Как пишется сумма углов

Сумма углов треугольника:

Великий французский ученый XVII в. Блез Паскаль (1623—1662) еще в детстве любил изучать геометрические фигуры, открывать их свойства, измерять углы транспортиром.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Юный исследователь заметил, что у любого треугольника сумма углов одна и та Ж6 180°. «Как же это объяснить?» — думал Паскаль. Тогда он отрезал у треугольника два уголка и приложил их к третьему (рис. 219). Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие! Дальнейшая судьба мальчика была предопределена.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Теорема. Сумма углов треугольника равна 180°.

Дано: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВС (рис. 220).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Доказать: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA+Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC = 180°.

Доказательство:

Через вершину В треугольника ABC проведем прямую КМ, параллельную стороне АС. Тогда Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияKBA =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей АВ, aСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияMBC =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей ВС. Так как углы КВА, ABC и МВС образуют развернутый угол, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияKBA +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияABC +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияMBC = 180°. ОтсюдаСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC = 180°. Теорема доказана.

Следствия.

1.    Каждый угол равностороннего треугольника равен 60°. (рис. 221).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

2.    Сумма острых углов прямоугольного треугольника равна 90° (рис. 222).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

В прямоугольном треугольнике стороны, заключающие прямой угол, называются катетами, сторона, противолежащая прямому углу, — гипотенузой (см. рис. 222).    

Проведем в прямоугольном треугольнике ABC высоту СН к гипотенузе АВ (рис. 223). Так как в треугольнике ABC угол 1 дополняет угол В до 90°, а в треугольнике СНВ угол 2 также дополняет угол В до 90°, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решения1 =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения2.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Доказано свойство: «Угол между высотой прямоугольного треугольника, проведенной к гипотенузе, и катетом равен углу между другим катетом и гипотенузой».

Пример:

В треугольнике ABC градусные меры углов А, В и С относятся соответственно как 5:7:3. Найти углы треугольника (рис. 224).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Решение:

Пусть Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения (Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения — градусная мера одной части).

Так как сумма углов треугольника равна 180°, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Тогда Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения 

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Ответ: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

В треугольнике ABC (рис. 225) угол В равен 70°, АК и СМ — биссектрисы, О — точка их пересечения. Найти угол АОС между биссектрисами.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Решение:

Сумма углов А и С треугольника ABC равна 180° — 70° = 110°. Так как биссектриса делит угол пополам, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияСумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Из треугольника АОС находим: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Ответ: 125°.

Замечание. Если Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения то, рассуждая аналогично, получим формулу: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения Если, например, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то данный треугольник — прямоугольный.

Доказательство:

Пусть СМ — медиана, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения (рис. 226).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Докажем, чтоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = 90°. Обозначим Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияВ = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Так как медиана делит сторону пополам, то AM = MB = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения АВ. Тогда СМ=АМ=МВ. Так как Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАМС — равнобедренный, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения как углы при основании равнобедренного треугольника. Аналогично, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияСМВ — равнобедренный и Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Сумма углов треугольника ABC, с одной стороны, равна 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, с другой — равна 180°. Отсюда 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения = 180°, 2(Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения) = 180°, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения = 90°. НоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, поэтому

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = 90°. 

Замечание. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. На рисунке 227 это угол АСВ. Из задачи 3 следует свойство: «Вписанный угол, опирающийся на диаметр, — прямой». 

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Доказательство:

Пусть в треугольнике ABC (рис. 228) Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC=90°,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Проведем отрезок СМ так, чтоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, и докажем, что СМ — медиана и что СМ=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВ. Угол В дополняет угол А до 90°, aСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM дополняетСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM до 90°. Поскольку Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Треугольники АМС и ВМС — равнобедренные по признаку равнобедренного треугольника. Тогда AM = МС и МВ = МС. Отсюда СМ — медиана и СМ = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВ.

  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Четырехугольник и его элементы
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике

(Redirected from Angle sum theorem)

«Triangle postulate» redirects here. Not to be confused with Triangle inequality.

In a Euclidean space, the sum of angles of a triangle equals the straight angle (180 degrees, π radians, two right angles, or a half-turn).
A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides.

It was unknown for a long time whether other geometries exist, for which this sum is different. The influence of this problem on mathematics was particularly strong during the 19th century. Ultimately, the answer was proven to be positive: in other spaces (geometries) this sum can be greater or lesser, but it then must depend on the triangle. Its difference from 180° is a case of angular defect and serves as an important distinction for geometric systems.

Equivalence of the parallel postulate and the «sum of the angles equals to 180°» statement

Cases[edit]

Euclidean geometry[edit]

In Euclidean geometry, the triangle postulate states that the sum of the angles of a triangle is two right angles. This postulate is equivalent to the parallel postulate.[1] In the presence of the other axioms of Euclidean geometry, the following statements are equivalent:[2]

  • Triangle postulate: The sum of the angles of a triangle is two right angles.
  • Playfair’s axiom: Given a straight line and a point not on the line, exactly one straight line may be drawn through the point parallel to the given line.
  • Proclus’ axiom: If a line intersects one of two parallel lines, it must intersect the other also.[3]
  • Equidistance postulate: Parallel lines are everywhere equidistant (i.e. the distance from each point on one line to the other line is always the same.)
  • Triangle area property: The area of a triangle can be as large as we please.
  • Three points property: Three points either lie on a line or lie on a circle.
  • Pythagoras’ theorem: In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides.[1]

Hyperbolic geometry[edit]

The sum of the angles of a hyperbolic triangle is less than 180°. The relation between angular defect and the triangle’s area was first proven by Johann Heinrich Lambert.[4]

One can easily see how hyperbolic geometry breaks Playfair’s axiom, Proclus’ axiom (the parallelism, defined as non-intersection, is intransitive in an hyperbolic plane), the equidistance postulate (the points on one side of, and equidistant from, a given line do not form a line), and Pythagoras’ theorem. A circle[5] cannot have arbitrarily small curvature,[6] so the three points property also fails.

The sum of the angles can be arbitrarily small (but positive). For an ideal triangle, a generalization of hyperbolic triangles, this sum is equal to zero.

Spherical geometry[edit]

For a spherical triangle, the sum of the angles is greater than 180° and can be up to 540°. Specifically, the sum of the angles is

180° × (1 + 4f ),

where f is the fraction of the sphere’s area which is enclosed by the triangle.

Note that spherical geometry does not satisfy several of Euclid’s axioms (including the parallel postulate.)

[icon]

This section needs expansion. You can help by adding to it. (November 2013)

Exterior angles[edit]

The picture shows exterior angles along with interior ones, for the rightmost vertex it is shown as =/)

Angles between adjacent sides of a triangle are referred to as interior angles in Euclidean and other geometries. Exterior angles can be also defined, and the Euclidean triangle postulate can be formulated as the exterior angle theorem. One can also consider the sum of all three exterior angles, that equals to 360°[7] in the Euclidean case (as for any convex polygon), is less than 360° in the spherical case, and is greater than 360° in the hyperbolic case.

In differential geometry[edit]

In the differential geometry of surfaces, the question of a triangle’s angular defect is understood as a special case of the Gauss-Bonnet theorem where the curvature of a closed curve is not a function, but a measure with the support in exactly three points – vertices of a triangle.

[icon]

This section needs expansion. You can help by adding to it. (November 2013)

See also[edit]

  • Euclid’s Elements
  • Foundations of geometry
  • Hilbert’s axioms
  • Saccheri quadrilateral (considered earlier than Saccheri by Omar Khayyám)
  • Lambert quadrilateral

References[edit]

  1. ^ a b
    Eric W. Weisstein (2003). CRC concise encyclopedia of mathematics (2nd ed.). p. 2147. ISBN 1-58488-347-2. The parallel postulate is equivalent to the Equidistance postulate, Playfair axiom, Proclus axiom, the Triangle postulate and the Pythagorean theorem.
  2. ^
    Keith J. Devlin (2000). The Language of Mathematics: Making the Invisible Visible. Macmillan. p. 161. ISBN 0-8050-7254-3.
  3. ^ Essentially, the transitivity of parallelism.
  4. ^ Ratcliffe, John (2006), Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, vol. 149, Springer, p. 99, ISBN 9780387331973, That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert’s monograph Theorie der Parallellinien, which was published posthumously in 1786.
  5. ^ Defined as the set of points at the fixed distance from its centre.
  6. ^ Defined in the differentially-geometrical sense.
  7. ^ From the definition of an exterior angle, its sums up to the straight angle with the interior angles. So, the sum of three exterior angles added to the sum of three interior angles always gives three straight angles.

(Redirected from Angle sum theorem)

«Triangle postulate» redirects here. Not to be confused with Triangle inequality.

In a Euclidean space, the sum of angles of a triangle equals the straight angle (180 degrees, π radians, two right angles, or a half-turn).
A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides.

It was unknown for a long time whether other geometries exist, for which this sum is different. The influence of this problem on mathematics was particularly strong during the 19th century. Ultimately, the answer was proven to be positive: in other spaces (geometries) this sum can be greater or lesser, but it then must depend on the triangle. Its difference from 180° is a case of angular defect and serves as an important distinction for geometric systems.

Equivalence of the parallel postulate and the «sum of the angles equals to 180°» statement

Cases[edit]

Euclidean geometry[edit]

In Euclidean geometry, the triangle postulate states that the sum of the angles of a triangle is two right angles. This postulate is equivalent to the parallel postulate.[1] In the presence of the other axioms of Euclidean geometry, the following statements are equivalent:[2]

  • Triangle postulate: The sum of the angles of a triangle is two right angles.
  • Playfair’s axiom: Given a straight line and a point not on the line, exactly one straight line may be drawn through the point parallel to the given line.
  • Proclus’ axiom: If a line intersects one of two parallel lines, it must intersect the other also.[3]
  • Equidistance postulate: Parallel lines are everywhere equidistant (i.e. the distance from each point on one line to the other line is always the same.)
  • Triangle area property: The area of a triangle can be as large as we please.
  • Three points property: Three points either lie on a line or lie on a circle.
  • Pythagoras’ theorem: In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides.[1]

Hyperbolic geometry[edit]

The sum of the angles of a hyperbolic triangle is less than 180°. The relation between angular defect and the triangle’s area was first proven by Johann Heinrich Lambert.[4]

One can easily see how hyperbolic geometry breaks Playfair’s axiom, Proclus’ axiom (the parallelism, defined as non-intersection, is intransitive in an hyperbolic plane), the equidistance postulate (the points on one side of, and equidistant from, a given line do not form a line), and Pythagoras’ theorem. A circle[5] cannot have arbitrarily small curvature,[6] so the three points property also fails.

The sum of the angles can be arbitrarily small (but positive). For an ideal triangle, a generalization of hyperbolic triangles, this sum is equal to zero.

Spherical geometry[edit]

For a spherical triangle, the sum of the angles is greater than 180° and can be up to 540°. Specifically, the sum of the angles is

180° × (1 + 4f ),

where f is the fraction of the sphere’s area which is enclosed by the triangle.

Note that spherical geometry does not satisfy several of Euclid’s axioms (including the parallel postulate.)

[icon]

This section needs expansion. You can help by adding to it. (November 2013)

Exterior angles[edit]

The picture shows exterior angles along with interior ones, for the rightmost vertex it is shown as =/)

Angles between adjacent sides of a triangle are referred to as interior angles in Euclidean and other geometries. Exterior angles can be also defined, and the Euclidean triangle postulate can be formulated as the exterior angle theorem. One can also consider the sum of all three exterior angles, that equals to 360°[7] in the Euclidean case (as for any convex polygon), is less than 360° in the spherical case, and is greater than 360° in the hyperbolic case.

In differential geometry[edit]

In the differential geometry of surfaces, the question of a triangle’s angular defect is understood as a special case of the Gauss-Bonnet theorem where the curvature of a closed curve is not a function, but a measure with the support in exactly three points – vertices of a triangle.

[icon]

This section needs expansion. You can help by adding to it. (November 2013)

See also[edit]

  • Euclid’s Elements
  • Foundations of geometry
  • Hilbert’s axioms
  • Saccheri quadrilateral (considered earlier than Saccheri by Omar Khayyám)
  • Lambert quadrilateral

References[edit]

  1. ^ a b
    Eric W. Weisstein (2003). CRC concise encyclopedia of mathematics (2nd ed.). p. 2147. ISBN 1-58488-347-2. The parallel postulate is equivalent to the Equidistance postulate, Playfair axiom, Proclus axiom, the Triangle postulate and the Pythagorean theorem.
  2. ^
    Keith J. Devlin (2000). The Language of Mathematics: Making the Invisible Visible. Macmillan. p. 161. ISBN 0-8050-7254-3.
  3. ^ Essentially, the transitivity of parallelism.
  4. ^ Ratcliffe, John (2006), Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, vol. 149, Springer, p. 99, ISBN 9780387331973, That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert’s monograph Theorie der Parallellinien, which was published posthumously in 1786.
  5. ^ Defined as the set of points at the fixed distance from its centre.
  6. ^ Defined in the differentially-geometrical sense.
  7. ^ From the definition of an exterior angle, its sums up to the straight angle with the interior angles. So, the sum of three exterior angles added to the sum of three interior angles always gives three straight angles.

Сумма углов треугольника

Доказательство теоремы:

Нарисуем треугольник. Через одну из его вершин проведем прямую, параллельную противоположной стороне, и найдем на рисунке равные углы.

Угол 1 равен углу BAC, они накрест лежащие. Угол 2 равен углу ACB, они тоже накрест лежащие.

Сумма угла 1, угла ABC и угла 2 составляет развернутый угол.

A развернутый угол равен 180{}^circ . Значит, и сумма углов треугольника тоже равна 180 градусов.

Сумма углов треугольника

Разберем задачи ЕГЭ и ОГЭ, в которых фигурирует сумма углов треугольника.

Заметим, что они похожи друг на друга. Одна и та же задача на тему «Сумма углов треугольника» может встретиться и на ОГЭ, и на ЕГЭ по математике. И уровень сложности заданий по этой теме в ЕГЭ и ОГЭ примерно одинаковый.

Задачи ЕГЭ по теме: Сумма углов треугольника

Задача 1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.

Решение:

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х.

Получим уравнение:

2x+3x=85 и найдем x = 17.

Тогда 3x=51.

Ответ: 51.

Обратите внимание, что это даже не геометрия, а алгебра. Мы составили уравнение и решили его.

Задача 2.

Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.

Решение:

Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?

Нет, конечно! Ведь сумма углов треугольника равна 180 градусов. Значит, один из углов треугольника равен 98^{circ}, а два других равны genfrac{}{}{}{0}{displaystyle 180-98}{displaystyle 2}=41^{circ}.

Ответ: 41.

Задача 3.

На рисунке угол 1 равен 46^{circ}, угол 2 равен 30^{circ}, угол 3 равен 44^{circ}. Найдите угол 4. Ответ дайте в градусах.

Рисунок 1

Решение:

Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.

Рисунок 2

Сначала найдем угол 5.

Он равен 180^{circ}-angle 1-angle 3 = 90^{circ}.

Тогда angle 6= 90^{circ}.

angle 7=180^{circ}-angle 2-angle 6=60^{circ}.

Угол 4, смежный с углом 7 равен 120^{circ}.

Ответ: 120^{circ}.

Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.

Задача 4.

Углы треугольника относятся как 2:3:4. Найдите меньший из них. Ответ дайте в градусах.

Решение:

Пусть углы треугольника равны 2x, 3x и 4x. Запишем, чему равна сумма углов этого треугольника.

2x+3x+4x=180^{circ};

9x=180^{circ};

x=20^{circ};

Тогда 2x=40^{circ}.

Здесь мы тоже составили уравнение и решили его. Так же, как на уроках алгебры.

Ответ: 40.

Задача 5. В треугольнике ABC проведена биссектриса AL, угол ALC равен {48}^circ, угол ABC равен {41}^circ. Найдите угол ACB. Ответ дайте в градусах.

Решение:

angle ALC — внешний угол triangle ABL, и он равен сумме двух внутренних углов, не смежных с ним. Значит, angle BAL=angle ALC-angle ABL=48{}^circ -41{}^circ =7{}^circ .

AL — биссектриса angle  BAC, а это значит, что angle  BAC=2 angle BAL=2cdot 7{}^circ =14{}^circ .

По теореме о сумме углов треугольника получаем:
angle ACB=180{}^circ -41{}^circ -14{}^circ =125{}^circ .
Ответ: 125.

Задача 6. В выпуклом четырёхугольнике ABCD известно, что AB=BC, AD=CD, angle B=61{}^circ , angle D=151{}^circ . Найдите величину угла A. Ответ дайте в градусах.

Решение:

Если соединить точки B и D, получим два равных треугольника. Они равны по трем сторонам. В равных треугольниках напротив равных сторон лежат равные углы.

В треугольнике ABD сумма двух углов
angle DBA+angle BDA=displaystyle frac{1}{2}left(angle B+angle Dright)=displaystyle frac{1}{2}left(61+151right)=106{}^circ .
Тогда angle A=180{}^circ -106=74{}^circ , по теореме о сумме углов треугольника.

Ответ: 74.

Задача 7. Отрезки AC и BD — диаметры окружности с центром O. Угол AOD равен {124}^circ. Найдите вписанный угол ACB. Ответ дайте в градусах.

Решение:

AC и BD — диаметры окружности. Значит, triangle BOC — равнобедренный, в нем BO=OC — как радиусы.

angle AOD=angle BOC=124{}^circ как вертикальные углы, тогда по теореме о сумме углов в треугольнике:

angle OCB=displaystyle frac{180{}^circ -124{}^circ }{2}=28{}^circ .

Ответ: 28.

Задача 8. В треугольнике ABC AD — биссектриса, угол C равен {104}^circ, угол CAD равен {5}^circ. Найдите угол B. Ответ дайте в градусах.

Решение:

AD — биссектриса, отсюда следует, что angle CAD=angle DAB=5{}^circ Rightarrow angle CAB=10{}^circ .

Тогда по теореме о сумме углов треугольника angle B=180{}^circ -104{}^circ -10{}^circ =66{}^circ .

Ответ: 66.

Задача 9. В треугольнике ABC CD — медиана, угол C равен {90}^circ, угол B равен {35}^circ. Найдите угол ACD. Ответ дайте в градусах.

Решение:

В треугольнике ABC угол C равен {90}^circ, угол B равен {35}^circ, тогда угол A равен 90{}^circ -35{}^circ =55{}^circ .

CD — медиана. А медиана, проведенная к гипотенузе в прямоугольном треугольнике, равна половине гипотенузы. Значит, CD=AD=DB.

Поэтому треугольник ADC равнобедренный и angle A=angle ACD=55{}^circ .

Ответ: 55.

Задача 10. В треугольнике ABC угол C равен {58}^circ, биссектрисы AD и BE пересекаются в точке O. Найдите угол AOB. Ответ дайте в градусах

Решение:

В треугольнике ABC угол C равен {58}^circ, отсюда по теореме о сумме углов треугольника angle A+angle B=180{}^circ -58{}^circ =122{}^circ .

Биссектрисы AD и BE пересекаются в точке O. Угол OAB — это половина угла CAB, угол OBA — это половина угла CBA. Теперь применим теорему о сумме углов треугольника к треугольнику AOB.

angle AOB=180{}^circ -displaystyle frac{1}{2}left(angle A+angle Bright)=180{}^circ -61{}^circ =119{}^circ .

Ответ: 119.

Задача 11. В треугольнике ABC угол A равен {56}^circ, углы B и C — острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.

Решение:

BD — высота triangle ABC, тогда triangle ABD — прямоугольный,

angle ABD=90{}^circ -56{}^circ =34{}^circ .

CE — высота triangle ABC, тогда triangle BOE — прямоугольный и angle BOE=90{}^circ -34{}^circ =56{}^circ .

Углы angle BOE и angle EOD — смежные, поэтому angle EOD=180{}^circ -56{}^circ =124{}^circ .

Ответ: 124.

Задача 11. В прямоугольном треугольнике угол между высотой и биссектрисой, проведёнными из вершины прямого угла, равен {14}^circ. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

Решение:

Обозначим на рисунке вершины треугольника ABC, биссектрису CК и высоту CН. Биссектриса CК делит прямой угол на два угла по 45{}^circ . Угол BCН равен разности углов BCК и КCН, то есть 45{}^circ -14{}^circ =31{}^circ .

Треугольники BCН и BAC подобны по двум углам. Значит, угол BAC равен углу BCН, то есть 31{}^circ .

Ответ: 31.

Задача 12. Острые углы прямоугольного треугольника равны {84}^circ и {6}^circ. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах.

Решение:

Обозначим на рисунке медиану CМ и высоту CН.

Пусть angle A=6{}^circ и angle B=84{}^circ . Высота CН разбивает прямоугольный треугольник на два треугольника, подобных исходному. Значит, угол BCН равен углу BAC, то есть {6}^circ.

у которых углы равны т. е. угол C разбился на углы

{84}^circ и

Медиана, проведенная к гипотенузе в прямоугольном треугольнике, равна половине гипотенузы. Получили два равнобедренных треугольника, BCМ и ACМ. В треугольнике ACМ углы A и C равны 6 градусов каждый.

Тогда угол МCН между высотой и медианой равен: 90{}^circ -angle ACM- angle BCH=90{}^circ -6{}^circ -6{}^circ =78{}^circ .

Ответ: 78.

Задачи ОГЭ по математике по теме: Сумма углов треугольника.

Задача 13. В треугольнике два угла равны {57}^circ и {86}^circ. Найдите его третий угол. Ответ дайте в градусах.

Решение:

Сумма углов в треугольнике равна 180{}^circ , поэтому

третий угол равен 180{}^circ -57{}^circ -86{}^circ =37{}^circ .

Ответ: 37.

Задача 14. Один из острых углов прямоугольного треугольника равен 34{}^circ. Найдите его другой острый угол. Ответ дайте в градусах.

Решение:

Сумма острых углов прямоугольного треугольника равна 90{}^circ . Поэтому второй острый угол равен: 90{}^circ -34{}^circ =56{}^circ .

Ответ: 56.

Задача 15.

В треугольнике ABC известно, что AB=BC, angle ABC=108{}^circ. Найдите угол BCA. Ответ дайте в градусах.

Решение:

В треугольнике ABC известно, что AB=BC. Значит, треугольник ABС равнобедренный, и углы при основании AС равны,

т.е. angle A=angle C=displaystyle frac{180{}^circ -108{}^circ }{2}=36{}^circ .

Ответ: 36.

Задача 16. В остроугольном треугольнике ABC проведена высота BH, angle BAC=37{}^circ. Найдите угол ABH. Ответ дайте в градусах.

Решение:

BH — высота triangle ABC, тогда triangle ABH — прямоугольный, в нем angle AHB=90{}^circ  и  angle BAC=37{}^circ . Используя теорему о сумме углов в треугольнике, найдем угол ABH:
angle ABH=180{}^circ -angle AHB-angle AHB=180{}^circ -90{}^circ -37{}^circ =53{}^circ .
Ответ: 53.

Задача 17. В треугольнике ABC угол C равен {133}^circ. Найдите внешний угол при вершине C. Ответ дайте в градусах.

Решение:

Внешний угол треугольника AВC при вершине C является смежным углом с углом ACB, а сумма смежных углов равна 180{}^circ .

Значит, внешний угол треугольника ABC при вершине C равен: 180{}^circ -133{}^circ =47{}^circ .

Ответ: 47.

Задача 18. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и angle ABC=25{}^circ. Найдите угол BOC. Ответ дайте в градусах.

Решение:

triangle ABC — равнобедренный, angle A=angle C=displaystyle frac{180{}^circ -25{}^circ }{2}=displaystyle frac{155{}^circ }{2}.

angle BAC — вписанный угол и опирается на дугу BC, а angle BOC — центральный угол и также опирается на дугу BC. Центральный угол в два раза больше вписанного опирающегося на ту же дугу, angle BOC=2angle BAC=155{}^circ .

Ответ: 155.

Задача 19. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и angle ABC=123{}^circ. Найдите угол BOC. Ответ дайте в градусах.

Решение:

triangle ABC — равнобедренный треугольник, отсюда angle BAC=angle ACB.

angle BAC — вписанный угол, он опирается на дугу BC, а angle BOC — центральный угол и также опирается на дугу BC. Центральный угол в два раза больше вписанного угла, опирающегося на ту же дугу, значит, angle BOC=2angle BAC=180{}^circ -123{}^circ =57{}^circ .

Ответ: 57.

Задача 20. В окружности с центром в точке O отрезки AC и BD — диаметры. Угол AOD равен {114}^circ. Найдите угол ACB. Ответ дайте в градусах.

Решение:

AC и BD — диаметры, отсюда следует, что triangle BOC — равнобедренный, BO=OC — радиусы.

angle AOD=angle BOC=114{}^circ как вертикальные углы, тогда по теореме о сумме углов в треугольнике angle OCB=displaystyle frac{180{}^circ -114{}^circ }{2}=33{}^circ .

Ответ: 33.

Задача 21. Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен {75}^circ. Ответ дайте в градусах.

Решение:

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. A это означает, что AB — диаметр. Угол, опирающийся на диаметр, равен 90{}^circ , и треугольник ABC — прямоугольный. И если angle BAC=75{}^circ , то второй острый угол этого треугольника равен: 90{}^circ -75{}^circ =15{}^circ

Ответ: 15.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Сумма углов треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.01.2023

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Соотношения между сторонами и углами треугольника
  5. Теорема о сумме углов треугольника

Теорема

Данная теорема является одной из важнейших теорем геометрии.

Доказательство

Дано: ABC

Доказать: A+B+C=1800

Доказательство:

Нам дан ABC

Проведем прямую aAC, проходящую через вершину B и обозначим углы.

Углы 1 и 4; 3 и 5 будут являться накрест лежащими углами при параллельных прямых a и AC, секущих AB и BC соответственно, 4 =1, 5 =3.

Из построения мы видим, что сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной B, значит 4+2+5 = 1800. , учитывая то, что 4 =1, 5 =3, можем записать, что 1+2+3 = 1800, или A+B+C = 1800. Что и требовалось доказать.

Внешний угол треугольника — это угол, смежный с каким-нибудь углом этого треугольника.

Доказательство:

Пусть нам дан треугольник, в котором  3 и 4 смежные (т.е. 4 является внешним углом данного треугольника)

Так как данные углы смежные мы можем записать, что 3 +4 = 1800, а по теореме о сумме углов треугольника (1 +2) + 3 = 1800. Из данных выражений мы видим, что  4 = 1 +2. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Остроугольный, прямоугольный и тупоугольный треугольники

Теорема о соотношениях между сторонами и углами треугольника

Неравенство треугольника

Некоторые свойства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Уголковый отражатель

Расстояние от точки до прямой

Расстояние между параллельными прямыми

Построение треугольника по двум сторонам и углу между ними

Построение треугольника по стороне и двум прилежащим к ней углам

Построение треугольника по трем его сторонам

Соотношения между сторонами и углами треугольника


Правило встречается в следующих упражнениях:

7 класс

Задание 242,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 257,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 299,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 334,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 335,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 392,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 707,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1024,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1062,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1279,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Лев Емельянов
«Квантик» №3, 2020

Просто мне нужно объяснить… Но не просто объяснить, а чтобы ещё стало понятно!

Е. Гришковец «Одновременно»

Рисунок Алексея Вайнера («Квантик» №3, 2020)

Для математического уха разговор выглядит комично. То, что сумма углов треугольника равна 180°, знают даже школьники, не очень увлечённые математикой. А что такое 180° и почему именно 180? Ясно, скажет умный школьник, это половина от 360, то есть полного оборота.

Невозможно точно сказать, почему окружность была разбита на 360 одинаковых частей и когда это произошло. То ли это персы придумали, у которых год длился 360 дней, то ли вавилоняне, которым удобно было делить окружность на 6 равных частей с помощью равностороннего треугольника.

Была, правда, попытка ввести более логичную, с точки зрения современных представлений о счёте, шкалу для угловых мер. Она делила окружность на 400 равных частей — градов. В этой шкале величина прямого угла равнялась 100 градам. Однако шкала эта не прижилась. Трудно одним желанием изменить пятитысячелетнюю историю цивилизации. Да впрочем, какая разница, в чём мерить, хоть в попугаях, главное — понять, что угол — это некоторая доля от полного оборота.

Почему же сумма углов любого треугольника равна в точности половине полного оборота? Давайте представим себе, что у нас есть три прожектора. Каждый освещает внутренность некоторого угла до бесконечности (жить мы будем временно в двумерном мире). Если мы, стоя в одной точке, включим три прожектора (зелёный, розовый и жёлтый на рисунке), сумма «световых углов» которых равна 180°, и направим их без наложений освещаемой площади, то осветим ровно половину нашего двумерного пространства.

Сумма «световых углов» равна 180° («Квантик» №3, 2020)

Теперь рассмотрим произвольный треугольник и в вершинах его поставим трёх помощников (Али, Бен и Сирил по буквам вершин, но можно попросить Анну, Варвару и Светлану), доверив им по прожектору. Каждый помощник должен осветить внутренность треугольника лучами света, которые выходят из вершины и продолжаются до бесконечности. Таким образом, каждый прожектор будет освещать внутренность своего угла и не будет освещать внутренность такого же угла, вертикального выбранному. При этом каждая точка плоскости либо попадёт внутрь освещённого угла, либо не будет освещена, попав в вертикальный угол к углу треугольника. Точки же самого треугольника будут освещены трижды. Теперь давайте посмотрим на нашу частично освещённую плоскость с большой высоты (мы-то, как люди трёхмерные, имеем на это право). Если закрыть глаза на небольшой участок перекрытия внутри треугольника, то нетрудно понять, что мы осветили «ровно» половину плоскости. Из чего и можно заключить, что сумма углов произвольного треугольника равна 180°!

Сумма углов произвольного треугольника равна 180° («Квантик» №3, 2020)

Окружность с центром внутри треугольника («Квантик» №3, 2020)

Если наше маленькое жульничество внутри треугольника режет глаз, давайте отойдём далеко-далеко от плоскости и забудем, что где-то стоят наши помощники. Нарисуем окружность огромного радиуса с центром где-то внутри треугольника. Какая часть окружности освещена? Ровно (почти) половина. И чем больше радиус нашей окружности, тем меньше будут отличаться освещённая и тёмная части окружности. Ведь каждой светлой дуге будет в пару поставлена такая же тёмная.

Не будем останавливаться на сумме углов треугольника, а попробуем развить эту идею. Самое естественное продолжение — четырёхугольник. Нетрудно понять, что четыре помощника, выполняя аналогичное задание, осветят всю плоскость, что значит: сумма углов четырёхугольника равна 360°. Стоп! Давайте не торопиться, отойдём подальше. Что мы видим? Ужас! Некоторые точки плоскости вообще не освещены. Всё пропало? Не будем паниковать преждевременно. Продолжим наши прямые до бесконечности. На рисунке серым цветом закрашена неосвещённая часть плоскости. Посмотрим внимательно на вертикальный с ней угол. Он освещён, конечно, но освещён дважды! А значит, и здесь всё сходится. Так и должно быть, ведь четырёхугольник можно просто разрезать на два треугольника. Думаем дальше.

Некоторые точки плоскости не освещены («Квантик» №3, 2020)

Нарисуем пятиконечную звёздочку (не обязательно правильную). Теперь позовём пять фонарщиков, поставим их в вершинах «лучиков» нашей звёздочки, и пусть каждый освещает внутренность того угла, в котором стоит. Соответственно, вертикальный угол освещён не будет. Что мы видим? Картина почти такая же, как у треугольника. Половина плоскости светлая, половина тёмная, а значит, сумма углов пятиконечной звезды равна 180°!

При этом мы нигде не пользовались какими-то особенностями формы этой звёздочки. Более того, а где мы считали количество углов? Давайте внимательно посмотрим на 7-конечную звезду. А потом на 2021-конечную (нарисовать непросто, а представить можно). Что изменится для суммы? Да ничего — половина светлого, половина тёмного. Правда, для большого числа углов нужно «правильно» рисовать звёздочку. Например, для семиугольной конструкции можно привести два примера. Подсчитайте самостоятельно сумму для «более тупоугольной» звёздочки.

Пятиконечные звёздочки («Квантик» №3, 2020)

Теперь давайте немного развернём наших фонарщиков и дадим им задание осветить один из своих внешних углов. Для начала позовём четверых, поставим их в вершинах выпуклого четырёхугольника. Нетрудно понять, что они осветят всё, кроме самого четырёхугольника. Удаляясь от них, мы поймём, что сумма внешних углов выпуклого четырёхугольника равна 360°.

Сумма внешних углов выпуклого четырёхугольника равна 360° («Квантик» №3, 2020)

Также при достаточном удалении мы забудем о количестве помощников, а когда вспомним, поймём, что это совершенно неважно. Сколько бы их ни было, плоскость будет освещена полностью и без перекрытий. Из этого следует чрезвычайно важный и удивительный вывод: сумма внешних углов выпуклого многоугольника равна 360°!

Продолжая применять этот метод, можно получить и другие формулы для суммы углов. То есть если внимательно посмотреть на количество перекрытий, можно вывести формулу для суммы углов выпуклого многоугольника. Но даже без вывода становится понятно, почему сумма внутренних углов зависит от их количества, а сумма внешних нет. Попробуйте развить эту идею на случай невыпуклых многоугольников. Можно, немного поломав голову, найти сумму внутренних углов, а вот для суммы внешних надо сначала понять: что такое внешний угол невыпуклого многоугольника? Успехов в вашем исследовании!

Портновский угольник («Квантик» №3, 2020)

P. S. А угольник 45°, 60° и 90°, оказывается, существует! Это специальный портновский угольник — треугольник, в котором сделаны треугольные дырки с другими углами. И речь в магазине «Ткани», оказывается, совсем не шла о сумме углов треугольника.

Художник Алексей Вайнер

  • Как пишется сумма в математике
  • Как пишется сумма в долларах
  • Как пишется сумеете ль
  • Как пишется сульфид железа
  • Как пишется сульфат натрия формула