Как пишется теорема виета

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Формулировка и доказательство теоремы Виета

Формула корней квадратного уравнения a·x2+b·x+c=0 вида x1=-b+D2·a, x2=-b-D2·a, где D=b2−4·a·c, устанавливает соотношения x1+x2=-bax1·x2=ca. Это подтверждает и теорема Виета.

Теорема 1

В квадратном уравнении a·x2+b·x+c=0, где x1 и x2 – корни, сумма корней будет равна соотношению коэффициентов b и a, которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a, т. е. x1+x2=-bax1·x2=ca.

Доказательство 1

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны -ba и ca соответственно.

Составим сумму корней x1+x2=-b+D2·a+-b-D2·a. Приведем дроби к общему знаменателю -b+D2·a+-b-D2·a=-b+D+-b-D2·a. Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: -b+D+-b-D2·a=-b+D-b-D2·a=-2·b2·a. Сократим дробь на: 2-ba=-ba.

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Для этого нам необходимо составить произведение корней квадратного уравнения: x1·x2=-b+D2·a·-b-D2·a.

Вспомним правило умножения дробей и запишем последнее произведение следующим образом: -b+D·-b-D4·a2.

Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: -b+D·-b-D4·a2=-b2-D24·a2.

Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: -b2-D24·a2=b2-D4·a2. Формула D=b2−4·a·c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b2−4·a·c:

b2-D4·a2=b2-(b2-4·a·c)4·a2

Раскроем скобки, приведем подобные слагаемые и получим: 4·a·c4·a2. Если сократить ее на 4·a, то остается ca. Так мы доказали второе соотношение теоремы Виета для произведения корней.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

x1+x2=-b+D2·a+-b-D2·a=-b+D+-b-D2·a=-2·b2·a=-ba,x1·x2=-b+D2·a·-b-D2·a=-b+D·-b-D4·a2=-b2-D24·a2=b2-D4·a2==D=b2-4·a·c=b2-b2-4·a·c4·a2=4·a·c4·a2=ca.

При дискриминанте квадратного уравнения  равном нулю уравнение будет иметь только один корень. Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня. Действительно, при D=0 корень квадратного уравнения равен: -b2·a, тогда x1+x2=-b2·a+-b2·a=-b+(-b)2·a=-2·b2·a=-ba и x1·x2=-b2·a·-b2·a=-b·-b4·a2=b24·a2, а так как D=0, то есть, b2-4·a·c=0, откуда b2=4·a·c, то b24·a2=4·a·c4·a2=ca.

Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x2+p·x+q=0, где старший коэффициент a равен 1. В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением. Для этого необходимо поделить обе его части на число a, отличное от нуля.

Приведем еще одну формулировку теоремы Виета.

Теорема 2

Сумма корней в приведенном квадратном уравнении x2+p·x+q=0  будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x1+x2=−p, x1·x2=q.

Теорема, обратная теореме Виета

Если внимательно посмотреть на вторую формулировку теоремы Виета, то можно увидеть, что для корней x1 и x2 приведенного квадратного уравнения x2+p·x+q=0 будут справедливы соотношения x1+x2=−p, x1·x2=q. Из этих соотношений x1+x2=−p, x1·x2=q следует, что x1 и x2 – это корни квадратного уравнения x2+p·x+q=0. Так мы приходим к утверждению, которое является обратным теореме Виета.

Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.

Теорема 3

Если числа x1 и x2 таковы, что x1+x2=−p и x1·x2=q, то x1 и x2 являются корнями приведенного квадратного уравнения x2+p·x+q=0.

Доказательство 2

Замена коэффициентов p и q на их выражение через x1 и x2 позволяет преобразовать уравнение x2+p·x+q=0 в равносильное ему x2−(x1+x2)·x+x1·x2=0.

Если в полученное уравнение подставить число x1 вместо x, то мы получим равенство x12−(x1+x2)·x1+x1·x2=0. Это равенство при любых x1 и x2 превращается в верное числовое равенство 0=0, так как x12−(x1+x2)·x1+x1·x2=x12−x12−x2·x1+x1·x2=0. Это значит, что x1 – корень уравнения x2−(x1+x2)·x+x1·x2=0, и что x1 также является корнем равносильного ему уравнения x2+p·x+q=0.

Подстановка в уравнение x2−(x1+x2)·x+x1·x2=0  числа x2 вместо x позволяет получить равенство x22−(x1+x2)·x2+x1·x2=0. Это равенство можно считать верным, так как x22−(x1+x2)·x2+x1·x2=x22−x1·x2−x22+x1·x2=0. Получается, что x2  является корнем уравнения x2−(x1+x2)·x+x1·x2=0, а значит, и уравнения x2+p·x+q=0.

Теорема, обратная теореме Виета, доказана.

Примеры использования теоремы Виета

Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета. Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения. Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x1+x2=-ba, x1·x2=ac.

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Пример 1

Какая из пар чисел 1) x1=−5, x2=3, или 2) x1=1-3, x2=3+3, или 3) x1=2+72, x2=2-72 является парой корней квадратного уравнения 4·x2−16·x+9=0?

Решение

Найдем коэффициенты квадратного уравнения 4·x2−16·x+9=0. Это a=4, b=−16, c=9. В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна -ba, то есть, 164=4, а произведение корней должно быть равно ca, то есть, 94.

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

В первом случае x1+x2=−5+3=−2. Это значение отлично от 4, следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.

Во втором случае x1+x2=1-3+3+3=4.  Мы видим, что первое условие выполняется. А вот второе условие нет: x1·x2=1-3·3+3=3+3-3·3-3=-2·3. Значение, которое мы получили, отлично от 94. Это значит, что вторая пара чисел не является корнями квадратного уравнения.

Перейдем к рассмотрению третьей пары. Здесь x1+x2=2+72+2-72=4 и x1·x2=2+72·2-72=22-722=4-74=164-74=94. Выполняются оба условия, а это значит, что  x1 и x2 являются корнями заданного квадратного уравнения.

Ответ: x1=2+72, x2=2-72

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

Пример 2

В качестве примера используем квадратное уравнение x2−5·x+6=0. Числа x1 и x2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x1+x2=5 и x1·x2=6. Подберем такие числа. Это числа 2 и 3, так как 2+3=5 и 2·3=6. Получается, что 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x1+x2=-ba, x1·x2=ca.

Пример 3

Рассмотрим квадратное уравнение 512·x2−509·x−3=0. Необходимо найти корни данного уравнения.

Решение

Первым корнем уравнения является 1, так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x1=1.

Теперь найдем второй корень. Для этого можно использовать соотношение  x1·x2=ca. Получается, что 1·x2=−3512, откуда x2=-3512.

Ответ: корни заданного в условии задачи квадратного уравнения 1 и -3512.

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x1 и x2. Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример 4

Напишите квадратное уравнение, корнями которого являются числа −11 и 23.

Решение

Примем, что x1=−11 и x2=23. Сумма и произведение данных чисел будут равны: x1+x2=12 и x1·x2=−253. Это значит, что второй коэффициент -12, свободный член −253.

Составляем уравнение: x2−12·x−253=0.

Ответ: x2−12·x−253=0.

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x2+p·x+q=0 следующим образом:

  • если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак «+» или «-»;
  • если квадратное уравнение имеет корни и  если свободный член q является отрицательным числом, то один корень будет «+», а второй «-».

Оба этих утверждения являются следствием формулы x1·x2=q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Пример 5

Являются ли корни квадратного уравнения x2−64·x−21=0 положительными?

Решение

По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x1·x2=−21. Это невозможно при положительных x1 и x2.

Ответ: Нет

Пример 6

При каких значениях параметра r квадратное уравнение x2+(r+2)·x+r−1=0 будет иметь два действительных корня с разными знаками.

Решение

Начнем с того, что найдем значения каких r, при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D=(r+2)2−4·1·(r−1)=r2+4·r+4−4·r+4=r2+8. Значение выражения r2+8 положительно при любых действительных r, следовательно, дискриминант будет больше нуля при любых действительных r. Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r.

Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r, при которых свободный член r−1 отрицателен. Решим линейное неравенство r−1<0, получаем r<1.

Ответ: при r<1.

Формулы Виета

Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.

Для алгебраического уравнения степени n вида a0·xn+a1·xn-1+…+an-1·x+an=0  считается, что уравнение имеет n действительных корней x1, x2, …, xn , среди которых могут быть совпадающие:
x1+x2+x3+…+xn=-a1a0,x1·x2+x1·x3+…+xn-1·xn=a2a0,x1·x2·x3+x1·x2·x4+…+xn-2·xn-1·xn=-a3a0,…x1·x2·x3·…·xn=(-1)n·ana0

Определение 1

Получить формулы Виета нам помогают:

  • теорема о разложении многочлена на линейные множители;
  • определение равных многочленов через равенство всех их соответствующих коэффициентов.

Так, многочлен a0·xn+a1·xn-1+…+an-1·x+an  и его разложение на линейные множители вида a0·(x-x1)·(x-x2)·…·(x-xn) равны.

Если мы раскрываем скобки в последнем произведении и приравниваем соответствующие коэффициенты, то получаем формулы Виета. Приняв n=2, мы можем получить формулу Виета для квадратного уравнения: x1+x2=-a1a0, x1·x2=a2a0.

Определение 2

Формула Виета для кубического уравнения:
x1+x2+x3=-a1a0,x1·x2+x1·x3+x2·x3=a2a0,x1·x2·x3=-a3a0

Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.

После того, как вы внимательно изучите, как решать квадратные уравнения обычным образом с помощью
формулы для корней
можно рассмотреть другой способ решения квадратных уравнений — с помощью теоремы Виета.

Перед тем, как изучить теорему Виета, хорошо потренируйтесь в
определении коэффициентов
«a», «b» и «с» в квадратных уравнениях.
Без этого вам будет трудно применить теорему Виета.

Когда можно применить теорему Виета

Не ко всем квадратным уравнениям имеет смысл использовать эту теорему.
Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.

Запомните!
!

Приведенное квадратное уравнение — это уравнение, в котором старший
коэффициент «a = 1».
В общем виде приведенное квадратное уравнение выглядит следующим образом:

x2 + px + q = 0

Обратите внимание, что разница с обычным общим видом
квадратного уравнения «ax2 + bx + c = 0» в том, что в
приведённом уравнении «x2 + px + q = 0» коэффициент
«а = 1».

Если сравнить приведенное квадратное уравнение «x2 + px + q = 0» с обычным общим видом квадратного
уравнения «ax2 + bx + c = 0», то становится видно,
что
«p = b», а «q = c».

Теперь давайте на примерах разберем, к каким уравнениям можно применять теорему Виета, а где это не целесообразно.

Уравнение Коэффициенты Вывод
x2 − 7x + 1 = 0
  • a = 1
  • p = −7
  • q = 1

Так как «a = 1» можно использовать теорему Виета.

3x2 − 1 + x = 0

Приведем уравнение к общему виду:

3x2 + x − 1 = 0

  • a = 3
  • p = 1
  • q = −1

Так как «a = 3» не следует использовать теорему Виета.

−x2 = −3 + 2x

Приведем уравнение к общему виду:

−x2 + 3 − 2x = 0
−x2 − 2x + 3 = 0

  • a = −1
  • p = −2
  • q = 3

Так как «a = −1» не следует использовать теорему Виета.

Как использовать теорему Виета

Теперь мы готовы перейти к самому методу Виета для решения квадратных уравнений.

Запомните!
!

Теорема Виета для приведённых квадратных уравнений «x2 + px + q = 0» гласит
что справедливо следующее:

, где «x1» и «x2» — корни этого уравнения.

Чтобы было проще запомнить формулу Виета, следует запомнить:
«Коэффициент «p» —
значит плохой, поэтому он берется со знаком минус».


Рассмотрим пример.

x2 + 4x − 5 = 0

Так как в этом уравнении «a = 1», квадратное уравнение
считается приведённым, значит, можно
использовать метод Виета.
Выпишем коэффициенты «p» и «q».

  • p = 4
  • q = −5

Запишем теорему Виета для квадратного уравнения.

x1 + x2 = 4
x1 · x2 = −5

Методом подбора мы приходим к тому, что корни уравнения
«x1 = −5» и «x2 = 1». Запишем ответ.

Ответ: x1 = −5; x2 = 1


Рассмотрим другой пример.

x2 + x − 6 = 0

Старший коэффициент «a = 1» поэтому можно применять теорему Виета.

x1 + x2 = 1
x1 · x2 = −6

Методом подбора получим, что корни уравнения
«x1 = −3» и «x2 = 2». Запишем ответ.

Ответ: x1 = −3; x2 = 2

Важно!
Галка

Если у вас не получается решить уравнение с помощью теоремы Виета, не отчаивайтесь.
Вы всегда можете решить любое квадратное уравнение, используя
формулу для нахождения корней.


Деление уравнение на первый коэффициент

Рассмотрим уравнение, которое по заданию требуется решить, используя теорему Виета.

2x2 − 16x − 18 = 0

Сейчас в уравнении «a = 2»,
поэтому перед тем, как использовать теорему Виета нужно сделать так, чтобы «a = 1».

Для этого достаточно разделить все уравнение на «2».
Таким образом, мы сделаем квадратное уравнение приведённым.

2x2 − 16x − 18 = 0            | (:2)
2x2(:2) − 16x(:2) − 18(:2) = 0
x2 − 8x − 9 = 0

Теперь «a = 1» и можно смело записывать формулу Виета и находить корни методом подбора.

x1 + x2 = (−8)
x1 · x2 = −9

Методом подбора получим, что корни уравнения
«x1 = 9» и «x2 = −1». Запишем ответ.

Ответ: x1 = 9; x2 = −1


Бывают задачи, где требуется найти не только корни уравнения, но и коэффициенты самого уравнения. Например, как в такой задаче.

Корни «x1» и
«x2» квадратного уравнения
«x2 + px + 3 = 0» удовлетворяют
условию «x2 = 3x1».
Найти «p», «x1»,
«x2»
.

Запишем теорему Виета для этого уравнения.

По условию дано, что
«x2 = 3x1».
Подставим это выражение в систему вместо «x2».

x1 + 3x1 = −p
x1 · 3x1 = 3

Решим полученное квадратное уравнение «x12 = 1»
методом подбора и найдем «x1».

   x12 = 1

  • (Первый корень) x1 = 1
  • (Второй корень) x1 = −1

Мы получили два значения «x1».
Для каждого из полученных значений найдем «p» и запишем все полученные результаты в ответ.

(Первый корень) x1 = 1

Найдем
«x2»


x1 · x2 = 3
1 · x2 = 3
x2 = 3


Найдем «p»


x1 + x2 = −p
1 + 3 = −p
4 = −p
p = −4;

(Второй корень) x1 = −1

Найдем «x2»


x1 · x2 = 3
−1 · x2 = 3
                 −x2 = 3         | ·(−1)
x2 = −3

Найдем «p»


x1 + x2 = −p
−1 + −3 = −p
−4 = −p
p = 4

Ответ: (x1 = 1; x2 = 3; p = −4)     и    
(x1 = −1; x2 = −3; p = 4)


Теорема Виета в общем виде

В школьном курсе математики теорему Виета используют только для приведённых уравнений,
где старший коэффициент «a = 1», но, на самом деле, теорему Виета можно применить к любому квадратному уравнению.

В общем виде теорема Виета для квадратного уравнения выглядит так:

Убедимся в правильности этой теоремы на примере. Рассмотрим неприведённое квадратное уравнение.

3x2 + 3x − 18 = 0

Используем для него теорему Виета в общем виде.

x1 + x2 = −1
x1 · x2 = −6

Методом подбора получим, что корни уравнения
«x1 = −3» и «x2 = 2». Запишем ответ.

Ответ: x1 = −3; x2 = 2

В заданиях школьной математики мы не рекомендуем использовать теорему Виета в общем виде.

Другими словами, реальную пользу теорема Виета приносит только для приведённых квадратных уравнений, в
которых «a = 1».
Именно в таких случаях она не усложняет жизнь, а позволят без дополнительных расчетов быстро найти корни.

Применение теоремы Виета для решения квадратных уравнений

Общие сведения

Для применения формул теоремы Виета для квадратного уравнения следует разобрать некоторые термины и математические определения. Квадратным уравнением вида Am2 + Bm + C = 0 называется многочлен второй степени, состоящий из коэффициента А при некоторой неизвестной в квадрате и суммы произведения второго коэффициента на неизвестную величину и константы С. Этот многочлен преобразовывается в уравнение только при равенстве нулевому значению. Константу С еще называют свободным членом.

Общие сведения о теореме Виета

Корнями называются такие значения неизвестных, при подстановке которых тождество считается верным. Следует отметить, что в результате отдельных математических преобразований появляются дополнительные корни. Особенно это касается различных замен в тригонометрических функциях. Однако при подстановке корней равенство не соблюдается. Математики называют их ложными. После решения уравнения специалисты рекомендуют произвести подстановку этих значений в исходное уравнение. Этот прием помогает избавиться от нежелательных решений.

Поиск корней при помощи теоремы Виета принадлежит к быстрым методикам, поскольку избавляет человека от ненужных расчетов по формулам с применением дискриминанта.

Виды квадратных уравнений

Квадратные уравнения бывают нескольких видов, поскольку не во всех случаях коэффициенты получаются отличными от нуля. Математики классифицировали их на 2 типа:

  • полные;
  • неполные.

Применение формул теоремы Виета для квадратного уравнения

Первыми называются выражения со всеми коэффициентами (A, B и C), отличными от нуля. Если число перед неизвестной не указано, то считается, что оно эквивалентно 1. Неполными считаются любые уравнения, в которых отсутствует B или C. Однако бывают случаи, когда оба последних коэффициента соответствуют нулю, тогда тождество имеет следующий вид: Am2 = 0. Кроме того, существует еще один критерий распределения на виды, основанный на степени приведенности. По этому признаку выражения делятся на приведенные и неприведенные классы.

К первым следует отнести любые равенства, у которых коэффициент равен 1. Во всех остальных случаях (А > 1) тождества являются неприведенными.

Условие использования закона

Закон Виета применим не ко всем уравнениям. Математики сформулировали важные условия, при соблюдении которых возможно воспользоваться этим правилом: уравнение должно быть приведенным и иметь значение дискриминанта больше 0. Из этого условия можно сделать вывод: когда равенство невозможно преобразовать к приведенному, следует применять другие методики нахождения корней, а не правило Виета.

Применение формул теоремы Виета

Существует простой алгоритм преобразования уравнения к необходимому виду. Для этого нужно выполнить несложную операцию деления каждого коэффициента на А. Например, следует преобразовать уравнение 4p2 + 8p + 16 = 0 в приведенное. Следуя описанному алгоритму, получается такое соотношение: [(4p2) / 4] + [8p / 4] + [16 / 4] = 4p2 + 2p + 4 = 0.

Специалисты рекомендуют избегать ситуаций получения обыкновенных дробей в результате преобразования. Примером является тождество 3p2 + 2p — 4 = 0. Его можно свести к приведенному, но применить теорему будет весьма сложно, поскольку равенство будет иметь такой вид: p2 + (2p / 3) — (4 / 3) = 0. Рекомендуется решать такие уравнения, используя другие методики (построение графика функции, при помощи программ или по формуле дискриминанта).

Применение теоремы

Формулировка закона Виета для квадратного уравнения Am2 + Bm + C = 0 следующая: сумма корней соответствует коэффициенту А, взятому с противоположным знаком, а результат произведения эквивалентен свободному члену С. Решение осуществляется методом подбора соответствующих числовых значений. Однако каждая теорема должна доказываться.

Чтобы осуществить эту операцию, нужно воспользоваться специальными формулами корней, используя дискриминант. Нужно предположить, что для уравнения Am2 + Bm + C = 0 справедливы два равенства: m1 + m2 = -B и m1 * m2 = C. Выражая значения корней через дискриминант в обобщенном виде, можно получить такие тождества:

  1. m1 = [-B — D^(½)] / (2 * A).
  2. m2 = [-B + D^(½)] / (2 * A).

Далее нужно найти сумму m1 и m2: [-B — D^(½)] / (2 * A) + [-B + D^(½)] / (2 * A). Чтобы упростить полученное выражение, следует воспользоваться таким алгоритмом:

Условие использования теоремы Виета

  1. Привести дроби к общему знаменателю: [(-B — D^(½)) + (-B + D^(½))]/(2 * А).
  2. Упростить выражение (разложение на множители): [-B — D^(½) — B + D^(½)]/(2 * А) = (-2B) / (2 * A) = — B / A = -B / 1 (А = 1).

После этого нужно доказать, что произведение корней эквивалентно С. Для этого необходимо перемножить m1 = [-B — D^(½)] / (2 * A) и m2 = [-B + D^(½)] / (2 * A), воспользовавшись правилом умножения дробей обыкновенного типа по такой методике:

  1. Перемножить числители и знаменатели: [-B — D^(½)] / (2 * A) * [-B + D^(½)] / (2 * A) = [(-B + D^(½)) * (-B — D^(½))] / (4 * A2).
  2. Упростить: [B2 — D] / 4A2 = [B 2 — (-B2 — 4 * A * C)] / 4A2 = (B2 — B2 + 4 * C) / 4 = C (при А = 1).

Вторая формула доказана. Однако перед решением обязательно следует вычислить значение дискриминанта, поскольку при D = 0 уравнение имеет только один корень. Существует обратная теорема Виета. У нее такая формулировка: если сумма чисел m1 и m2 соответствует некоторому значению В, взятому с противоположным знаком, а также их произведение эквивалентно свободному члену многочлена второй степени, значит, они являются корнями Аm 2 + Bm + C = 0. Это утверждение имеет доказательство, для которого следует выполнить следующие шаги:

У доски

  1. Подставить m1 и m2 в исходное уравнение: m2 — (m1 + m2) * m + m1 * m2 = 0.
  2. Раскрыть скобки и привести подобные слагаемые: m2 — (m1 * m — m2 * m + m1 * m2 = (m — m1) * (m — m2) = 0.
  3. Найти корни тождества в пункте 2: m = m1 и m = m2.

Следовательно, теорема доказана, поскольку числа m1 и m2 являются корнями уравнения. Далее нужно рассмотреть приведенные кубические уравнения и порядок применения утверждения Виета.

Кубические равенства с неизвестным

Можно также применять теорему Виета для кубического уравнения вида А * m3 + B * m2 + C * m + D = 0. Коэффициент А должен быть равен 1. Находятся корни при помощи перебора значений, но сделать это сложно, поскольку необходимо решить систему, состоящую из трех равенств:

На уроке

  1. m1 + m2 + m3 = -B.
  2. m1 * m2 + m1 * m3 + m2 * m3 = C.
  3. m1 * m2 * m3 = -D.

Числа m1, m2 и m3 являются корнями. Кроме того, следует обратить внимание на образование ложных результатов, поскольку уравнение является кубическим. Ученые пришли к выводу о том, что чем выше степень, тем больше образовывается ложных ответов. Они рекомендуют применять специальное программное обеспечение для поиска решения. Если его нет под рукой, то можно построить график функции, а затем найти точки пересечения с осью абсцисс. Существуют также специализированные веб-сервисы. Они называются онлайн-калькуляторами.

Примеры решения

Несмотря на простоту теоремы, существует несколько типов упражнений на эту тему. Они делятся на следующие классы:

Теорема Виета

  • простые;
  • средние;
  • продвинутые;
  • сложные.

К первым следует отнести задачи на простой подбор корней. Средними считаются задания на преобразование квадратного уравнения к приведенному.

Продвинутыми являются любые тождества, которые необходимо упростить и привести к коэффициенту А = 1. Сложные — особый вид. Для них следует применить все знания в области математики. Кроме того, нужно осуществить объяснение хода решения. В некоторых случаях необходимо построить таблицу зависимостей и начертить график.

Интересный факт заключается в том, что именно этот класс выражений существенно развивает умственные способности человека на уроках. Встречаются также задачи на пересечения параболы и прямой, которая может проходить под определенным углом. Далее нужно разобрать практическое применение теоремы Виета на примерах с решением для различных классов задач.

Простой и средний

Пусть дано тождество m2 — 5 * m + 6 = 0. Необходимо найти его корни. Для решения следует применить такой алгоритм:

  1. Найти дискриминант: D = (-5)^2 — 4 * 1 * 6 = 1 (два корня, поскольку D > 0).
  2. Методом перебора можно получить решения m1 = 2 и m2 = 3.
  3. Проверка I корня: 22 — 5 * 2 + 6 = 4 — 10 + 6 = 0 (соответствует).
  4. Подстановка для II: 32 — 5 * 3 + 6 = 9 — 15 + 6 = 0 (соответствует).

Следовательно, тождество решено верно. Далее можно рассмотреть средний тип упражнения. Для этого следует решить уравнение 3 * m2 + 33 * m + 30 = 0. Найти корни можно по такому алгоритму:

Использование теоремы Виета

  1. Преобразование к приведенному (разделить на А = 3): 3 * m2 + 33 * m + 30 = m2 + 11 * m + 10 = 0.
  2. Найти D: D = 121 — 4 * 10 = 81 > 0 (два).
  3. Корни: m1 = -10 и m2 = -1.
  4. Проверка: (-10)^2 + 11 * (-10) + 10 = 100 — 110 + 10 = 0 и (-1)^2 + 11 * (-1) + 10 = 1 — 11 + 10 = 0.

​Следовательно, корни m1 и m2 удовлетворяют этому уравнению. Если не получается делить все члены на А, то необходимо рассмотреть решение с помощью дискриминанта или графическим методом.

Продвинутый класс

Для иллюстрации этого вида нужно решить следующее тождество: (m — 4)^2 — 20 = -m (m — 8) + 14. Следует воспользоваться инструкцией такого вида:

Учитель

  1. Раскрыть скобки: m2 — 8 * m + 16 — 20 = -m2 + 8 * m + 14.
  2. Перенести все слагаемые в левую часть и упростить: 2 * m2 — 16 * m — 18 = 0.
  3. Сократить на 2: m2 — 8 * m — 9 = 0.
  4. Найти значение D: D = 64 + 36 = 100 > 0 (2).
  5. Вычисление корней: m1 = -1 и m2 = 9.
  6. Проверка: (-1)^2 — 8 * (-1) — 9 = 1 + 8 — 9 = 0 и 92 — 8 * 9 — 9 = 81 — 72 — 9 = 0.

На основании шестого пункта можно сделать вывод, что корни подобраны правильно. Этот пример показывает, что одной теоремы недостаточно, поскольку следует уметь выполнять математическое преобразование заданного выражения. В этом классе примеров возможен случай, когда величина дискриминанта эквивалентна 0. Следовательно, у тождества с неизвестным всего один корень. К последнему невозможно применить закон Виета.

Сложные упражнения

Примером сложной задачи, которую еще называют «со звездочкой», является следующая: необходимо найти сумму, произведение и сумму квадратов решений уравнения m 2 — 7 * m + 12 = 0, не находя корней. По обычной методике нужно доказать, что у выражения с неизвестным существует два корня по формуле дискриминанта: D = 49 — 4 * 12 = 1 > 0. Следовательно, ориентируясь на последнее равенство, условие соблюдается. По теореме Виета получаются ответы на первые два вопроса:

  1. m1 + m2 = 7.
  2. m1 * m2 = 12.

Затем следует записать сумму квадратов, используя две описанные выше формулы: (m1)^2 + (m2)^2 = (m1)^2 + (m2)^2 — 2 * m1 * m2 — 2 * m1 * m2 = (m1 + m2)^2 — 2 * m1 * m2 = 7 2 — 2 * 12 = 25. Задача решена: 7; 12 и 25.

Формулы теоремы Виета

Следующий пример является довольно распространенным. Существует уравнение 5 * m 2 — 15 * m + 30 = 0. Необходимо найти сумму кубов корней и квадрат разности. Многие ученики на протяжении всей истории существования алгебры делают однотипную ошибку. Она заключается в подготовке, то есть записываются соответствующие формулы сокращенного умножения. Если их не знают, то пользуются интернетом или другими источниками. На эту операцию тратится драгоценное время. Чтобы этого избежать, необходимо воспользоваться таким алгоритмом:

  1. Сократить на общий множитель, равный 5: m2 — 3 * m + 10 = 0.
  2. Вычислить величину дискриминанта: D = 9 — 4 * 1 * 10 = -31 < 0.

Следовательно, у равенства с неизвестными корней нет вообще. В результате невозможно найти необходимые значения. Этот прием лишний раз показывает, что можно избежать множества ошибок и не тратить время, пользуясь соответствующим алгоритмом.

Решение квадратных и кубических приведенных уравнений осуществляется при помощи соотношения Виета. Однако важным аспектом при осуществлении этой операции является нахождение величины дискриминанта.

Теорема Виета для квадратного уравнения

О чем эта статья:

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D 0, есть два различных корня.

В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Раскроем скобки и приведем подобные члены:

Сократим дробь полученную дробь на 2, остается −b:

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Перемножаем числители и знаменатели между собой:

Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:

Далее произведем трансформации в числителе:

Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

Далее раскроем скобки и приведем подобные члены:

Сократим:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.

    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:
    Получается, второй коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.

  • Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.
  • Тогда в соответствии с теоремой Виета получаем:
  • Метод подбора помогает найти корни: −1 и
  • Теорема Виета

    Что называют теоремой?

    Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

    Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

    Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

    Например, теоремой можно назвать следующее утверждение:

    «Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

    А затем привести такое доказательство:

    Пусть, имеется дробь . Умнóжим числитель и знаменатель этой дроби на число с . Тогда полýчится дробь . Докáжем, что дроби и равны. То есть докажем, что равенство является верным.

    Для доказательства этого равенства воспользуемся основным свойством пропорции:

    От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

    Поскольку равенство является пропорцией, а пропорция это равенство двух отношений, то дроби и равны. Теорема доказана.

    Теорема Виета

    Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

    Сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

    То есть, если имеется приведённое квадратное уравнение x 2 + bx + c = 0 , а его корнями являются числа x1 и x2 , то справедливы следующие два равенства:

    Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

    Покажем теорему Виета на примере приведённого квадратного уравнения x 2 + 4x + 3 = 0 .

    Мы пока не знаем какие корни имеет уравнение x 2 + 4x + 3 = 0 . Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4 , взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4 . Тогда:

    А произведение корней по теореме Виета будет равно свободному члену. В уравнении x 2 + 4x + 3 = 0 свободным членом является 3 . Тогда:

    Теперь проверим действительно ли сумма корней равна −4 , и равно ли произведение 3 . Для этого найдём корни уравнения x 2 + 4x + 3 = 0 . А для удобства воспользуемся формулами для чётного второго коэффициента:

    Корнями уравнения являются числа −1 и −3 . По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x 2 + 4x + 3 = 0 , взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x 2 + 4x + 3 = 0 является 4 . Если взять его с противоположным знаком и приравнять сумму корней x1 + x2 к этому коэффициенту, то получается верное равенство:

    А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x 2 + 4x + 3 = 0 , то есть числу 3 . Видим, что это условие тоже выполняется:

    Значит выражение является справедливым.

    Рассмотрим квадратное уравнение x 2 − 8x + 15 = 0 . По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8 . Если взять его с противоположным знаком, то получим 8 . Тогда:

    А произведение корней равно свободному члену. В уравнении x 2 − 8x + 15 = 0 свободным членом является 15 . Тогда:

    Теперь проверим действительно ли сумма корней равна 8 , и равно ли произведение 15 . Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

    Видим, что корнями уравнения x 2 − 8x + 15 = 0 являются числа 5 и 3 . Их сумма равна 8 . То есть сумма корней равна второму коэффициенту уравнения x 2 − 8x + 15 = 0 , взятому с противоположным знаком.

    А произведение чисел 5 и 3 равно 15 . То есть равно свободному члену уравнения x 2 − 8x + 15 = 0 .

    Значит выражение является справедливым.

    Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

    Например, рассмотрим квадратное уравнение x 2 − 2x + 4 = 0 . Напишем сумму и произведение корней этого уравнения:

    Но уравнение x 2 − 2x + 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4 . Убедиться в этом можно, вычислив дискриминант:

    А значит записывать выражение не имеет смысла.

    Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

    Например, запишем для уравнения x 2 − 5x + 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

    Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x1 × x2 = 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство x1 + x2 = 5 , поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству x1 + x2 = 5 , так и равенству x1 × x2 = 6.

    Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству x1 + x2 = 5 так и равенству x1 × x2 = 6 . Очевидно, что таковыми являются корни 3 и 2

    Доказательство теоремы Виета

    Пусть дано приведённое квадратное уравнение x 2 + bx + c = 0 . Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

    Вспомним формулы корней квадратного уравнения:

    Найдём сумму корней x1 и x2 . Для этого подставим в выражение x1 + x2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении x 2 + bx + c = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

    Запишем правую часть в виде дроби с одним знаменателем:

    Раскроем скобки в числителе и приведём подобные члены:

    Сократим дробь на 2 , тогда получим −b

    Теперь аналогично докажем, что произведение x1 × x2 равно свободному члену c .

    Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

    Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

    В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a 2 − b 2 . Тогда в числителе полýчится А знаменатель будет равен 4

    Теперь в числителе выражение (−b) 2 станет равно b 2 , а выражение станет равно просто D

    Но D равно b 2 − 4ac . Подстáвим это выражение вместо D , не забывая что a = 1 . То есть вместо b 2 − 4ac надо подставить b 2 − 4c

    В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

    Сократим получившуюся дробь на 4

    Таким образом, сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком ( x1 + x2 = −b ), а произведение корней равно свободному члену ( x1 × x2 = c ). Теорема доказана.

    Теорема, обратная теореме Виета

    Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения x 2 + bx + c = 0, то числа x1 и x2 являются корнями уравнения x 2 + bx + c = 0.

    Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

    Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b , а произведение x1 и x2 равно c . В обратной же теореме это заключение служит утверждением.

    Ранее мы решили уравнение x 2 − 5x + 6 = 0 и написали для него такую сумму и произведение корней:

    А затем подобрали корни 3 и 2 . По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x 2 − 5x + 6 = 0 , взятому с противоположным знаком (числу 5 ), а произведение чисел 3 и 2 равно свободному члену (числу 6 ). Значит числа 3 и 2 являются корнями уравнения x 2 − 5x + 6 = 0 .

    Пример 2. Решить квадратное уравнение x 2 − 6x + 8 = 0 по теореме, обратной теореме Виета.

    В данном уравнении a = 1 . Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

    Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6 , поскольку второй коэффициент исходного уравнения равен −6 . А произведение корней будет равно 8

    Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству x1 + x2 = 6 , так и равенству x1 × x2 = 8

    Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x1 × x2 = 8 нужно найти такие x1 и x2 , произведение которых равно 8.

    Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

    4 × 2 = 8
    1 × 8 = 8

    Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x1 × x2 = 8 , но и равенству x1 + x2 = 6 .

    Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x1 × x2 = 8 , но не удовлетворяют равенству x1 + x2 = 6 .

    Зато значения 4 и 2 подходят как равенству x1 × x2 = 8 , так и равенству x1 + x2 = 6 , поскольку эти значения удовлетворяют обоим равенствам:

    Значит корнями уравнения x 2 − 6x + 8 = 0 являются числа 4 и 2 .

    Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n . Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

    Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения x 2 + bx + c = 0, то числа m и n являются корнями уравнения x 2 + bx + c = 0

    Для начала запишем, что сумма m и n равна −b , а произведение mn равно c

    Чтобы доказать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 , нужно поочередно подстáвить буквы m и n в это уравнение вместо x , затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 .

    Помимо букв m и n нам нужно знать чему равен параметр b . Выразим его из равенства m + n = −b . Легче всего это сделать, умножив обе части этого равенства на −1

    Теперь всё готово для подстановок. Подстáвим m в уравнение x 2 + bx + c = 0 вместо x , а выражение −m − n подставим вместо b

    Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения x 2 + bx + c = 0 .

    Аналогично докажем, что число n является корнем уравнения x 2 + bx + c = 0 . Подставим вместо x букву n , а вместо c подставим mn , поскольку c = mn .

    Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

    Следовательно, числа m и n являются корнями уравнения x 2 + bx + c = 0 .

    Примеры решения уравнений по теореме, обратной теореме Виета

    Пример 1. Решить квадратное уравнение x 2 − 4x + 4 = 0 по теореме, обратной теореме Виета.

    Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену :

    В данном примере очевидно, что корнями являются числа 2 и 2 . Потому что их сумма равна 4 и произведение равно 4

    Значение x1 совпадает с x2 . Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле

    Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.

    Пример 2. Решить уравнение x 2 + 3x + 2 = 0 по теореме, обратной теореме Виета.

    Запишем сумму и произведение корней данного уравнения:

    Теперь подберём значения x1 и x2 . Здесь начинается самое интересное. Произведение корней равно 2 . Число 2 можно получить перемножив 1 и 2 . Но сумма корней x1 + x2 равна отрицательному числу −3 . Значит значения 1 и 2 не подходят.

    Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

    Если подберём корни с разными знаками, то не будет выполняться равенство x1 × x2 = 2 .

    Если подберем положительные корни, то будет выполняться равенство x1 × x2 = 2 , но не будет выполняться равенство x1 + x2 = −3 .

    Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

    Тогда равенствам будут удовлетворять числа −1 и −2 .

    Итак, корнями являются числа −1 и −2

    Пример 3. Решить уравнение x 2 + 16x + 15 = 0 по теореме, обратной теореме Виета.

    Запишем сумму и произведение корней данного уравнения:

    Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

    Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

    Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5) . В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16 , а их произведение равно 15 . Значит корнями уравнения x 2 + 16x + 15 = 0 являются числа −1 и −15

    Пример 4. Решить уравнение x 2 − 10x − 39 = 0 по теореме, обратной теореме Виета.

    Запишем сумму и произведение корней данного уравнения:

    Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3 . Из этих комбинаций больше годится комбинация −3 и 13 , поскольку при перемножении этих чисел получается −39 , а при сложении 10

    Значит корнями уравнения x 2 − 10x − 39 = 0 являются числа −3 и 13

    Пример 5. Первый корень уравнения x 2 + bx + 45 = 0 равен 15 . Найти второй корень этого уравнения, а также значение коэффициента b .

    По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

    При этом один из корней уже известен — это корень 15 .

    Тогда второй корень будет равен 3 , потому что число 45 получается, если 15 умножить на 3

    Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

    Теперь определим значение коэффициента b . Для этого напишем сумму корней уравнения:

    По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

    Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

    Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15 , а свободный член уравнения x 2 + bx + 45 = 0 равен 45

    Из этой системы следует найти x2 и b . Выразим эти параметры:

    Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

    Теперь из первого равенства мы видим, что −b равно 18

    Но нас интересует b , а не −b . Следует помнить, что −b это −1b . Чтобы найти b нужно 18 разделить на −1 . Тогда b станет равно −18

    Этот же результат можно получить если в выражении умножить первое равенство на −1

    Теперь возвращаемся к исходному уравнению x 2 + bx + 45 = 0 и подставляем найденное значение b

    Выполним умножение −18 на x . Получим −18x

    Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8 .

    В этом задании корни уже известны. То есть x1 = 2 , x2 = 8 . По ним надо составить квадратное уравнение вида x 2 + bx + c = 0 .

    Запишем сумму и произведение корней:

    По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10 , то в самóм уравнении число 10 должно быть с противоположным знаком. Значит b = −10 .

    Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16 .

    Значит b = −10 , c = 16 . Отсюда:

    Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа и .

    Запишем сумму и произведение корней:

    Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

    Когда квадратное уравнение неприведённое

    Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

    Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x 2 .

    Если к примеру в квадратном уравнении a x 2 + bx + c = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x 2 , то есть на a

    Получилось уравнение , которое является приведённым. В нём второй коэффициент равен , а свободный член равен . Тогда сумма и произведение корней будут выглядеть так:

    Например, решим квадратное уравнение 4x 2 + 5x + 1 = 0 . Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x 2 , то есть на 4

    Получили приведённое квадратное уравнение. В нём второй коэффициент равен , а свободный член . Тогда по теореме Виета имеем:

    Отсюда методом подбора находим корни −1 и

    Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.

    Пример 2. Решить квадратное уравнение 3x 2 − 7x + 2 = 0

    Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

    Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x 2

    Получили уравнение . Запишем сумму и произведение корней этого уравнения:

    Отсюда методом подбора находим корни 2 и

    Пример 3. Решить квадратное уравнение 2x 2 − 3x − 2 = 0

    Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2 . Сделать это можно в уме. Если 2x 2 разделить на 2 , то полýчится x 2

    Далее если −3x разделить на 2 , то полýчится . Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде

    Далее если −2 разделить на 2 , то полýчится −1

    Прирáвниваем получившееся выражение к нулю:

    Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

    Отсюда методом подбора находим корни 2 и

    Теорема Виета

    Теорема Виета:

    Сумма корней приведённого квадратного уравнения

    равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену

    Если приведённое квадратное уравнение имеет вид

    то его корни равны:

    ,

    где D = p 2 — 4q. Чтобы доказать теорему, сначала найдём сумму корней:

    ,

    а теперь найдём их произведение:

    Равенства, показывающие зависимость между корнями и коэффициентами квадратного уравнения:

    называются формулами Виета.

    Примечание: если дискриминант равен нулю (D = 0), то подразумевается, что уравнение имеет не один корень, а два равных корня.

    Обратная теорема

    Теорема:

    Если сумма двух чисел равна -p, а их произведение равно q, то эти числа являются корнями приведённого квадратного уравнения:

    Это доказывает, что число x1 является корнем уравнения x 2 + px + q = 0. Точно так же можно доказать, что и число x2 является корнем для этого уравнения.

    Решение примеров

    Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.

    Пример 1. Найти корни уравнения:

    Решение: Так как

    очевидно, что корни равны 1 и 2:

    Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:

    1 2 — 3 · 1 + 2 = 0

    2 2 — 3 · 2 + 2 = 0.

    Пример 2. Найти корни уравнения:

    Методом подбора находим, что корни равны -3 и -5:

    С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.

    Пример 1. Составить квадратное уравнение по его корням:

    Решение: Так как x1 = -3, x2 = 6 корни уравнения x 2 + px + q = 0, то по теореме, обратной теореме Виета, составим уравнения:

    Следовательно, искомое уравнение:

    Пример 2. Записать приведённое квадратное уравнение, имеющее корни:

    источники:

    http://spacemath.xyz/teorema-vieta/

    http://izamorfix.ru/matematika/algebra/teorema_vieta.html

    Теорема Виета

    Теорема Виета — это теорема, которая используется для решения квадратных уравнений.

    В уравнении вида x²+px+q = 0:

    • сумма корней равна его второму коэффициенту p, но знак меняется на противоположный (x1+x2 = −p);
    • произведение корней равно его свободному члену q, знак не меняется (x1.x2 = q).

    Пример 1

    Пример x²+5x−6 = 0

    p- это второй коэффициент с противоположным знаком

    q- это третий коэффициент

    Надо подобрать корни x1 и x2 таким образом, чтобы их сумма равнялась −5, но и их произведение равнялось −6 (обычно это делается в уме).

    Единственные числа, которые сюда подходят — это 1 и -6, значит x1 = 1 и x2 = -6.

    Пример 2

    Пример x² −4,5x +2 = 0

    Надо подобрать корни x1 и x2 таким образом, чтобы их сумма равнялась 4,5, но и произведение равнялось бы 2.

    Единственные числа, которые сюда подходят — это 4 и 0,5, значит x1 = 4 и x2 = 0,5.

    Обратная теорема Виета

    Если числа x1 и x2 являются корнями квадратного уравнения вида x² + px + q = 0, то известно, что x1+x2 = −p и x1. x2 = q.

    Например:

    Известны x1 = 4 и x2 = 3, корни квадратного уравнения. Требуется составить это уравнение.

    Искомое уравнение имеет вид x² + px + q = 0

    x1+x2 = −p, x1.x2 = q

    p = −(x1+x2) = −(4+3) = −7 (не забудьте про минус)

    q = x1.x2 = 4 ⋅ 3 = 12

    Уже есть все значения, можно составить искомое уравнение: x² − 7x + 12 = 0.

    Теорема Виета для кубического уравнения

    Имеется уравнение вида ax³ + bx² + cx + d = 0

    В этом случае будут подбираться корни, удовлетворяющие эти условия:

    x1+x2 + x3 = −b/a, x1x2 + x1x3 + x2x3= c/a, x1x2x3 =−d/a

    Где x1, x2, x3 — корни уравнения.

    Как превратить неприведённое квадратное уравнение в приведённое

    Если уравнение выглядит так: ax² + bx + c = 0 (вместе с x² стоит число), то это уравнение является неприведённым, с ним ещё нельзя работать. Чтобы сделать его приведённым, нужно всего лишь разделить всё уравнение на это число a.

    Например:

    1. 2x² + 4x + 6 = 0 (неприведённое, делим всё на 2, т. к. вместе с x² стоит 2)
    2. 2x²/2 + 4x/2 + 6/2 = 0
    3. x² + 2x + 3 =0 (теперь оно стало приведённым, т. к. старший коэффициент с x² равен 1)

    Если вам неизвестны коэффициенты, это деление можно показать так:

    x1+x2 = −p/а и x1. x2 = q/а

    Узнайте также, что такое Теорема Пифагора.

    Теорема Виета

    7 ноября 2011

    В математике существуют специальные приемы, с которыми многие квадратные уравнения решаются очень быстро и без всяких дискриминантов. Более того, при надлежащей тренировке многие начинают решать квадратные уравнения устно, буквально «с первого взгляда».

    К сожалению, в современном курсе школьной математики подобные технологии почти не изучаются. А знать надо! И сегодня мы рассмотрим один из таких приемов — теорему Виета. Для начала введем новое определение.

    Квадратное уравнение вида x2 + bx + c = 0 называется приведенным. Обратите внимание: коэффициент при x2 равен 1. Никаких других ограничений на коэффициенты не накладывается.

    Примеры:

    1. x2 + 7x + 12 = 0 — это приведенное квадратное уравнение;
    2. x2 − 5x + 6 = 0 — тоже приведенное;
    3. 2x2 − 6x + 8 = 0 — а вот это нифига не приведенное, поскольку коэффициент при x2 равен 2.

    Разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать приведенным — достаточно разделить все коэффициенты на число a. Мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.

    Правда, далеко не всегда эти преобразования будут полезны для отыскания корней. Чуть ниже мы убедимся, что делать это надо лишь тогда, когда в итоговом приведенном квадратом уравнении все коэффициенты будут целочисленными. А пока рассмотрим простейшие примеры:

    Задача. Преобразовать квадратное уравнение в приведенное:

    1. 3x2 − 12x + 18 = 0;
    2. −4x2 + 32x + 16 = 0;
    3. 1,5x2 + 7,5x + 3 = 0;
    4. 2x2 + 7x − 11 = 0.

    Разделим каждое уравнение на коэффициент при переменной x2. Получим:

    1. 3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
    2. −4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
    3. 1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
    4. 2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. При этом возникли дробные коэффициенты.

    Как видите, приведенные квадратные уравнения могут иметь целые коэффициенты даже в том случае, когда исходное уравнение содержало дроби.

    Теперь сформулируем основную теорему, для которой, собственно, и вводилось понятие приведенного квадратного уравнения:

    Теорема Виета. Рассмотрим приведенное квадратное уравнение вида x2 + bx + c = 0. Предположим, что это уравнение имеет действительные корни x1 и x2. В этом случае верны следующие утверждения:

    1. x1 + x2 = −b. Другими словами, сумма корней приведенного квадратного уравнения равна коэффициенту при переменной x, взятому с противоположным знаком;
    2. x1 · x2 = c. Произведение корней квадратного уравнения равно свободному коэффициенту.

    Примеры. Для простоты будем рассматривать только приведенные квадратные уравнения, не требующие дополнительных преобразований:

    1. x2 − 9x + 20 = 0 ⇒ x1 + x2 = − (−9) = 9; x1 · x2 = 20; корни: x1 = 4; x2 = 5;
    2. x2 + 2x − 15 = 0 ⇒ x1 + x2 = −2; x1 · x2 = −15; корни: x1 = 3; x2 = −5;
    3. x2 + 5x + 4 = 0 ⇒ x1 + x2 = −5; x1 · x2 = 4; корни: x1 = −1; x2 = −4.

    Теорема Виета дает нам дополнительную информацию о корнях квадратного уравнения. На первый взгляд это может показаться сложным, но даже при минимальной тренировке вы научитесь «видеть» корни и буквально угадывать их за считанные секунды.

    Задача. Решите квадратное уравнение:

    1. x2 − 9x + 14 = 0;
    2. x2 − 12x + 27 = 0;
    3. 3x2 + 33x + 30 = 0;
    4. −7x2 + 77x − 210 = 0.

    Попробуем выписать коэффициенты по теореме Виета и «угадать» корни:

    1. x2 − 9x + 14 = 0 — это приведенное квадратное уравнение.
      По теореме Виета имеем: x1 + x2 = −(−9) = 9; x1 · x2 = 14. Несложно заметить, что корни — числа 2 и 7;
    2. x2 − 12x + 27 = 0 — тоже приведенное.
      По теореме Виета: x1 + x2 = −(−12) = 12; x1 · x2 = 27. Отсюда корни: 3 и 9;
    3. 3x2 + 33x + 30 = 0 — это уравнение не является приведенным. Но мы это сейчас исправим, разделив обе стороны уравнения на коэффициент a = 3. Получим: x2 + 11x + 10 = 0.
      Решаем по теореме Виета: x1 + x2 = −11; x1 · x2 = 10 ⇒ корни: −10 и −1;
    4. −7x2 + 77x − 210 = 0 — снова коэффициент при x2 не равен 1, т.е. уравнение не приведенное. Делим все на число a = −7. Получим: x2 − 11x + 30 = 0.
      По теореме Виета: x1 + x2 = −(−11) = 11; x1 · x2 = 30; из этих уравнений легко угадать корни: 5 и 6.

    Из приведенных рассуждений видно, как теорема Виета упрощает решение квадратных уравнений. Никаких сложных вычислений, никаких арифметических корней и дробей. И даже дискриминант (см. урок «Решение квадратных уравнений») нам не потребовался.

    Разумеется, во всех размышлениях мы исходили из двух важных предположений, которые, вообще говоря, не всегда выполняются в реальных задачах:

    1. Квадратное уравнение является приведенным, т.е. коэффициент при x2 равен 1;
    2. Уравнение имеет два различных корня. С точки зрения алгебры, в этом случае дискриминант D > 0 — по сути, мы изначально предполагаем, что это неравенство верно.

    Однако в типичных математических задачах эти условия выполняются. Если же в результате вычислений получилось «плохое» квадратное уравнение (коэффициент при x2 отличен от 1), это легко исправить — взгляните на примеры в самом начале урока. Про корни вообще молчу: что это за задача, в которой нет ответа? Конечно, корни будут.

    Таким образом, общая схема решения квадратных уравнений по теореме Виета выглядит следующим образом:

    1. Свести квадратное уравнение к приведенному, если это еще не сделано в условии задачи;
    2. Если коэффициенты в приведенном квадратном уравнении получились дробными, решаем через дискриминант. Можно даже вернуться к исходному уравнению, чтобы работать с более «удобными» числами;
    3. В случае с целочисленными коэффициентами решаем уравнение по теореме Виета;
    4. Если в течение нескольких секунд не получилось угадать корни, забиваем на теорему Виета и решаем через дискриминант.

    Задача. Решите уравнение: 5x2 − 35x + 50 = 0.

    Итак, перед нами уравнение, которое не является приведенным, т.к. коэффициент a = 5. Разделим все на 5, получим: x2 − 7x + 10 = 0.

    Все коэффициенты квадратного уравнения целочисленные — попробуем решить по теореме Виета. Имеем: x1 + x2 = −(−7) = 7; x1 · x2 = 10. В данном случае корни угадываются легко — это 2 и 5. Считать через дискриминант не надо.

    Задача. Решите уравнение: −5x2 + 8x − 2,4 = 0.

    Смотрим: −5x2 + 8x − 2,4 = 0 — это уравнение не является приведенным, разделим обе стороны на коэффициент a = −5. Получим: x2 − 1,6x + 0,48 = 0 — уравнение с дробными коэффициентами.

    Лучше вернуться к исходному уравнению и считать через дискриминант: −5x2 + 8x − 2,4 = 0 ⇒ D = 82 − 4 · (−5) · (−2,4) = 16 ⇒ … ⇒ x1 = 1,2; x2 = 0,4.

    Задача. Решите уравнение: 2x2 + 10x − 600 = 0.

    Для начала разделим все на коэффициент a = 2. Получится уравнение x2 + 5x − 300 = 0.

    Это приведенное уравнение, по теореме Виета имеем: x1 + x2 = −5; x1 · x2 = −300. Угадать корни квадратного уравнения в данном случае затруднительно — лично я серьезно «завис», когда решал эту задачу.

    Придется искать корни через дискриминант: D = 52 − 4 · 1 · (−300) = 1225 = 352. Если вы не помните корень из дискриминанта, просто отмечу, что 1225 : 25 = 49. Следовательно, 1225 = 25 · 49 = 52 · 72 = 352.

    Теперь, когда корень из дискриминанта известен, решить уравнение не составит труда. Получим: x1 = 15; x2 = −20.

    Смотрите также:

    1. Следствия из теоремы Виета
    2. Как решать квадратные уравнения
    3. Тест к уроку «Округление с избытком и недостатком» (1 вариант)
    4. Что такое ЕГЭ по математике 2011 и как его сдавать
    5. Уравнение плоскости в задаче C2. Часть 1: матрицы и определители
    6. Тест по задачам B14: легкий уровень, 1 вариант

    Что такое теорема Виета

    Франсуа Виет (1540-1603 гг) - математика, создатель знаменитых формул Виета

    Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

    Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

    Если более подробно, то теорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

    При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

    Нужна помощь в написании работы?

    Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Цена работы

    Доказательство теоремы Виета

    Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны {-b}/a и, соответственно, c/a.

    Допустим у нас есть уравнение: x^2 + px + q = 0. У этого уравнения есть такие корни: x_1 и x_2. Докажем, что x_1 + x_2 = -p, x_1 * x_2 = q.

    По формулам корней квадратного уравнения:

    {x_1} = {-p + sqrt{D}over{2a}}, {x_2} = {p - sqrt{D}over{2a}}.

    1. Найдём сумму корней:

    {x_1 + x_2} = {-p + sqrt{D}over{2a}} + {-p - sqrt{D}over{2a}} = {-p + sqrt{D} - p - sqrt{D}over{2a}} = -p.

    Разберём это уравнение, как оно у нас получилось именно таким:

    x_1 + x_2 = {{-p + sqrt{D}}over{2a}} + {{-p - sqrt{D}}over{2a}}.

    Шаг 1. Приводим дроби к общему знаменателю, получается:

    x_1 + x_2 = {{-p + sqrt{D}over{2a}} + {{-p - sqrt{D}}over{2a}} = {-p + sqrt{D} + (-p - sqrt{D})over{2a}}.

    Шаг 2. У нас получилась дробь, где нужно раскрыть скобки:

    {-p + sqrt{D} + (-p - sqrt{D})over{2a}} = {-p + sqrt{D} - p - sqrt{D}over{2a}} = {-2b}over{2a}. Сокращаем дробь на 2 и получаем:

    {{-p}over{a}} = -{{pover{a}}.

    Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

    2. Найдём произведение корней:

    {x_1 * x_2} = {-p + sqrt{D}over{2}} * {-p - sqrt{D}over{2}} = {(-p + sqrt{D}) * (-p - sqrt{D})over{4}} =

    = {(p - sqrt{D})(p + sqrt{D})over{4}} = {p^2 - D}over{4}} = {{p^2 - (p^2 - 4q)}over{4}} = {p^2 - p^2 + 4q}over{4}} = {q}.

    Докажем это уравнение:

    {x_1 * x_2} = {-p + sqrt{D}over{2a}} * {-p - sqrt{D}over{2a}}.

    Шаг 1. Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

    {(-p + sqrt{D}) * (-p - sqrt{D})over{4a^2}}.

    Шаг 2. Далее выполняется умножение скобку на скобку (в числителе). Можно воспользоваться формулой сокращённого умножения (ФСУ) – формула разности, откуда получается:

    {(-p + sqrt{D} * (-p - sqrt{D})over{4a^2}} = {{(-p)^2 - (sqrt{D})^2}over{4a^2}}.

    Теперь вспоминаем определение квадратного корня и считаем:

    {{(-p){^2} - (sqrt{D})^2}over{4a^2}} = {p^2 - Dover{4a^2}}.

    Шаг 3. Вспоминаем дискриминант квадратного уравнения: D - b^2 - 4ac. Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем b^2 - 4ac, тогда получается:

    {b^2 - D}over{4a^2} = {b^2 - (b^2 - 4 * a * c)}over{4a^2}.

    Шаг 4. Раскрываем скобки и приводим подобные слагаемые к дроби:

    {4 * a * cover{4 * a^2}}.

    Шаг 5. Сокращаем «4a» и получаем 3over{a}.

    Вот мы и доказали соотношение для произведения корней по теореме Виета.

    ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

    Теорема, обратная теореме Виета

    По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.

    Если числа x_1 и x_2 такие:

    x_1 + x_2 = -p и x-1 * x_2 = q, тогда они и есть корнями квадратного уравнения x^2 + px + q = 0.

    Доказательство обратной теоремы Виета

    Шаг 1. Подставим в уравнение x^2 + px + q = 0 выражения для его коэффициентов:

    x^2 - (x_1 + x_2)x + x_{1} * x_{2} = 0

    Шаг 2. Преобразуем левую часть уравнения:

    x^2 - x_1 * x - x_2 * x + x_{1} * x_{2} = 0;

    (x - x_1)(x - x_2) = 0.

    Шаг 3. Найдём Корни уравнения (x - x_1)(x - x_2) = 0, а для этого используем свойство о равенстве произведения нулю:

    x - x_1 = 0 или x - x_2 = 0. Откуда и получается: x = x_1 или x = x_2.

    Примеры с решениями по теореме Виета

    Задание

    Найдите сумму, произведение и сумму квадратов корней квадратного уравнения x^2 - 7x + 12 = 0, не находя корней уравнения.

    Решение

    Шаг 1. Вспомним формулу дискриминанта D = b^2 - 4 * a * c. Подставляем наши цифры под буквы. То есть, b^2 = (-7)^2, a = 1^2 – это заменяет x^2, а c = 12. Отсюда следует:

    D = (-7)^2 - 4 * 1^2 * 12. Получается:

    D = 49 - 48 = 1 > 0. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма x_1 + x_2 = 7, а произведение x_1 * x_2 = 12.

    Выразим сумму квадратов корней через их сумму и произведение:

    x_1^2 + x_2^2 = x_1^2 + x_2^2 + 2x_1x_2 - 2x_1x_2 = (x_1 + x_2)^2 - 2x_1x_2 = 7^2 - 2 * 12 = 49 - 24 = 25.

    Ответ

    7; 12; 25.

    Задание

    Решите уравнение x^2 - 4x - 5 = 0. При этом не применяйте формулы квадратного уравнения.

    Решение

    У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа 5, сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

    Ответ

    5 и 1

    Задание

    Найдите, если это возможно, сумму и произведение корней уравнения:

    x^2 - 3x + 6 = 0

    Решение

    D = 9 - 24 < 0. Так как дискриминант меньше нуля, значит у уравнения нет корней.

    Ответ

    Нет корней.

    Задание

    Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

    x^2 - 12x + 7 = 0

    Решение

    По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

    Сумма корней нового уравнения будет равна:

    2 * 12 = 24, а произведение 4 * 7 = 28.

    По теореме, обратной теореме Виета, новое уравнение имеет вид:

    x^2 - 24x + 28 = 0

    Ответ

    Получилось уравнение, каждый корень которого в два раза больше: x^2 - 24x + 28 = 0

    Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле x^2 + px + q свободный член q – число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

    А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

    Полезные источники:

    1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
    2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
    3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

  • Как пишется тоже самое слитно или раздельно примеры
  • Как пишется теннисный мяч
  • Как пишется тоже или тоже самое как правильно
  • Как пишется тенистый сад
  • Как пишется тоесть вместе или раздельно