревании карбонат стронция разлагается на оксид стронция и диоксид углерода. Он взаимодействует с кислотами с выделением диоксида углерода и образованием соответствующих солей:

SrCO2 + 3HNO3 = Sr(NO3)2 + CO2­ + H2O

Основные сферы карбоната стронция в современном мире – производство кинескопов для цветных телевизоров и компьютеров, керамических ферритовых магнитов, керамических глазурей, зубной пасты, антикоррозионных и фосфоресцирующих красок, высокотехнологичной керамики, в пиротехнике. Наиболее емкими направлениями потребления являются первые два. При этом спрос на карбонат стронция в производстве телевизионного стекла повышается с ростом популярности телеэкранов более крупных размеров. Возможно, развитие технологии производства плоских телеэкранов снизит спрос на карбонат стронция для телевизионных дисплеев, однако эксперты в промышленности считают, что в ближайшие 10 лет плоские телеэкраны не станут значительными конкурентами традиционных.

Европа потребляет львиную долю карбоната стронция для производства ферритовых стронциевых магнитов, которые используются в автомобильной промышленности, где они применяются для магнитных задвижек в дверцах автомобилей и тормозных системах. В США и Японии карбонат стронция используют преимущественно в производстве телевизионного стекла.

В течение многих лет крупнейшими в мире производителями карбоната стронция являлись Мексика и Германия, производственные мощности по выпуску этого товара в которых сейчас составляют соответственно 103 тыс. и 95 тыс. т в год. В Германии используют в качестве сырья импортный целестин, а мексиканские заводы работают на местном сырье. В последнее время годовые мощности по производству карбоната стронция расширились в Китае (примерно до 140 тыс. т). Китайский карбонат стронция активно продается в Азии и Европе.

Нитрат стронция Sr(NO3)2 хорошо растворим в воде (70,5 г в 100 г при 20° С). Его получают взаимодействием металлического стронция, оксида, гидроксида или карбоната стронция с азотной кислотой.

Нитрат стронция – компонент пиротехнических составов для сигнальных, осветительных и зажигательных ракет. Он окрашивает пламя в карминово-красный цвет. Хотя другие соединения стронция придают пламени такую же окраску, в пиротехнике предпочитают использовать именно нитрат: он не только окрашивает пламя, но одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород. При этом сначала образуется нитрит стронция, который затем превращается в оксиды стронция и азота.

В России соединения стронция широко использовались в пиротехнических составах. Во времена Петра Первого (1672–1725) их применяли для получения «потешных огней», устраивавшихся при проведении различных торжеств и празднеств. Академик А.Е.Ферсман назвал стронций «металлом красных огней».

Сульфат стронция SrSO4 мало растворим в воде (0,0113 г в 100 г при 0° С). При нагревании выше 1580° С он разлагается. Его получат осаждением из растворов солей стронция сульфатом натрия.

Сульфат стронция используется как наполнитель при изготовлении красок и резины и утяжелитель в буровых растворах.

Хромат стронция SrCrO4 осаждается в виде желтых кристаллов при смешивании растворов хромовой кислоты и гидроксида бария.

Дихромат стронция, образующийся при действии кислот на хромат, хорошо растворим в воде. Для перевода хромата стронция в дихромат достаточно такой слабой кислоты, как уксусная:

2SrCrO4 + 2CH3COOH = 2Sr2+ + Cr2O72– + 2CH3COO + H2O

Так его можно отделить от менее растворимого хромата бария, который удается превратить в дихромат только действием сильных кислот.

Хромат стронция обладает высокой светостойкостью, он очень устойчив к воздействию высоких температур (до 1000° С), обладает хорошими пассивирующими свойствами по отношению к стали, магнию и алюминию. Хромат стронция применяется как желтый пигмент в производстве лаков и художественных красок. Его называют «стронциановый желтый». Он входит в состав грунтовок на основе водорастворимых смол и особенно грунтовок на основе синтетических смол для легких металлов и сплавов (авиагрунтовок).

Титанат стронция SrTiO3 не растворяется в воде, однако переходит в раствор под действием горячей концентрированной серной кислоты. Его получают спеканием оксидов стронция и титана при 1200–1300° С или соосажденных труднорастворимых соединений стронция и титана выше 1000° С. Титанат стронция применяют как сегнетоэлектрик, он входит в состав пьезокерамики. В технике сверхвысоких частот он служит в качестве материала для диэлектрических антенн, фазовращателей и других устройств. Пленки из титаната стронция используют при изготовлении нелинейных конденсаторов и датчиков инфракрасного излучения. С их помощью создают слоистые структуры диэлектрик – полупроводник – диэлектрик – металл, которые применяются в фотоприемниках, запоминающих устройствах и других приборах.

Гексаферрит стронция SrO·6Fe2O3 получают спеканием смеси оксида железа (III) и оксида стронция. Это соединение используют в качестве магнитного материала.

Фторид стронция SrF2 мало растворим в воде (чуть более 0,1 г в 1 л раствора при комнатной температуре). Он не взаимодействует с разбавленными кислотами, но переходит в раствор под действием горячей соляной кислоты. В криолитовых копях Гренландии найден минерал, содержащий фторид стронция – ярлит NaF·3SrF2·3AlF3.

Фторид стронция используется в качестве оптического и ядерного материла, компонента специальных стекол и люминофоров.

Хлорид стронция SrCl2 хорошо растворим в воде (34,6% по массе при 20° С). Из водных растворов ниже 60,34° С кристаллизуется гексагидрат SrCl2·6H2O, расплывающийся на воздухе. При более высоких температурах он теряет сначала 4 молекулы воды, затем еще одну, а при 250° С полностью обезвоживается. В отличие от гексагидрата хлорида кальция гексагидрат хлорида стронция мало растворим в этаноле (3,64% по массе при 6° С), что используется для их разделения.

Хлорид стронция используется в пиротехнических составах. Его применяют также в холодильной технике, медицине, косметике.

Бромид стронция SrBr2 гигроскопичен. В насыщенном водном растворе его массовая доля составляет 50,6% при 20° С. Ниже 88,62° С из водных растворов кристаллизуется гексагидрат SrBr2·6H2O, выше этой температуры – моногидрат SrBr3·H2O. Гидраты полностью обезвоживаются при 345° С.

Бромид стронция получают реакцией стронция с бромом или оксида (либо карбоната) стронция с бромоводородной кислотой. Он используется в качестве оптического материала.

Иодид стронция SrI2 хорошо растворим в воде (64,0% по массе при 20° С), хуже – в этаноле (4,3% по массе при 39° С). Ниже 83,9° С из водных растворов кристаллизуется гексагидрат SrI2·6H2O, выше этой температуры – дигидрат SrI2·2H2O.

Иодид стронция служит в качестве люминесцентного материала в сцинтилляционных счетчиках.

Сульфид стронция SrS получают при нагревании стронция с серой или восстановлением сульфата стронция углем, водородом и другими восстановителями. Его бесцветные кристаллы разлагаются водой. Сульфид стронция применяется как компонент люминофоров, фосфоресцирующих составов, средств для удаления волос в кожевенной промышленности.

Карбоксилаты стронция можно получить при взаимодействии гидроксида стронция с соответствующими карбоновыми кислотами. Стронциевые соли жирных кислот («стронциевые мыла») используют для изготовления специальных консистентных смазок.

Стронциеорганические соединения. Чрезвычайно активные соединения состава SrR2 (R = Me, Et, Ph, PhCH2 и т.д.) могут быть получены при использовании HgR2 (часто лишь при низкой температуре).

Бис(циклопентадиенил)стронций является продуктом прямой реакции металла с [Hg(C5H5) 2] или с самим циклопентадиеном

Биологическая роль стронция.

Стронций – составная часть микроорганизмов, растений и животных. У морских радиолярий скелет состоит из сульфата стронция – целестина. Морские водоросли содержат 26–140 мг стронция на 100 г сухого вещества, наземные растения – около 2,6, морские животные – 2–50, наземные животные – около 1,4, бактерии – 0,27–30. Накопление стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения содержания стронция и других элементов, главным образом кальция и фосфора, в окружающей среде.

Животные получают стронций с водой и пищей. Некоторые вещества, например полисахариды водорослей, препятствует усвоению стронция. Стронций накапливается в костной ткани, в золе которой содержится около 0,02% стронция (в других тканях – около 0,0005%).

Соли и соединения стронция относятся к малотоксичным веществам, однако при избытке стронция поражаются костная ткань, печень и мозг. Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает «уровскую болезнь» у человека и животных (по названию реки Уров в Восточном Забайкалье) – поражение и деформацию суставов, задержку роста и другие нарушения.

Особенно опасны радиоактивные изотопы стронция.

В результате ядерных испытаний и аварий на АЭС в окружающую среду поступило большое количество радиоактивного стронция-90, период полураспада которого составляет 29,12 года. До тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от радиоактивного стронция росло из года в год.

В течение года после завершения атмосферных ядерных взрывов в результате самоочищения атмосферы большая часть радиоактивных продуктов, в том числе стронция-90, выпала из атмосферы на поверхность земли. Загрязнение природной среды за счет выведения из стратосферы радиоактивных продуктов ядерных взрывов, проводившихся на полигонах планеты в 1954–1980, сейчас играет второстепенную роль, вклад этого процесса в загрязнение атмосферного воздуха 90Sr на два порядка меньше, чем от ветрового подъема пыли с почвы, загрязненной при ядерных испытаниях и в результате радиационных аварий.

Стронций-90, наряду с цезием-137, являются основными загрязняющими радионуклидами на территории России. На радиационную обстановку существенно влияет наличие загрязненных зон, появившихся вследствие аварий на Чернобыльской АЭС в 1986 и на ПО «Маяк» в Челябинской области в 1957 («Кыштымская авария»), а также в окрестностях некоторых предприятий ядерно-топливного цикла.

Сейчас время средние концентрации 90Sr в воздухе за пределами территорий, загрязненных в результате Чернобыльской и Кыштымской аварий, вышли на уровни, наблюдавшиеся до аварии на Чернобыльской АЭС. В гидрологических системах, связанных с зонами, загрязненными при этих авариях, существенно сказывается смыв стронция-90 с поверхности почвы.

Попадая в почву, стронций вместе с растворимыми соединениями кальция поступает в растения. Больше других накапливают 90Sr бобовые растения, корне- и клубнеплоды, меньше – злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90Sr, чем в других органах (например, в листьях и стеблях пшеницы 90Sr в 10 раз больше, чем в зерне).

Из растений стронций-90 может непосредственно или через животных перейти в организм человека. У мужчин стронций-90 накапливается в большей степени, чем у женщин. В первые месяцы жизни ребенка отложение стронция-90 на порядок выше, чем у взрослого человека, он поступает в организм с молоком и накапливается в быстро растущей костной ткани.

Радиоактивный стронций сосредотачивается в скелете и, таким образом, подвергает организм длительному радиоактивному воздействию. Биологическое действие 90Sr связано с характером его распределения в организме и зависит от дозы b-облучения, создаваемого им и его дочерним радиоизотопом 90Y. При длительном поступлении 90Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет.

Применение стронция-90.

Радиоизотоп стронция применяется в производстве атомных электрических батарей. Принцип действия таких батарей основан на способности стронция-90 излучать электроны, обладающие большой энергией, преобразуемой затем в электрическую. Элементы из радиоактивного стронция, соединенные в миниатюрную батарейку (размером со спичечную коробку), способны безотказно служить без перезарядки 15–25 лет, такие батареи незаменимы для космических ракет и искусственных спутников Земли. А швейцарские часовщики с успехом используют крохотные стронциевые батарейки для питания электрочасов.

Отечественными учеными создан изотопный генератор электрической энергии для питания автоматических метеостанций на основе стронция-90. Гарантийный срок службы такого генератора – 10 лет, в течение которых он способен снабжать электрическим током нуждающиеся в нем приборы. Все обслуживание его заключается лишь в профилактических осмотрах – раз в два года. Первые образцы генератора установлены в Забайкалье и в верховьях таежной речки Кручины.

В Таллинне работает атомный маяк. Главная его особенность – радиоизотопные термоэлектрические генераторы, в которых в результате распада стронция-90 возникает тепловая энергия, преобразуемая затем в световую.

Устройства, в которых используется радиоактивный стронций, применяются для измерения толщины. Это необходимо для контроля и управления процессом производства бумаги, тканей, тонких металлических лент, пластмассовых пленок, лакокрасочных покрытий. Изотоп стронция используется в приборах для измерения плотности, вязкости и других характеристик вещества, в дефектоскопах, дозиметрах, сигнализаторах. На машиностроительных предприятиях часто можно встретить так называемые b-реле, они контролируют подачу заготовок на обработку, проверяют исправности инструмента, правильность положения детали.

При производстве материалов, являющихся изоляторами (бумага, ткани, искусственное волокно, пластмассы и т. д.), вследствие трения возникает статическое электричество. Чтобы избежать этого, пользуются ионизирующими стронциевыми источниками.

Елена Савинкина

  • Как пишется строка или страка
  • Как пишется тавтология или тафтология правильно
  • Как пишется стройматериалы слитно или раздельно
  • Как пишется таблицы или таблици
  • Как пишется строительные леса