Как пишется вероятность в алгебре

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.

понятия

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Демоурок по математике

Узнайте, какие темы у вас «хромают», а после — разбирайте их без зубрежки формул и скучных лекций.

Демоурок по математике

Событие и виды событий

Событие — это базовое понятие теории вероятности. События бывают достоверными, невозможными и случайными.

  • Достоверным является событие, которое в результате испытания обязательно произойдет. Например, камень упадет вниз.

  • Невозможным является событие, которое заведомо не произойдет в результате испытания. Например, камень при падении улетит вверх.

  • Случайным называется событие, которое в результате испытания может произойти, а может не произойти. Например, из колоды карт вытащили туза.

Обычно события обозначают большими латинскими буквами. Например, А — событие, при котором из колоды вытащили туза, D — событие, при котором из колоды вытащили семерку.

Несовместными называются события, в которых появление одного из событий исключает появление другого (при условии одного и того же испытания). Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с черточкой вверху. Например:

  • A0 — в результате броска монеты выпадет орел;

  • Ā0 — в результате броска монеты выпадет решка.

Полная группа событий — это множество несовместных событий, среди которых в результате отдельно взятого испытания обязательно появится одно из этих событий.

Алгебра событий

Операция сложения событий означает логическую связку ИЛИ, а операция умножения событий — логическую связку И.

Сложение событий

Суммой двух событий A и B называется событие A+B, которое состоит в том, что наступит или событие A, или событие B, или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие A, или событие B.

Правило распространяется и на большее количество слагаемых, например, событие A1 + A2 + A3 + A4 + A5 состоит в том, что произойдет хотя бы одно из событий A1, A2, A3, A4, A5, а если события несовместны — то одно и только одно событие из этой суммы: или событие A1, или событие A2, или событие A3, или событие A4, или событие A5.

Примеров масса:

  • Событие

    (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

  • Событие B1,2 = B1 + B2 (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.

  • Событие BЧ = B2 + B4 + B6 (будет чётное число очков) состоит в том, что выпадет или 2 , или 4 , или 6 очков.

Умножение событий

Произведением двух событий A И B называют событие AB, которое состоит в совместном появлении этих событий. Иными словами, умножение AB означает, что при некоторых обстоятельствах наступит и событие A, и событие B. Аналогичное утверждение справедливо и для большего количества событий: например, произведение A1A2A3A10 подразумевает, что при определенных условиях произойдет и событие A1, и событие A2, и событие A3,…, и событие A10.

Рассмотрим испытание, в котором подбрасываются две монеты, и следующие события:

  • A1 — на 1-й монете выпадет орел;

  • Ā1 — на 1-й монете выпадет решка;

  • A2 — на 2-й монете выпадет орел;

  • Ā2 — на 2-й монете выпадет решка.

Тогда:

  • событие A1A1 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орел;

  • событие Ā2Ā2 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;

  • событие A1Ā2 состоит в том, что на 1-й монете выпадет орел и на 2-й монете решка;

  • событие Ā1A2 состоит в том, что на 1-й монете выпадет решка и на 2-й монете орел.

Классическое определение и формула вероятности

Вероятностью события A в некотором испытании называют отношение:

Свойства вероятности:

  • Вероятность достоверного события равна единице.

  • Вероятность невозможного события равна нулю.

  • Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству 0 ≤ P(A) ≤ 1.

Как решать задачи по теории вероятности

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Как рассуждаем:

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

P = 0/15 = 0

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Ответ: 0.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Как рассуждаем:

Вспоминаем основную формулу теории вероятности, которую мы привели выше. Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Следовательно:

Ответ: 0,25.

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

теория вероятности возникла как помощь в игре в кости, в казино и т.п.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом oslash.

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом Omega.

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. 0<P(A)<1.
  2. Вероятность невозможного события равна 0, т.е. P(oslash) = 0 .
  3. Вероятность достоверного события равна 1, т.e. P(Omega) = 1.
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. P(A+B) =P(A)+P(B).

Важным частным случаем является ситуация, когда имеется n равновероятных элементарных исходов, и произвольные k из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле P(A) = frac{k}{n}. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов k, прямо в условии написано число всех исходов n.

Самый простой способ определения вероятности

Ответ получаем по формуле P(A) = frac{k}{n}.

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть P(A), где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

    [ P(A)=frac{k}{n}=frac{8}{20}=0,4 ]

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. P(B)=1-P(A).

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. P(A+B) = P(A)+P(B)-P(AB).

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае P{AB)= P(A)cdot P(B).

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение 1cdot 2 cdot 3 cdot 4 cdot 5 cdot 6, которое обозначается символом 6! и читается “шесть факториал”.

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов P_n=1 cdot 2 cdot 3 cdot 4 cdot 5 cdot 6 В нашем случае  n= 6.

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение 6 cdot 5.

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

    [ A^{k}_{n}=n cdot (n-1) cdot (n-2) dots cdot(n-k+1)= frac{n!}{(n-k)!} ]

В нашем случае n = 6, k = 2.

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: frac {6 cdot 5 cdot 4}{1cdot 2 cdot 3} = 20. В общем случае ответ на этот вопрос дает формула для числа сочетаний из n элементов по k элементам:

    [ C^{k}_{n}=frac{n cdot (n-1) cdot (n-2) dots (n-k+1)}{1cdot 2 cdot 3 dots cdot k}=frac{n!}{k! cdot (n-k)!}. ]

В нашем случае n=6, k=3.

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

P=frac {9}{30}=0,3.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

P=frac{980}{1000}=0,98

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.

Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:

P(A)=P(B)-P(C)=0,73-0,67=0,06.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

P(AB)=P(A)+ P(B)=0,2 +0,15 = 0,35

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: bigcirc– лампочка горит, otimes – лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”: P=0,29 cdot 0,71 cdot 0,71=0,146189, где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно: P=1-0,29=0,71.

otimes otimes otimes P=0,29 cdot 0,29 cdot 0,29 = 0,024389

otimes bigcirc bigcirc P_1=0,29 cdot 0,71 cdot 0,71 = 0,146189

otimes otimes bigcirc  P_2=0,29 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes bigcirc  P_3=0,71 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes otimes  P_4=0,71 cdot 0,29 cdot 0,29 = 0,146189

bigcirc bigcirc otimes  P_5=0,71 cdot 0,71 cdot 0,29 = 0,05971

otimes bigcirc otimes  P_6=0,29 cdot 0,71 cdot 0,29 = 0,146189

bigcirc bigcirc bigcirc P_7=0,71 cdot 0,71 cdot 0,71=0,357911

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: P=P_1+P_2+P_3+P_4+P_5+P_6+P_7=0,146189 +0,05971+0,05971+0,146189+0,05971+0,146189+0,357911=0,975608.

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

решения задачи о монетах

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Задание 3. Теория вероятностей на ЕГЭ по математике.

Мы начнем с простых задач и основных понятий теории вероятностей.
Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.
Вы выиграли в лотерею — случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте — тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут — и это тоже можно считать счастливой случайностью…

Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.

Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?

Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием.

Орел и решка — два возможных исхода испытания.

Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна 1/2.

Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.

Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом.

Вероятность выпадения тройки равна 1/6 (один благоприятный исход из шести возможных).

Вероятность четверки — тоже 1/6.

А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Очевидно, что вероятность не может быть больше единицы.

Вот другой пример. В пакете 25 яблок, из них 8 — красные, остальные — зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна 8/25, а зеленое — 17/25.

Вероятность достать красное или зеленое яблоко равна 8/25+17/25=1.
 

БЕСПЛАТНЫЙ МИНИ-КУРС ПО ТЕОРВЕРУ

Определение вероятности. Простые задачи из вариантов ЕГЭ.

Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.

1. В фирме такси в данный момент свободно 15 машин: 2 красных, 9 желтых и 4 зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.

Всего имеется 15 машин, то есть к заказчице приедет одна из пятнадцати. Желтых — девять, и значит, вероятность приезда именно желтой машины равна 9/15, то есть 0,6.

2. В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.

Очевидно, вероятность вытащить билет без вопроса о грибах равна 23/25, то есть 0,92.

3. Родительский комитет закупил 30 пазлов для подарков детям на окончание учебного года, из них 12 с картинами известных художников и 18 с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.

Задача решается аналогично.

Ответ: 0,6.

4. В чемпионате по гимнастике участвуют 20 спортсменок: 8 — из России, 7 — из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая.

Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен 5/20 (поскольку из Китая — 5 спортсменок). Ответ: 0,25.

5. Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовет число кратное пяти?

1,2,3,4,5,6,7,8,9,10,11 dotsc 100.

Каждое пятое число из данного множества делится на 5. Значит, вероятность равна 1/5.

6. Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.

1, 3, 5 — нечетные числа; 2,4,6 — четные. Вероятность нечетного числа очков равна 1/2.

Ответ: 0,5.

7. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.

Как вы думаете, сколько здесь возможных исходов?

Бросаем монету. У этого действия два возможных исхода: орел и решка.

Две монеты — уже четыре исхода:

орел орел
орел решка
решка орел
решка решка

Три монеты? Правильно, 8. исходов, так как 2 cdot 2 cdot 2 = 2^3=8.

Вот они:

орел орел орел
орел орел решка
орел решка орел
решка орел орел
орел решка решка
решка орел решка
решка решка орел
решка решка решка

Два орла и одна решка выпадают в трех случаях из восьми.

Ответ: 3/8.

8. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Бросаем первую кость — шесть исходов. И для каждого из них возможны еще шесть — когда мы бросаем вторую кость.

Получаем, что у данного действия — бросания двух игральных костей — всего 36 возможных исходов, так как 6^2=36.

А теперь — благоприятные исходы:

2 6

3 5

4 4

5 3

6 2

Вероятность выпадения восьми очков равна 5/36 approx 0,14.

9. Стрелок попадает в цель с вероятностью 0,9. Найдите вероятность того, что он попадёт в цель четыре выстрела подряд.

Если вероятность попадания равна 0,9 — следовательно, вероятность промаха 0,1. Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна 0,9 cdot 0,9=0,81. А вероятность четырех попаданий подряд равна 0,9 cdot 0,9 cdot 0,9 cdot 0,9 = 0,6561.

Лень разбираться самому?
Присоединяйся к мини-курсу по теории вероятностей

ПОДРОБНЕЕ

Вероятность: логика перебора.

10. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя не глядя переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?

Можно, конечно, обозначить пятирублевые монеты цифрами 1, а десятирублевые цифрами 2 — а затем посчитать, сколькими способами можно выбрать три элемента из набора 1 1 2 2 2 2.

Однако есть более простое решение:

Кодируем монеты числами: 1, 2 (это пятирублёвые), 3, 4, 5, 6 (это десятирублёвые). Условие задачи можно теперь сформулировать так:

Есть шесть фишек с номерами от 1 до 6. Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами 1 и 2 не оказались вместе?

Давайте запишем, что у нас в первом кармане.

Для этого составим все возможные комбинации из набора 1 2 3 4 5 6. Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях 1 2 3 и 2 3 1 — это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:

123, 124, 125, 126

А дальше? Мы же говорили, что располагаем числа по возрастанию. Значит, следующее — 134, а затем:

135, 136, 145, 146, 156.

Все! Мы перебрали все возможные комбинации, начинающиеся на 1. Продолжаем:

234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

Всего 20 возможных исходов.

У нас есть условие — фишки с номерами 1 и 2 не должны оказаться вместе. Это значит, например, что комбинация 356 нам не подходит — она означает, что фишки 1 и 2 обе оказались не в первом, а во втором кармане. Благоприятные для нас исходы — такие, где есть либо только 1, либо только 2. Вот они:

134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 – всего 12 благоприятных исходов.

Тогда искомая вероятность равна 12/20.

Ответ: 0,6.

Сумма событий, произведение событий и их комбинации

11. Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Проработав год, чайник может либо сломаться на второй год, либо благополучно служить и после 2 лет работы.
Пусть p – вероятность того, что чайник прослужил больше года.

p_1 – вероятность того, что он сломается на второй год, p_2 – вероятность того, что он прослужит больше двух лет.

Очевидно, p= p_1+p_2.

Тогда p_1=p-p_2=0,93-0,87=0,06.

Ответ: 0,06.

События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.

Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.

Вероятность суммы несовместных событий равна сумме их вероятностей.

В нашей задаче события «чайник сломался на второй год работы» и «чайник работает больше двух лет» — несовместные. Чайник или сломался, или остается в рабочем состоянии.

12. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук выйдет через выход А.

Пронумеруем развилки, на которых паук может случайным образом свернуть в ту или другую сторону.

Он может либо выйти в выход D, и вероятность этого события равна frac{1}{2}. Либо уйти дальше в лабиринт. На второй развилке он может либо свернуть в тупик, либо выйти в выход В (с вероятностью frac{1}{2}cdot frac{1}{2}=frac{1}{4}). На каждой развилке вероятность свернуть в ту или другую сторону равна frac{1}{2}, а поскольку развилок пять, вероятность выбраться через выход А равна frac{1}{32}, то есть 0,03125.

События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.

В нашей задаче так и есть: неразумный паук сворачивает налево или направо случайным образом, независимо от того, что он делал до этого.

Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

13. (А) Два грузовика, работая совместно, вывозят снег с улицы Нижняя Подгорная, причем первый грузовик должен сделать три рейса с грузом снега, а второй — два. Вероятность застрять с грузом снега при подъеме в горку равна 0,2 для первого грузовика и 0,25 — для второго. С какой вероятностью грузовики вывезут снег с улицы Нижняя Подгорная, ни разу не застряв на горке?

Вероятность для первого грузовика благополучно одолеть горку 1 - 0,2 = 0,8. Для второго 1 - 0,25 = 0,75. Поскольку первый грузовик должен сделать 3 рейса, а второй – два, грузовики ни разу не застрянут на горке с вероятностью 0,8cdot0,75cdot0,8cdot0,75cdot 0,8 =0,36cdot0,8=0,288.

14. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Нарисуем все возможные исходы ситуации. Покупатель пришел в магазин, который принадлежит агрофирме, и купил яйцо. Надо найти вероятность того, что это яйцо из первого хозяйства.

Яйца могут быть только или из первого домашнего хозяйства, или из второго, причем эти два события несовместны. Других яиц в этот магазин не поступает.

Пусть вероятность того, что купленное яйцо из первого хозяйства, равна x. Тогда вероятность того, что яйцо из второго хозяйства (противоположного события), равна 1-x.

Яйца могут быть высшей категории и не высшей.
В первом хозяйстве 40% яиц имеют высшую категорию, а 60% — не высшую. Это значит, что случайно выбранное яйцо из первого хозяйства с вероятностью 40% будет высшей категории.

Во втором хозяйстве 20% яиц высшей категории, а 80% — не высшей.

Пусть случайно выбранное в магазине яйцо — из первого хозяйства и высшей категории. Вероятность этого события равна произведению вероятностей: 0,4 x.

Вероятность того, что яйцо из второго хозяйства и высшей категории, равна 0,2 (1-x).

Если мы сложим эти две вероятности, мы получим вероятность того, что яйцо имеет высшую категорию. По условию, высшую категорию имеют 35% яиц, значит, эта вероятность равна 0,35.

Мы получили уравнение:

0,4 x + 0,2 (1-x) = 0,35.

Решаем это уравнение и находим, что x = 0,75 – вероятность того, что яйцо, купленное у этой агрофирмы, оказалось из первого хозяйства.

15. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

С чем пришел пациент в клинику? – С подозрением на гепатит. Возможно, он действительно болен гепатитом, а возможно, у его плохого самочувствия другая причина. Может быть, он просто съел что-нибудь. Вероятность того, что он болен гепатитом, равна 0,05 (то есть 5%). Вероятность того, что он здоров, равна 0,95 (то есть 95%).

Пациенту делают анализ. Покажем на схеме все возможные исходы:

Если он болен гепатитом, анализ дает положительный результат с вероятностью 0,9. То есть анализ покажет: «есть гепатит».
Заметим, что анализ не во всех случаях выявляет гепатит у того, кто действительно им болен. С вероятностью 0,1 анализ не распознает гепатит у больного.

Более того. Анализ может ошибочно дать положительный результат у того, кто не болеет гепатитом. Вероятность такого ложного положительного результата 0,01. Тогда с вероятностью 0,99 анализ даст отрицательный результат, если человек здоров.

Найдем вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

Благоприятные для этой ситуации исходы: человек болен, и анализ положительный (вероятность одновременного наступления этих двух событий равна 0,05cdot0,9 ), или человек здоров, и анализ ложный положительный (вероятность одновременного наступления этих двух событий равна 0,95cdot0,01 ). Так как события «человек болен» и «человек не болен» несовместны, то вероятность того, что результат анализа будет положительным, равна 0,05cdot0,9+0,95cdot0,01=0,0545.

Ответ: 0,0545.

16. Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.

Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознание или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна 0,6 cdot 0,8.

Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна
1 - 0,5 cdot 0,3.
В результате вероятность сдать математику, русский и обществознание или иностранный равна 0,6 cdot 0,8 cdot (1 - 0,5 cdot 0,3) = 0,408. Это ответ.

Чтобы полностью освоить тему, смотрите видеокурс по теории вероятностей. Это бесплатно.

Еще задачи ЕГЭ по теме «Теория вероятностей».

Смотрите также: парадокс Монти Холла.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 3. Теория вероятностей на ЕГЭ по математике.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.01.2023

The probabilities of rolling several numbers using two dice.

Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty.[note 1][1][2] The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes («heads» and «tails») are both equally probable; the probability of «heads» equals the probability of «tails»; and since no other outcomes are possible, the probability of either «heads» or «tails» is 1/2 (which could also be written as 0.5 or 50%).

These concepts have been given an axiomatic mathematical formalization in probability theory, which is used widely in areas of study such as statistics, mathematics, science, finance, gambling, artificial intelligence, machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.[3]

Interpretations[edit]

When dealing with experiments that are random and well-defined in a purely theoretical setting (like tossing a coin), probabilities can be numerically described by the number of desired outcomes, divided by the total number of all outcomes. For example, tossing a coin twice will yield «head-head», «head-tail», «tail-head», and «tail-tail» outcomes. The probability of getting an outcome of «head-head» is 1 out of 4 outcomes, or, in numerical terms, 1/4, 0.25 or 25%. However, when it comes to practical application, there are two major competing categories of probability interpretations, whose adherents hold different views about the fundamental nature of probability:

  • Objectivists assign numbers to describe some objective or physical state of affairs. The most popular version of objective probability is frequentist probability, which claims that the probability of a random event denotes the relative frequency of occurrence of an experiment’s outcome when the experiment is repeated indefinitely. This interpretation considers probability to be the relative frequency «in the long run» of outcomes.[4] A modification of this is propensity probability, which interprets probability as the tendency of some experiment to yield a certain outcome, even if it is performed only once.
  • Subjectivists assign numbers per subjective probability, that is, as a degree of belief.[5] The degree of belief has been interpreted as «the price at which you would buy or sell a bet that pays 1 unit of utility if E, 0 if not E»,[6] although that interpretation is not universally agreed upon.[7] The most popular version of subjective probability is Bayesian probability, which includes expert knowledge as well as experimental data to produce probabilities. The expert knowledge is represented by some (subjective) prior probability distribution. These data are incorporated in a likelihood function. The product of the prior and the likelihood, when normalized, results in a posterior probability distribution that incorporates all the information known to date.[8] By Aumann’s agreement theorem, Bayesian agents whose prior beliefs are similar will end up with similar posterior beliefs. However, sufficiently different priors can lead to different conclusions, regardless of how much information the agents share.[9]

Etymology[edit]

The word probability derives from the Latin probabilitas, which can also mean «probity», a measure of the authority of a witness in a legal case in Europe, and often correlated with the witness’s nobility. In a sense, this differs much from the modern meaning of probability, which in contrast is a measure of the weight of empirical evidence, and is arrived at from inductive reasoning and statistical inference.[10]

History[edit]

The scientific study of probability is a modern development of mathematics. Gambling shows that there has been an interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later. There are reasons for the slow development of the mathematics of probability. Whereas games of chance provided the impetus for the mathematical study of probability, fundamental issues [note 2] are still obscured by the superstitions of gamblers.[11]

According to Richard Jeffrey, «Before the middle of the seventeenth century, the term ‘probable’ (Latin probabilis) meant approvable, and was applied in that sense, univocally, to opinion and to action. A probable action or opinion was one such as sensible people would undertake or hold, in the circumstances.»[12] However, in legal contexts especially, ‘probable’ could also apply to propositions for which there was good evidence.[13]

The sixteenth-century Italian polymath Gerolamo Cardano demonstrated the efficacy of defining odds as the ratio of favourable to unfavourable outcomes (which implies that the probability of an event is given by the ratio of favourable outcomes to the total number of possible outcomes[14]).
Aside from the elementary work by Cardano, the doctrine of probabilities dates to the correspondence of Pierre de Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest known scientific treatment of the subject.[15] Jakob Bernoulli’s Ars Conjectandi (posthumous, 1713) and Abraham de Moivre’s Doctrine of Chances (1718) treated the subject as a branch of mathematics.[16] See Ian Hacking’s The Emergence of Probability[10] and James Franklin’s The Science of Conjecture[17] for histories of the early development of the very concept of mathematical probability.

The theory of errors may be traced back to Roger Cotes’s Opera Miscellanea (posthumous, 1722), but a memoir prepared by Thomas Simpson in 1755 (printed 1756) first applied the theory to the discussion of errors of observation.[18] The reprint (1757) of this memoir lays down the axioms that positive and negative errors are equally probable, and that certain assignable limits define the range of all errors. Simpson also discusses continuous errors and describes a probability curve.

The first two laws of error that were proposed both originated with Pierre-Simon Laplace. The first law was published in 1774, and stated that the frequency of an error could be expressed as an exponential function of the numerical magnitude of the error—disregarding sign. The second law of error was proposed in 1778 by Laplace, and stated that the frequency of the error is an exponential function of the square of the error.[19] The second law of error is called the normal distribution or the Gauss law. «It is difficult historically to attribute that law to Gauss, who in spite of his well-known precocity had probably not made this discovery before he was two years old.»[19]

Daniel Bernoulli (1778) introduced the principle of the maximum product of the probabilities of a system of concurrent errors.

Adrien-Marie Legendre (1805) developed the method of least squares, and introduced it in his Nouvelles méthodes pour la détermination des orbites des comètes (New Methods for Determining the Orbits of Comets).[20] In ignorance of Legendre’s contribution, an Irish-American writer, Robert Adrain, editor of «The Analyst» (1808), first deduced the law of facility of error,

phi (x)=ce^{-h^{2}x^{2}},

where h is a constant depending on precision of observation, and c is a scale factor ensuring that the area under the curve equals 1. He gave two proofs, the second being essentially the same as John Herschel’s (1850).[citation needed] Gauss gave the first proof that seems to have been known in Europe (the third after Adrain’s) in 1809. Further proofs were given by Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W.F. Donkin (1844, 1856), and Morgan Crofton (1870). Other contributors were Ellis (1844), De Morgan (1864), Glaisher (1872), and Giovanni Schiaparelli (1875). Peters’s (1856) formula[clarification needed] for r, the probable error of a single observation, is well known.

In the nineteenth century, authors on the general theory included Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion and Karl Pearson. Augustus De Morgan and George Boole improved the exposition of the theory.

In 1906, Andrey Markov introduced[21] the notion of Markov chains, which played an important role in stochastic processes theory and its applications. The modern theory of probability based on the measure theory was developed by Andrey Kolmogorov in 1931.[22]

On the geometric side, contributors to The Educational Times included Miller, Crofton, McColl, Wolstenholme, Watson, and Artemas Martin.[23] See integral geometry for more information.

Theory[edit]

Like other theories, the theory of probability is a representation of its concepts in formal terms—that is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are interpreted or translated back into the problem domain.

There have been at least two successful attempts to formalize probability, namely the Kolmogorov formulation and the Cox formulation. In Kolmogorov’s formulation (see also probability space), sets are interpreted as events and probability as a measure on a class of sets. In Cox’s theorem, probability is taken as a primitive (i.e., not further analyzed), and the emphasis is on constructing a consistent assignment of probability values to propositions. In both cases, the laws of probability are the same, except for technical details.

There are other methods for quantifying uncertainty, such as the Dempster–Shafer theory or possibility theory, but those are essentially different and not compatible with the usually-understood laws of probability.

Applications[edit]

Probability theory is applied in everyday life in risk assessment and modeling. The insurance industry and markets use actuarial science to determine pricing and make trading decisions. Governments apply probabilistic methods in environmental regulation, entitlement analysis, and financial regulation.

An example of the use of probability theory in equity trading is the effect of the perceived probability of any widespread Middle East conflict on oil prices, which have ripple effects in the economy as a whole. An assessment by a commodity trader that a war is more likely can send that commodity’s prices up or down, and signals other traders of that opinion. Accordingly, the probabilities are neither assessed independently nor necessarily rationally. The theory of behavioral finance emerged to describe the effect of such groupthink on pricing, on policy, and on peace and conflict.[24]

In addition to financial assessment, probability can be used to analyze trends in biology (e.g., disease spread) as well as ecology (e.g., biological Punnett squares). As with finance, risk assessment can be used as a statistical tool to calculate the likelihood of undesirable events occurring, and can assist with implementing protocols to avoid encountering such circumstances. Probability is used to design games of chance so that casinos can make a guaranteed profit, yet provide payouts to players that are frequent enough to encourage continued play.[25]

Another significant application of probability theory in everyday life is reliability. Many consumer products, such as automobiles and consumer electronics, use reliability theory in product design to reduce the probability of failure. Failure probability may influence a manufacturer’s decisions on a product’s warranty.[26]

The cache language model and other statistical language models that are used in natural language processing are also examples of applications of probability theory.

Mathematical treatment[edit]

Calculation of probability (risk) vs odds

Consider an experiment that can produce a number of results. The collection of all possible results is called the sample space of the experiment, sometimes denoted as Omega . The power set of the sample space is formed by considering all different collections of possible results. For example, rolling a die can produce six possible results. One collection of possible results gives an odd number on the die. Thus, the subset {1,3,5} is an element of the power set of the sample space of dice rolls. These collections are called «events». In this case, {1,3,5} is the event that the die falls on some odd number. If the results that actually occur fall in a given event, the event is said to have occurred.

A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive events (events with no common results, such as the events {1,6}, {3}, and {2,4}), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events.[27]

The probability of an event A is written as P(A),[28] p(A), or {text{Pr}}(A).[29] This mathematical definition of probability can extend to infinite sample spaces, and even uncountable sample spaces, using the concept of a measure.

The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring), often denoted as {displaystyle A',A^{c}}, {displaystyle {overline {A}},A^{complement },neg A}, or {displaystyle {sim }A}; its probability is given by P(not A) = 1 − P(A).[30] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) =1-{tfrac {1}{6}}={tfrac {5}{6}}. For a more comprehensive treatment, see Complementary event.

If two events A and B occur on a single performance of an experiment, this is called the intersection or joint probability of A and B, denoted as P(Acap B).

Independent events[edit]

If two events, A and B are independent then the joint probability is[28]

{displaystyle P(A{mbox{ and }}B)=P(Acap B)=P(A)P(B).}

For example, if two coins are flipped, then the chance of both being heads is {tfrac {1}{2}}times {tfrac {1}{2}}={tfrac {1}{4}}.[31]

Mutually exclusive events[edit]

If either event A or event B can occur but never both simultaneously, then they are called mutually exclusive events.

If two events are mutually exclusive, then the probability of both occurring is denoted as P(Acap B) and

{displaystyle P(A{mbox{ and }}B)=P(Acap B)=0}

If two events are mutually exclusive, then the probability of either occurring is denoted as P(Acup B) and

{displaystyle P(A{mbox{ or }}B)=P(Acup B)=P(A)+P(B)-P(Acap B)=P(A)+P(B)-0=P(A)+P(B)}

For example, the chance of rolling a 1 or 2 on a six-sided die is P(1{mbox{ or }}2)=P(1)+P(2)={tfrac {1}{6}}+{tfrac {1}{6}}={tfrac {1}{3}}.

Not mutually exclusive events[edit]

If the events are not mutually exclusive then

{displaystyle Pleft(A{hbox{ or }}Bright)=P(Acup B)=Pleft(Aright)+Pleft(Bright)-Pleft(A{mbox{ and }}Bright).}

For example, when drawing a card from a deck of cards, the chance of getting a heart or a face card (J,Q,K) (or both) is {tfrac {13}{52}}+{tfrac {12}{52}}-{tfrac {3}{52}}={tfrac {11}{26}}, since among the 52 cards of a deck, 13 are hearts, 12 are face cards, and 3 are both: here the possibilities included in the «3 that are both» are included in each of the «13 hearts» and the «12 face cards», but should only be counted once.

Conditional probability[edit]

Conditional probability is the probability of some event A, given the occurrence of some other event B.
Conditional probability is written P(Amid B), and is read «the probability of A, given B«. It is defined by[32]

P(Amid B)={frac {P(Acap B)}{P(B)}}.,

If P(B)=0 then P(Amid B) is formally undefined by this expression. In this case A and B are independent, since {displaystyle P(Acap B)=P(A)P(B)=0}. However, it is possible to define a conditional probability for some zero-probability events using a σ-algebra of such events (such as those arising from a continuous random variable).[33]

For example, in a bag of 2 red balls and 2 blue balls (4 balls in total), the probability of taking a red ball is 1/2; however, when taking a second ball, the probability of it being either a red ball or a blue ball depends on the ball previously taken. For example, if a red ball was taken, then the probability of picking a red ball again would be 1/3, since only 1 red and 2 blue balls would have been remaining. And if a blue ball was taken previously, the probability of taking a red ball will be 2/3.

Inverse probability[edit]

In probability theory and applications, Bayes’ rule relates the odds of event A_{1} to event A_{2}, before (prior to) and after (posterior to) conditioning on another event B. The odds on A_{1} to event A_{2} is simply the ratio of the probabilities of the two events. When arbitrarily many events A are of interest, not just two, the rule can be rephrased as posterior is proportional to prior times likelihood, P(A|B)propto P(A)P(B|A) where the proportionality symbol means that the left hand side is proportional to (i.e., equals a constant times) the right hand side as A varies, for fixed or given B (Lee, 2012; Bertsch McGrayne, 2012). In this form it goes back to Laplace (1774) and to Cournot (1843); see Fienberg (2005). See Inverse probability and Bayes’ rule.

Summary of probabilities[edit]

Summary of probabilities

Event Probability
A P(A)in [0,1],
not A {displaystyle P(A^{complement })=1-P(A),}
A or B {begin{aligned}P(Acup B)&=P(A)+P(B)-P(Acap B)\P(Acup B)&=P(A)+P(B)qquad {mbox{if A and B are mutually exclusive}}\end{aligned}}
A and B {begin{aligned}P(Acap B)&=P(A|B)P(B)=P(B|A)P(A)\P(Acap B)&=P(A)P(B)qquad {mbox{if A and B are independent}}\end{aligned}}
A given B P(Amid B)={frac {P(Acap B)}{P(B)}}={frac {P(B|A)P(A)}{P(B)}},

Relation to randomness and probability in quantum mechanics[edit]

In a deterministic universe, based on Newtonian concepts, there would be no probability if all conditions were known (Laplace’s demon), (but there are situations in which sensitivity to initial conditions exceeds our ability to measure them, i.e. know them). In the case of a roulette wheel, if the force of the hand and the period of that force are known, the number on which the ball will stop would be a certainty (though as a practical matter, this would likely be true only of a roulette wheel that had not been exactly levelled – as Thomas A. Bass’ Newtonian Casino revealed). This also assumes knowledge of inertia and friction of the wheel, weight, smoothness, and roundness of the ball, variations in hand speed during the turning, and so forth. A probabilistic description can thus be more useful than Newtonian mechanics for analyzing the pattern of outcomes of repeated rolls of a roulette wheel. Physicists face the same situation in the kinetic theory of gases, where the system, while deterministic in principle, is so complex (with the number of molecules typically the order of magnitude of the Avogadro constant 6.02×1023) that only a statistical description of its properties is feasible.

Probability theory is required to describe quantum phenomena.[34] A revolutionary discovery of early 20th century physics was the random character of all physical processes that occur at sub-atomic scales and are governed by the laws of quantum mechanics. The objective wave function evolves deterministically but, according to the Copenhagen interpretation, it deals with probabilities of observing, the outcome being explained by a wave function collapse when an observation is made. However, the loss of determinism for the sake of instrumentalism did not meet with universal approval. Albert Einstein famously remarked in a letter to Max Born: «I am convinced that God does not play dice».[35] Like Einstein, Erwin Schrödinger, who discovered the wave function, believed quantum mechanics is a statistical approximation of an underlying deterministic reality.[36] In some modern interpretations of the statistical mechanics of measurement, quantum decoherence is invoked to account for the appearance of subjectively probabilistic experimental outcomes.

See also[edit]

  • Chance (disambiguation)
  • Class membership probabilities
  • Contingency
  • Equiprobability
  • Heuristics in judgment and decision-making
  • Probability theory
  • Randomness
  • Statistics
  • Estimators
  • Estimation theory
  • Probability density estimation
  • Probability density function
  • Pairwise independence
In law
  • Balance of probabilities

Notes[edit]

  1. ^ Strictly speaking, a probability of 0 indicates that an event almost never takes place, whereas a probability of 1 indicates than an event almost certainly takes place. This is an important distinction when the sample space is infinite. For example, for the continuous uniform distribution on the real interval [5, 10], there are an infinite number of possible outcomes, and the probability of any given outcome being observed — for instance, exactly 7 — is 0. This means that when we make an observation, it will almost surely not be exactly 7. However, it does not mean that exactly 7 is impossible. Ultimately some specific outcome (with probability 0) will be observed, and one possibility for that specific outcome is exactly 7.
  2. ^ In the context of the book that this is quoted from, it is the theory of probability and the logic behind it that governs the phenomena of such things compared to rash predictions that rely on pure luck or mythological arguments such as gods of luck helping the winner of the game.

References[edit]

  1. ^ «Kendall’s Advanced Theory of Statistics, Volume 1: Distribution Theory», Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8.
  2. ^ William Feller, An Introduction to Probability Theory and Its Applications, (Vol 1), 3rd Ed, (1968), Wiley, ISBN 0-471-25708-7.
  3. ^ Probability Theory The Britannica website
  4. ^ Hacking, Ian (1965). The Logic of Statistical Inference. Cambridge University Press. ISBN 978-0-521-05165-1.[page needed]
  5. ^ Finetti, Bruno de (1970). «Logical foundations and measurement of subjective probability». Acta Psychologica. 34: 129–145. doi:10.1016/0001-6918(70)90012-0.
  6. ^ Hájek, Alan (21 October 2002). Edward N. Zalta (ed.). «Interpretations of Probability». The Stanford Encyclopedia of Philosophy (Winter 2012 ed.). Retrieved 22 April 2013.
  7. ^ Jaynes, E.T. (2003). «Section A.2 The de Finetti system of probability». In Bretthorst, G. Larry (ed.). Probability Theory: The Logic of Science (1 ed.). Cambridge University Press. ISBN 978-0-521-59271-0.
  8. ^ Hogg, Robert V.; Craig, Allen; McKean, Joseph W. (2004). Introduction to Mathematical Statistics (6th ed.). Upper Saddle River: Pearson. ISBN 978-0-13-008507-8.[page needed]
  9. ^ Jaynes, E.T. (2003). «Section 5.3 Converging and diverging views». In Bretthorst, G. Larry (ed.). Probability Theory: The Logic of Science (1 ed.). Cambridge University Press. ISBN 978-0-521-59271-0.
  10. ^ a b Hacking, I. (2006) The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference, Cambridge University Press, ISBN 978-0-521-68557-3[page needed]
  11. ^ Freund, John. (1973) Introduction to Probability. Dickenson ISBN 978-0-8221-0078-2 (p. 1)
  12. ^ Jeffrey, R.C., Probability and the Art of Judgment, Cambridge University Press. (1992). pp. 54–55 . ISBN 0-521-39459-7
  13. ^ Franklin, J. (2001) The Science of Conjecture: Evidence and Probability Before Pascal, Johns Hopkins University Press. (pp. 22, 113, 127)
  14. ^ «Some laws and problems in classical probability and how Cardano anticipated them Gorrochum, P. Chance magazine 2012″ (PDF).
  15. ^ Abrams, William, A Brief History of Probability, Second Moment, retrieved 23 May 2008
  16. ^ Ivancevic, Vladimir G.; Ivancevic, Tijana T. (2008). Quantum leap : from Dirac and Feynman, across the universe, to human body and mind. Singapore ; Hackensack, NJ: World Scientific. p. 16. ISBN 978-981-281-927-7.
  17. ^ Franklin, James (2001). The Science of Conjecture: Evidence and Probability Before Pascal. Johns Hopkins University Press. ISBN 978-0-8018-6569-5.
  18. ^ Shoesmith, Eddie (November 1985). «Thomas Simpson and the arithmetic mean». Historia Mathematica. 12 (4): 352–355. doi:10.1016/0315-0860(85)90044-8.
  19. ^ a b Wilson EB (1923) «First and second laws of error». Journal of the American Statistical Association, 18, 143
  20. ^ Seneta, Eugene William. ««Adrien-Marie Legendre» (version 9)». StatProb: The Encyclopedia Sponsored by Statistics and Probability Societies. Archived from the original on 3 February 2016. Retrieved 27 January 2016.
  21. ^ Weber, Richard. «Markov Chains» (PDF). Statistical Laboratory. University of Cambridge.
  22. ^ Vitanyi, Paul M.B. (1988). «Andrei Nikolaevich Kolmogorov». CWI Quarterly (1): 3–18. Retrieved 27 January 2016.
  23. ^ Wilcox, Rand R. (10 May 2016). Understanding and applying basic statistical methods using R. Hoboken, New Jersey. ISBN 978-1-119-06140-3. OCLC 949759319.
  24. ^ Singh, Laurie (2010) «Whither Efficient Markets? Efficient Market Theory and Behavioral Finance». The Finance Professionals’ Post, 2010.
  25. ^ Gao, J.Z.; Fong, D.; Liu, X. (April 2011). «Mathematical analyses of casino rebate systems for VIP gambling». International Gambling Studies. 11 (1): 93–106. doi:10.1080/14459795.2011.552575. S2CID 144540412.
  26. ^ Gorman, Michael F. (2010). «Management Insights». Management Science. 56: iv–vii. doi:10.1287/mnsc.1090.1132.
  27. ^ Ross, Sheldon M. (2010). A First course in Probability (8th ed.). Pearson Prentice Hall. pp. 26–27. ISBN 9780136033134.
  28. ^ a b Weisstein, Eric W. «Probability». mathworld.wolfram.com. Retrieved 10 September 2020.
  29. ^ Olofsson (2005) p. 8.
  30. ^ Olofsson (2005), p. 9
  31. ^ Olofsson (2005) p. 35.
  32. ^ Olofsson (2005) p. 29.
  33. ^ «Conditional probability with respect to a sigma-algebra». www.statlect.com. Retrieved 4 July 2022.
  34. ^ Burgin, Mark (2010). «Interpretations of Negative Probabilities». p. 1. arXiv:1008.1287v1 [physics.data-an].
  35. ^ Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. Letter to Max Born, 4 December 1926, in: Einstein/Born Briefwechsel 1916–1955.
  36. ^ Moore, W.J. (1992). Schrödinger: Life and Thought. Cambridge University Press. p. 479. ISBN 978-0-521-43767-7.

Bibliography[edit]

  • Kallenberg, O. (2005) Probabilistic Symmetries and Invariance Principles. Springer-Verlag, New York. 510 pp. ISBN 0-387-25115-4
  • Kallenberg, O. (2002) Foundations of Modern Probability, 2nd ed. Springer Series in Statistics. 650 pp. ISBN 0-387-95313-2
  • Olofsson, Peter (2005) Probability, Statistics, and Stochastic Processes, Wiley-Interscience. 504 pp ISBN 0-471-67969-0.

External links[edit]

  • Virtual Laboratories in Probability and Statistics (Univ. of Ala.-Huntsville)
  • Probability on In Our Time at the BBC
  • Probability and Statistics EBook
  • Edwin Thompson Jaynes. Probability Theory: The Logic of Science. Preprint: Washington University, (1996). — HTML index with links to PostScript files and PDF (first three chapters)
  • People from the History of Probability and Statistics (Univ. of Southampton)
  • Probability and Statistics on the Earliest Uses Pages (Univ. of Southampton)
  • Earliest Uses of Symbols in Probability and Statistics on Earliest Uses of Various Mathematical Symbols
  • A tutorial on probability and Bayes’ theorem devised for first-year Oxford University students
  • [1] pdf file of An Anthology of Chance Operations (1963) at UbuWeb
  • Introduction to Probability – eBook Archived 27 July 2011 at the Wayback Machine, by Charles Grinstead, Laurie Snell Source Archived 25 March 2012 at the Wayback Machine (GNU Free Documentation License)
  • (in English and Italian) Bruno de Finetti, Probabilità e induzione, Bologna, CLUEB, 1993. ISBN 88-8091-176-7 (digital version)
  • Richard Feynman’s Lecture on probability.

The probabilities of rolling several numbers using two dice.

Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty.[note 1][1][2] The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes («heads» and «tails») are both equally probable; the probability of «heads» equals the probability of «tails»; and since no other outcomes are possible, the probability of either «heads» or «tails» is 1/2 (which could also be written as 0.5 or 50%).

These concepts have been given an axiomatic mathematical formalization in probability theory, which is used widely in areas of study such as statistics, mathematics, science, finance, gambling, artificial intelligence, machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.[3]

Interpretations[edit]

When dealing with experiments that are random and well-defined in a purely theoretical setting (like tossing a coin), probabilities can be numerically described by the number of desired outcomes, divided by the total number of all outcomes. For example, tossing a coin twice will yield «head-head», «head-tail», «tail-head», and «tail-tail» outcomes. The probability of getting an outcome of «head-head» is 1 out of 4 outcomes, or, in numerical terms, 1/4, 0.25 or 25%. However, when it comes to practical application, there are two major competing categories of probability interpretations, whose adherents hold different views about the fundamental nature of probability:

  • Objectivists assign numbers to describe some objective or physical state of affairs. The most popular version of objective probability is frequentist probability, which claims that the probability of a random event denotes the relative frequency of occurrence of an experiment’s outcome when the experiment is repeated indefinitely. This interpretation considers probability to be the relative frequency «in the long run» of outcomes.[4] A modification of this is propensity probability, which interprets probability as the tendency of some experiment to yield a certain outcome, even if it is performed only once.
  • Subjectivists assign numbers per subjective probability, that is, as a degree of belief.[5] The degree of belief has been interpreted as «the price at which you would buy or sell a bet that pays 1 unit of utility if E, 0 if not E»,[6] although that interpretation is not universally agreed upon.[7] The most popular version of subjective probability is Bayesian probability, which includes expert knowledge as well as experimental data to produce probabilities. The expert knowledge is represented by some (subjective) prior probability distribution. These data are incorporated in a likelihood function. The product of the prior and the likelihood, when normalized, results in a posterior probability distribution that incorporates all the information known to date.[8] By Aumann’s agreement theorem, Bayesian agents whose prior beliefs are similar will end up with similar posterior beliefs. However, sufficiently different priors can lead to different conclusions, regardless of how much information the agents share.[9]

Etymology[edit]

The word probability derives from the Latin probabilitas, which can also mean «probity», a measure of the authority of a witness in a legal case in Europe, and often correlated with the witness’s nobility. In a sense, this differs much from the modern meaning of probability, which in contrast is a measure of the weight of empirical evidence, and is arrived at from inductive reasoning and statistical inference.[10]

History[edit]

The scientific study of probability is a modern development of mathematics. Gambling shows that there has been an interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later. There are reasons for the slow development of the mathematics of probability. Whereas games of chance provided the impetus for the mathematical study of probability, fundamental issues [note 2] are still obscured by the superstitions of gamblers.[11]

According to Richard Jeffrey, «Before the middle of the seventeenth century, the term ‘probable’ (Latin probabilis) meant approvable, and was applied in that sense, univocally, to opinion and to action. A probable action or opinion was one such as sensible people would undertake or hold, in the circumstances.»[12] However, in legal contexts especially, ‘probable’ could also apply to propositions for which there was good evidence.[13]

The sixteenth-century Italian polymath Gerolamo Cardano demonstrated the efficacy of defining odds as the ratio of favourable to unfavourable outcomes (which implies that the probability of an event is given by the ratio of favourable outcomes to the total number of possible outcomes[14]).
Aside from the elementary work by Cardano, the doctrine of probabilities dates to the correspondence of Pierre de Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest known scientific treatment of the subject.[15] Jakob Bernoulli’s Ars Conjectandi (posthumous, 1713) and Abraham de Moivre’s Doctrine of Chances (1718) treated the subject as a branch of mathematics.[16] See Ian Hacking’s The Emergence of Probability[10] and James Franklin’s The Science of Conjecture[17] for histories of the early development of the very concept of mathematical probability.

The theory of errors may be traced back to Roger Cotes’s Opera Miscellanea (posthumous, 1722), but a memoir prepared by Thomas Simpson in 1755 (printed 1756) first applied the theory to the discussion of errors of observation.[18] The reprint (1757) of this memoir lays down the axioms that positive and negative errors are equally probable, and that certain assignable limits define the range of all errors. Simpson also discusses continuous errors and describes a probability curve.

The first two laws of error that were proposed both originated with Pierre-Simon Laplace. The first law was published in 1774, and stated that the frequency of an error could be expressed as an exponential function of the numerical magnitude of the error—disregarding sign. The second law of error was proposed in 1778 by Laplace, and stated that the frequency of the error is an exponential function of the square of the error.[19] The second law of error is called the normal distribution or the Gauss law. «It is difficult historically to attribute that law to Gauss, who in spite of his well-known precocity had probably not made this discovery before he was two years old.»[19]

Daniel Bernoulli (1778) introduced the principle of the maximum product of the probabilities of a system of concurrent errors.

Adrien-Marie Legendre (1805) developed the method of least squares, and introduced it in his Nouvelles méthodes pour la détermination des orbites des comètes (New Methods for Determining the Orbits of Comets).[20] In ignorance of Legendre’s contribution, an Irish-American writer, Robert Adrain, editor of «The Analyst» (1808), first deduced the law of facility of error,

phi (x)=ce^{-h^{2}x^{2}},

where h is a constant depending on precision of observation, and c is a scale factor ensuring that the area under the curve equals 1. He gave two proofs, the second being essentially the same as John Herschel’s (1850).[citation needed] Gauss gave the first proof that seems to have been known in Europe (the third after Adrain’s) in 1809. Further proofs were given by Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W.F. Donkin (1844, 1856), and Morgan Crofton (1870). Other contributors were Ellis (1844), De Morgan (1864), Glaisher (1872), and Giovanni Schiaparelli (1875). Peters’s (1856) formula[clarification needed] for r, the probable error of a single observation, is well known.

In the nineteenth century, authors on the general theory included Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion and Karl Pearson. Augustus De Morgan and George Boole improved the exposition of the theory.

In 1906, Andrey Markov introduced[21] the notion of Markov chains, which played an important role in stochastic processes theory and its applications. The modern theory of probability based on the measure theory was developed by Andrey Kolmogorov in 1931.[22]

On the geometric side, contributors to The Educational Times included Miller, Crofton, McColl, Wolstenholme, Watson, and Artemas Martin.[23] See integral geometry for more information.

Theory[edit]

Like other theories, the theory of probability is a representation of its concepts in formal terms—that is, in terms that can be considered separately from their meaning. These formal terms are manipulated by the rules of mathematics and logic, and any results are interpreted or translated back into the problem domain.

There have been at least two successful attempts to formalize probability, namely the Kolmogorov formulation and the Cox formulation. In Kolmogorov’s formulation (see also probability space), sets are interpreted as events and probability as a measure on a class of sets. In Cox’s theorem, probability is taken as a primitive (i.e., not further analyzed), and the emphasis is on constructing a consistent assignment of probability values to propositions. In both cases, the laws of probability are the same, except for technical details.

There are other methods for quantifying uncertainty, such as the Dempster–Shafer theory or possibility theory, but those are essentially different and not compatible with the usually-understood laws of probability.

Applications[edit]

Probability theory is applied in everyday life in risk assessment and modeling. The insurance industry and markets use actuarial science to determine pricing and make trading decisions. Governments apply probabilistic methods in environmental regulation, entitlement analysis, and financial regulation.

An example of the use of probability theory in equity trading is the effect of the perceived probability of any widespread Middle East conflict on oil prices, which have ripple effects in the economy as a whole. An assessment by a commodity trader that a war is more likely can send that commodity’s prices up or down, and signals other traders of that opinion. Accordingly, the probabilities are neither assessed independently nor necessarily rationally. The theory of behavioral finance emerged to describe the effect of such groupthink on pricing, on policy, and on peace and conflict.[24]

In addition to financial assessment, probability can be used to analyze trends in biology (e.g., disease spread) as well as ecology (e.g., biological Punnett squares). As with finance, risk assessment can be used as a statistical tool to calculate the likelihood of undesirable events occurring, and can assist with implementing protocols to avoid encountering such circumstances. Probability is used to design games of chance so that casinos can make a guaranteed profit, yet provide payouts to players that are frequent enough to encourage continued play.[25]

Another significant application of probability theory in everyday life is reliability. Many consumer products, such as automobiles and consumer electronics, use reliability theory in product design to reduce the probability of failure. Failure probability may influence a manufacturer’s decisions on a product’s warranty.[26]

The cache language model and other statistical language models that are used in natural language processing are also examples of applications of probability theory.

Mathematical treatment[edit]

Calculation of probability (risk) vs odds

Consider an experiment that can produce a number of results. The collection of all possible results is called the sample space of the experiment, sometimes denoted as Omega . The power set of the sample space is formed by considering all different collections of possible results. For example, rolling a die can produce six possible results. One collection of possible results gives an odd number on the die. Thus, the subset {1,3,5} is an element of the power set of the sample space of dice rolls. These collections are called «events». In this case, {1,3,5} is the event that the die falls on some odd number. If the results that actually occur fall in a given event, the event is said to have occurred.

A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive events (events with no common results, such as the events {1,6}, {3}, and {2,4}), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events.[27]

The probability of an event A is written as P(A),[28] p(A), or {text{Pr}}(A).[29] This mathematical definition of probability can extend to infinite sample spaces, and even uncountable sample spaces, using the concept of a measure.

The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring), often denoted as {displaystyle A',A^{c}}, {displaystyle {overline {A}},A^{complement },neg A}, or {displaystyle {sim }A}; its probability is given by P(not A) = 1 − P(A).[30] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) =1-{tfrac {1}{6}}={tfrac {5}{6}}. For a more comprehensive treatment, see Complementary event.

If two events A and B occur on a single performance of an experiment, this is called the intersection or joint probability of A and B, denoted as P(Acap B).

Independent events[edit]

If two events, A and B are independent then the joint probability is[28]

{displaystyle P(A{mbox{ and }}B)=P(Acap B)=P(A)P(B).}

For example, if two coins are flipped, then the chance of both being heads is {tfrac {1}{2}}times {tfrac {1}{2}}={tfrac {1}{4}}.[31]

Mutually exclusive events[edit]

If either event A or event B can occur but never both simultaneously, then they are called mutually exclusive events.

If two events are mutually exclusive, then the probability of both occurring is denoted as P(Acap B) and

{displaystyle P(A{mbox{ and }}B)=P(Acap B)=0}

If two events are mutually exclusive, then the probability of either occurring is denoted as P(Acup B) and

{displaystyle P(A{mbox{ or }}B)=P(Acup B)=P(A)+P(B)-P(Acap B)=P(A)+P(B)-0=P(A)+P(B)}

For example, the chance of rolling a 1 or 2 on a six-sided die is P(1{mbox{ or }}2)=P(1)+P(2)={tfrac {1}{6}}+{tfrac {1}{6}}={tfrac {1}{3}}.

Not mutually exclusive events[edit]

If the events are not mutually exclusive then

{displaystyle Pleft(A{hbox{ or }}Bright)=P(Acup B)=Pleft(Aright)+Pleft(Bright)-Pleft(A{mbox{ and }}Bright).}

For example, when drawing a card from a deck of cards, the chance of getting a heart or a face card (J,Q,K) (or both) is {tfrac {13}{52}}+{tfrac {12}{52}}-{tfrac {3}{52}}={tfrac {11}{26}}, since among the 52 cards of a deck, 13 are hearts, 12 are face cards, and 3 are both: here the possibilities included in the «3 that are both» are included in each of the «13 hearts» and the «12 face cards», but should only be counted once.

Conditional probability[edit]

Conditional probability is the probability of some event A, given the occurrence of some other event B.
Conditional probability is written P(Amid B), and is read «the probability of A, given B«. It is defined by[32]

P(Amid B)={frac {P(Acap B)}{P(B)}}.,

If P(B)=0 then P(Amid B) is formally undefined by this expression. In this case A and B are independent, since {displaystyle P(Acap B)=P(A)P(B)=0}. However, it is possible to define a conditional probability for some zero-probability events using a σ-algebra of such events (such as those arising from a continuous random variable).[33]

For example, in a bag of 2 red balls and 2 blue balls (4 balls in total), the probability of taking a red ball is 1/2; however, when taking a second ball, the probability of it being either a red ball or a blue ball depends on the ball previously taken. For example, if a red ball was taken, then the probability of picking a red ball again would be 1/3, since only 1 red and 2 blue balls would have been remaining. And if a blue ball was taken previously, the probability of taking a red ball will be 2/3.

Inverse probability[edit]

In probability theory and applications, Bayes’ rule relates the odds of event A_{1} to event A_{2}, before (prior to) and after (posterior to) conditioning on another event B. The odds on A_{1} to event A_{2} is simply the ratio of the probabilities of the two events. When arbitrarily many events A are of interest, not just two, the rule can be rephrased as posterior is proportional to prior times likelihood, P(A|B)propto P(A)P(B|A) where the proportionality symbol means that the left hand side is proportional to (i.e., equals a constant times) the right hand side as A varies, for fixed or given B (Lee, 2012; Bertsch McGrayne, 2012). In this form it goes back to Laplace (1774) and to Cournot (1843); see Fienberg (2005). See Inverse probability and Bayes’ rule.

Summary of probabilities[edit]

Summary of probabilities

Event Probability
A P(A)in [0,1],
not A {displaystyle P(A^{complement })=1-P(A),}
A or B {begin{aligned}P(Acup B)&=P(A)+P(B)-P(Acap B)\P(Acup B)&=P(A)+P(B)qquad {mbox{if A and B are mutually exclusive}}\end{aligned}}
A and B {begin{aligned}P(Acap B)&=P(A|B)P(B)=P(B|A)P(A)\P(Acap B)&=P(A)P(B)qquad {mbox{if A and B are independent}}\end{aligned}}
A given B P(Amid B)={frac {P(Acap B)}{P(B)}}={frac {P(B|A)P(A)}{P(B)}},

Relation to randomness and probability in quantum mechanics[edit]

In a deterministic universe, based on Newtonian concepts, there would be no probability if all conditions were known (Laplace’s demon), (but there are situations in which sensitivity to initial conditions exceeds our ability to measure them, i.e. know them). In the case of a roulette wheel, if the force of the hand and the period of that force are known, the number on which the ball will stop would be a certainty (though as a practical matter, this would likely be true only of a roulette wheel that had not been exactly levelled – as Thomas A. Bass’ Newtonian Casino revealed). This also assumes knowledge of inertia and friction of the wheel, weight, smoothness, and roundness of the ball, variations in hand speed during the turning, and so forth. A probabilistic description can thus be more useful than Newtonian mechanics for analyzing the pattern of outcomes of repeated rolls of a roulette wheel. Physicists face the same situation in the kinetic theory of gases, where the system, while deterministic in principle, is so complex (with the number of molecules typically the order of magnitude of the Avogadro constant 6.02×1023) that only a statistical description of its properties is feasible.

Probability theory is required to describe quantum phenomena.[34] A revolutionary discovery of early 20th century physics was the random character of all physical processes that occur at sub-atomic scales and are governed by the laws of quantum mechanics. The objective wave function evolves deterministically but, according to the Copenhagen interpretation, it deals with probabilities of observing, the outcome being explained by a wave function collapse when an observation is made. However, the loss of determinism for the sake of instrumentalism did not meet with universal approval. Albert Einstein famously remarked in a letter to Max Born: «I am convinced that God does not play dice».[35] Like Einstein, Erwin Schrödinger, who discovered the wave function, believed quantum mechanics is a statistical approximation of an underlying deterministic reality.[36] In some modern interpretations of the statistical mechanics of measurement, quantum decoherence is invoked to account for the appearance of subjectively probabilistic experimental outcomes.

See also[edit]

  • Chance (disambiguation)
  • Class membership probabilities
  • Contingency
  • Equiprobability
  • Heuristics in judgment and decision-making
  • Probability theory
  • Randomness
  • Statistics
  • Estimators
  • Estimation theory
  • Probability density estimation
  • Probability density function
  • Pairwise independence
In law
  • Balance of probabilities

Notes[edit]

  1. ^ Strictly speaking, a probability of 0 indicates that an event almost never takes place, whereas a probability of 1 indicates than an event almost certainly takes place. This is an important distinction when the sample space is infinite. For example, for the continuous uniform distribution on the real interval [5, 10], there are an infinite number of possible outcomes, and the probability of any given outcome being observed — for instance, exactly 7 — is 0. This means that when we make an observation, it will almost surely not be exactly 7. However, it does not mean that exactly 7 is impossible. Ultimately some specific outcome (with probability 0) will be observed, and one possibility for that specific outcome is exactly 7.
  2. ^ In the context of the book that this is quoted from, it is the theory of probability and the logic behind it that governs the phenomena of such things compared to rash predictions that rely on pure luck or mythological arguments such as gods of luck helping the winner of the game.

References[edit]

  1. ^ «Kendall’s Advanced Theory of Statistics, Volume 1: Distribution Theory», Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8.
  2. ^ William Feller, An Introduction to Probability Theory and Its Applications, (Vol 1), 3rd Ed, (1968), Wiley, ISBN 0-471-25708-7.
  3. ^ Probability Theory The Britannica website
  4. ^ Hacking, Ian (1965). The Logic of Statistical Inference. Cambridge University Press. ISBN 978-0-521-05165-1.[page needed]
  5. ^ Finetti, Bruno de (1970). «Logical foundations and measurement of subjective probability». Acta Psychologica. 34: 129–145. doi:10.1016/0001-6918(70)90012-0.
  6. ^ Hájek, Alan (21 October 2002). Edward N. Zalta (ed.). «Interpretations of Probability». The Stanford Encyclopedia of Philosophy (Winter 2012 ed.). Retrieved 22 April 2013.
  7. ^ Jaynes, E.T. (2003). «Section A.2 The de Finetti system of probability». In Bretthorst, G. Larry (ed.). Probability Theory: The Logic of Science (1 ed.). Cambridge University Press. ISBN 978-0-521-59271-0.
  8. ^ Hogg, Robert V.; Craig, Allen; McKean, Joseph W. (2004). Introduction to Mathematical Statistics (6th ed.). Upper Saddle River: Pearson. ISBN 978-0-13-008507-8.[page needed]
  9. ^ Jaynes, E.T. (2003). «Section 5.3 Converging and diverging views». In Bretthorst, G. Larry (ed.). Probability Theory: The Logic of Science (1 ed.). Cambridge University Press. ISBN 978-0-521-59271-0.
  10. ^ a b Hacking, I. (2006) The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference, Cambridge University Press, ISBN 978-0-521-68557-3[page needed]
  11. ^ Freund, John. (1973) Introduction to Probability. Dickenson ISBN 978-0-8221-0078-2 (p. 1)
  12. ^ Jeffrey, R.C., Probability and the Art of Judgment, Cambridge University Press. (1992). pp. 54–55 . ISBN 0-521-39459-7
  13. ^ Franklin, J. (2001) The Science of Conjecture: Evidence and Probability Before Pascal, Johns Hopkins University Press. (pp. 22, 113, 127)
  14. ^ «Some laws and problems in classical probability and how Cardano anticipated them Gorrochum, P. Chance magazine 2012″ (PDF).
  15. ^ Abrams, William, A Brief History of Probability, Second Moment, retrieved 23 May 2008
  16. ^ Ivancevic, Vladimir G.; Ivancevic, Tijana T. (2008). Quantum leap : from Dirac and Feynman, across the universe, to human body and mind. Singapore ; Hackensack, NJ: World Scientific. p. 16. ISBN 978-981-281-927-7.
  17. ^ Franklin, James (2001). The Science of Conjecture: Evidence and Probability Before Pascal. Johns Hopkins University Press. ISBN 978-0-8018-6569-5.
  18. ^ Shoesmith, Eddie (November 1985). «Thomas Simpson and the arithmetic mean». Historia Mathematica. 12 (4): 352–355. doi:10.1016/0315-0860(85)90044-8.
  19. ^ a b Wilson EB (1923) «First and second laws of error». Journal of the American Statistical Association, 18, 143
  20. ^ Seneta, Eugene William. ««Adrien-Marie Legendre» (version 9)». StatProb: The Encyclopedia Sponsored by Statistics and Probability Societies. Archived from the original on 3 February 2016. Retrieved 27 January 2016.
  21. ^ Weber, Richard. «Markov Chains» (PDF). Statistical Laboratory. University of Cambridge.
  22. ^ Vitanyi, Paul M.B. (1988). «Andrei Nikolaevich Kolmogorov». CWI Quarterly (1): 3–18. Retrieved 27 January 2016.
  23. ^ Wilcox, Rand R. (10 May 2016). Understanding and applying basic statistical methods using R. Hoboken, New Jersey. ISBN 978-1-119-06140-3. OCLC 949759319.
  24. ^ Singh, Laurie (2010) «Whither Efficient Markets? Efficient Market Theory and Behavioral Finance». The Finance Professionals’ Post, 2010.
  25. ^ Gao, J.Z.; Fong, D.; Liu, X. (April 2011). «Mathematical analyses of casino rebate systems for VIP gambling». International Gambling Studies. 11 (1): 93–106. doi:10.1080/14459795.2011.552575. S2CID 144540412.
  26. ^ Gorman, Michael F. (2010). «Management Insights». Management Science. 56: iv–vii. doi:10.1287/mnsc.1090.1132.
  27. ^ Ross, Sheldon M. (2010). A First course in Probability (8th ed.). Pearson Prentice Hall. pp. 26–27. ISBN 9780136033134.
  28. ^ a b Weisstein, Eric W. «Probability». mathworld.wolfram.com. Retrieved 10 September 2020.
  29. ^ Olofsson (2005) p. 8.
  30. ^ Olofsson (2005), p. 9
  31. ^ Olofsson (2005) p. 35.
  32. ^ Olofsson (2005) p. 29.
  33. ^ «Conditional probability with respect to a sigma-algebra». www.statlect.com. Retrieved 4 July 2022.
  34. ^ Burgin, Mark (2010). «Interpretations of Negative Probabilities». p. 1. arXiv:1008.1287v1 [physics.data-an].
  35. ^ Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. Letter to Max Born, 4 December 1926, in: Einstein/Born Briefwechsel 1916–1955.
  36. ^ Moore, W.J. (1992). Schrödinger: Life and Thought. Cambridge University Press. p. 479. ISBN 978-0-521-43767-7.

Bibliography[edit]

  • Kallenberg, O. (2005) Probabilistic Symmetries and Invariance Principles. Springer-Verlag, New York. 510 pp. ISBN 0-387-25115-4
  • Kallenberg, O. (2002) Foundations of Modern Probability, 2nd ed. Springer Series in Statistics. 650 pp. ISBN 0-387-95313-2
  • Olofsson, Peter (2005) Probability, Statistics, and Stochastic Processes, Wiley-Interscience. 504 pp ISBN 0-471-67969-0.

External links[edit]

  • Virtual Laboratories in Probability and Statistics (Univ. of Ala.-Huntsville)
  • Probability on In Our Time at the BBC
  • Probability and Statistics EBook
  • Edwin Thompson Jaynes. Probability Theory: The Logic of Science. Preprint: Washington University, (1996). — HTML index with links to PostScript files and PDF (first three chapters)
  • People from the History of Probability and Statistics (Univ. of Southampton)
  • Probability and Statistics on the Earliest Uses Pages (Univ. of Southampton)
  • Earliest Uses of Symbols in Probability and Statistics on Earliest Uses of Various Mathematical Symbols
  • A tutorial on probability and Bayes’ theorem devised for first-year Oxford University students
  • [1] pdf file of An Anthology of Chance Operations (1963) at UbuWeb
  • Introduction to Probability – eBook Archived 27 July 2011 at the Wayback Machine, by Charles Grinstead, Laurie Snell Source Archived 25 March 2012 at the Wayback Machine (GNU Free Documentation License)
  • (in English and Italian) Bruno de Finetti, Probabilità e induzione, Bologna, CLUEB, 1993. ISBN 88-8091-176-7 (digital version)
  • Richard Feynman’s Lecture on probability.

На чтение 16 мин Просмотров 92к. Опубликовано 25 мая, 2018

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Но как решать задачи на вероятность. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

вероятность

Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда

Вероятность подходящих событий + вероятность неподходящих событий = 1

Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Содержание

  1. Вероятность нескольких событий
  2. Задачи и решения задач на вероятность
  3. Вероятность нескольких событий
  4. Дополняющая вероятность

Вероятность нескольких событий

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем.

Задачи и решения задач на вероятность

Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.

Решение:

Вероятность, это отношение благоприятных вариантов к общему их количеству.

Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.

Вероятность тогда: формула 1

Ответ: 0,8.

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?

Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.

Вероятность что первый дежурный мальчик:

формула 2

Вероятность что второй дежурный мальчик:

формула 3

Раз оба должны быть мальчики, вероятности перемножим:

формула 4

Ответ: 0,2.

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.

Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.

На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.

Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).

Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.

Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Задача 10.

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.

Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?

Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Задача 11.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Задача 12.  В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Вероятность нескольких событий

Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.

Решение: 

Тип вопроса: совмещение событий.

Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение: 

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Игра №1 Игра №2 Вероятность данного варианта
3 1 0,4 · 0,2 = 0,08
1 3 0,2 · 0,4 = 0,08
3 3 0,4 · 0,4 = 0,16

Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.

Решение: 

Тип вопроса: уменьшение групп.

Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

Решение:

Способ №1

Тип задачи: уменьшение групп.

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.

Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют в несколько вариантов:

Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 5

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 6

Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение:

Тип задачи: уменьшение групп.

Способ №1

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 7

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 8

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решение: Тип вопроса: нахождение желаемого и действительного совмещение событий Нас устраивают три варианта:

Орёл ― решка ― орёл;

Орёл ― орёл ― решка;

Решка ― орёл ― орёл;

Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)

Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение: 

Тип вопроса: совмещение событий.

В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решение: 

Тип вопроса: совмещение событий.

Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.

Решение: 

Тип вопроса: совмещение событий.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):

… США, КАН, КИТ …

… США, КИТ, КАН …

… КИТ, США, КАН …

… КАН, США, КИТ …

… КАН, КИТ, США …

… КИТ, КАН, США …

США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:

формула 9

≈ 0,33.

Дополняющая вероятность

Задача 1. 

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.

Найдите вероятность того, что случайно выбранная батарейка будет забракована.

Решение: 

Существуют 2 варианта, которые нам подходят:

Вариант А: батарейка забракована, она неисправна;

Вариант Б: батарейка забракована, она исправна.

Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;

Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;

Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение: 

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.

Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.

Решение: 

Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).

Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.

Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.

Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.

Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):

11 апреля 12 апреля 13 апреля Вероятность данного варианта
X – 0,9 X – 0,9 O – 0,1 0,9 ·0,9 ·0,1 = 0,081
X – 0,9 O – 0,1 O – 0,9 0,9 ·0,1 ·0,9 = 0,081
O – 0,1 O – 0,9 O – 0,9 0,1 ·0,9 ·0,9 = 0,081
O – 0,1 X – 0,1 O – 0,1 0,1 ·0,1 ·0,1 = 0,001

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):

4 июля 5 июля 6 июля Вероятность данного варианта
X – 0,8 X – 0,8 O – 0,2 0,8 · 0,8 · 0,2 = 0,128
X – 0,8 O – 0,2 O – 0,8 0,8 · 0,2 · 0,8 = 0,128
O – 0,2 O − 0,8 O − 0,8 0,2 · 0,8 · 0,8 = 0,128
O – 0,2 X – 0,2 O – 0,2 0,2 · 0,2 · 0,2 = 0,008

Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.

Как решать задачи на вероятность?

Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей — от географов до математиков. Что же это за предмет такой, и как к нему подойти?

Понравилось? Добавьте в закладки

Вероятность. Что это?

Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах.

Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.

Подробно решим ваши задачи по теории вероятностей

Алгоритм решения задач на вероятность

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике.

А теперь не будем ходить вокруг да около, и сформулируем схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

  • Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
  • Найти основной вопрос задачи вроде «вычислить вероятность того, что …» и вот это многоточие записать в виде события, вероятность которого надо найти.
  • Событие записано. Теперь надо понять, к какой «схеме» теории вероятностей относится задача, чтобы правильно выбрать формулы для решения. Ответьте на тестовые вопросы типа:
    • происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
    • если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
    • событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).

    Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.

  • Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
  • Вуаля, вероятность найдена.

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

  • В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
  • Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
  • Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
  • Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов — число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_{30}^3=frac{30!}{3!27!}=frac{28cdot 29 cdot 30}{1cdot 2 cdot 3}=4060.$$ Найдем число способов вызвать только студентов, получивших «2». Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_{5}^3=frac{5!}{3!2!}=frac{4 cdot 5}{1cdot 2}=10.$$
  • Получаем вероятность: $$P(X)=frac{m}{n}=frac{10}{4060}=0,002.$$ Задача решена.

Еще: Решенные задачи на классическое определение вероятности.

Некогда решать? Найди решенную задачу

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

  • В задаче идет речь о серии одинаковых испытаний — бросаний монеты.
  • Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
  • Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз:
    $$ P_{n}(k)=C_n^k cdot p^k cdot (1-p)^{n-k}.$$
  • Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
  • Подставляем и получаем вероятность:
    $$ P(X)=P_{8}(5)=C_8^5 cdot 0,5^5 cdot (1-0,5)^{8-5}=frac{8!}{5!3!}cdot 0,5^8=frac{6cdot 7 cdot 8}{1cdot 2 cdot 3} cdot 0,5^8= 0,219.$$
    Задача решена.

Еще примеры: Решенные задачи на формулу Бернулли

И это все? Конечно, нет.

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Спасибо за ваши закладки и рекомендации

Полезные статьи по теории вероятностей

  • Как найти математическое ожидание случайной величины?
  • Как найти дисперсию случайной величины?
  • Как найти вероятность в задачах про выстрелы?
  • Как найти вероятность в задачах про подбрасывания монеты?
  • Как найти вероятность в задачах про подбрасывание игральных костей?
  • Как найти вероятность в задачах про станки?
  • Как найти вероятность в задачах про надежность схем и цепей?
  • Как найти вероятность наступления хотя бы одного события?


Загрузить PDF


Загрузить PDF

Вероятность показывает возможность того или иного события при определенном количестве повторений.[1]
Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.

  1. Изображение с названием Calculate Probability Step 1

    1

    Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.[2]

    Например:» невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.

  2. Изображение с названием Calculate Probability Step 2

    2

    Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.[3]

    • Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
  3. Изображение с названием Calculate Probability Step 3

    3

    Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:[4]

    • Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
  4. Изображение с названием Calculate Probability Step 4

    4

    Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.[5]

    • Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
    • Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
  5. Изображение с названием Calculate Probability Step 5

    5

    Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.[6]

    • Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.

    Реклама

  1. Изображение с названием Calculate Probability Step 6

    1

    При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.[7]

    • Несколько выпадений пятерок называются независимыми событиями, поскольку то, что выпадет первый раз, не влияет на второе событие.
  2. Изображение с названием Calculate Probability Step 7

    2

    Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий. Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.[8]

    • Пример 1. Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.

      • После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
    • Пример 2. В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?

      • Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
  3. Изображение с названием Calculate Probability Step 8

    3

    Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим. Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5. Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.[9]

    • Пример 1. Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.

    Реклама

  1. Изображение с названием Calculate Probability Step 9

    1

    Рассматривайте возможность как дробь с положительным результатом в числителе. Вернемся к нашему примеру с разноцветными шарами. Предположим, необходимо узнать вероятность того, что вы достанете белый шар (всего их 11) из всего набора шаров (20). Шанс того, что данное событие произойдет, равен отношению вероятности того, что оно случится, к вероятности того, что оно не произойдет. Поскольку в коробке имеется 11 белых шаров и 9 шаров другого цвета, возможность вытянуть белый шар равна отношению 11:9.[10]

    • Число 11 представляет вероятность достать белый шар, а число 9 — вероятность вытянуть шар другого цвета.
    • Таким образом, более вероятно, что вы достанете белый шар.
  2. Изображение с названием Calculate Probability Step 10

    2

    Сложите полученные величины, чтобы перевести возможность в вероятность. Преобразовать возможность довольно просто. Сначала ее следует разбить на два отдельных события: шанс вытянуть белый шар (11) и шанс вытянуть шар другого цвета (9). Сложите полученные числа, чтобы найти общее число возможных событий. Запишите все как вероятность с общим количеством возможных результатов в знаменателе.[11]

    • Вы можете вынуть белый шар 11 способами, а шар другого цвета — 9 способами. Таким образом, общее число событий составляет 11 + 9, то есть 20.
  3. Изображение с названием Calculate Probability Step 11

    3

    Найдите возможность так, как если бы вы рассчитывали вероятность одного события. Как мы уже определили, всего существует 20 возможностей, причем в 11 случаях можно достать белый шар. Таким образом, рассчитать вероятность вытянуть белый шар можно так же, как и вероятность любого другого одиночного события. Поделите 11 (количество положительных исходов) на 20 (число всех возможных событий), и вы определите вероятность.[12]

    • В нашем примере вероятность достать белый шар составляет 11/20. В результате получаем 11/20 = 0,55, или 55 %.

    Реклама

Советы

  • Для описания вероятности того, что то или иное событие произойдет, математики обычно используют термин «относительная вероятность». Определение «относительная» означает, что результат не гарантирован на 100 %. Например, если подбросить монету 100 раз, то, вероятно, не выпадет ровно 50 раз орел и 50 решка. Относительная вероятность учитывает это.[13]
  • Вероятность какого-либо события не может быть отрицательной величиной. Если у вас получилось отрицательное значение, проверьте свои вычисления.[14]
  • Чаще всего вероятности записывают в виде дробей, десятичных дробей, процентов или по шкале от 1 до 10.
  • Вам может пригодиться знание того, что в спортивных и букмекерских ставках шансы выражаются как «шансы против» — это означает, что возможность заявленного события оценивается первой, а шансы того события, которое не ожидается, стоят на втором месте. Хотя это и может сбить с толку, важно помнить об этом, если вы собираетесь делать ставки на какое-либо спортивное событие.

Реклама

Об этой статье

Эту страницу просматривали 691 276 раз.

Была ли эта статья полезной?

Насколько возможен снегопад? Какова вероятность выиграть в лотерею? Возможность, шанс, вероятность – эти слова мы произносим ежедневно. Они же являются терминами математической теории вероятности.

Математическая теория вероятности вышла на первый план в XVII веке – в дискуссиях об игре в кости.

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Т.е. подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов.

Возьмем самый простой пример – подбросим монету. Какова вероятность, что выпадет «орел»? Ответ очевиден – ½. Когда мы говорим, что подбрасываем монету, мы предполагаем, что это симметричная монета, что вероятность выпадения «орла» равна вероятности выпадения «решки». Мы выяснили, что шанс получить «решку» при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

Зафиксируем формулу для нахождения вероятности:

$ Вероятность= frac {количество; подходящих; вариантов}{количество; возможных; вариантов}$

Вероятность может выражаться в процентах:

$ Вероятность ; 100 (%)= frac {количество; подходящих; вариантов}{количество; возможных; вариантов} cdot 100% $

Важно: на экзамене вам нужно будет записать ответ в числах, не в процентах.

Пример: в урне 10 шаров: 6 белых и 4 черных. Какова вероятность вынуть из урны черный шар?

Решение. Что необходимо для нахождения вероятности? Посчитать количество подходящих вариантов и количество возможных вариантов. Всего шаров – 10, подходящих (т.е. черных) – 4, значит:

$ Вероятность ;=frac {4}{10}=0,4 $

Принято, что вероятность изменяется от 0 (никогда не произойдет – невозможное событие) до 1 (абсолютно точно произойдет – достоверное событие).

Пример: в урне 12 шаров: 6 белых и 6 черных. Какова вероятность вынуть из урны красный шар?

Решение. Интуитивно понятно, что поскольку в урне нет красных шаров, то и вероятность равна нулю. Давайте посчитаем количество подходящих вариантов и количество возможных вариантов. Всего шаров – 10, подходящих (т.е. красных) – 0, значит:

$ Вероятность ;=frac {0}{10}=0 $

В рассмотренном примере событие, заключающееся в вынимании красного шара, невозможное.

Зафиксируем еще одну формулу:

Вероятность подходящих событий + вероятность неподходящих событий = 1

Пример: найдите вероятность того, что при однократном подбрасывании игрального кубика выпадет число, не кратное трем.

Решение. Давайте найдем вероятность противоположного события, что выпадет число, кратное трем. Сколько подходящих событий? Количество подходящих событий (выпадет три, выпадет шесть) – 2, всего событий – 6 (граней на игральном кубике).

$ Вероятность ;(кратно;3)=frac {2}{6}=frac {1}{3} $

Значит, мы можем найти искомую вероятность:

$ Вероятность ;(не кратно;3)=1-frac {1}{3}=frac {2}{3} $

Теперь мы точно понимаем, как считать вероятность отдельного события, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Вероятность нескольких событий:

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем (если события не могут совпасть).

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны P1=0,7, P2=0,6. Какова вероятность попадания обоими орудиями одновременно при одном залпе?

Решение. Вероятности каждого из событий в отдельности уже даны, нужно только понять, какой знак поставить. Нам нужно, чтобы произошло первое и второе событие одновременно, значит, умножаем.

P= P1· P2 = 0,7· 0,6 = 0,42.

Пример. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12, 45-го – 0,04, 46-го и большего – 0,01. Какова вероятность того, что будет продана пара мужской обуви не меньше 44-го размера?

Решение. Снова вероятности каждого из событий нам даны. Что будем делать с ними? Нам подходят события: продана обувь 44-го размера ИЛИ продана обувь 45-го размера ИЛИ продана обувь 46-го и выше размеров. Значит, складываем вероятности каждого из событий:

P = 0,12 + 0,04 + 0,01 = 0,17.

Для понимания практического применения теории вероятности давайте рассмотрим еще вот такой шуточный пример. В местном зоопарке живет мартышка (можно дать ей имя). Допустим, что у нее есть старенькая пишущая машинка с 26 клавишами для букв латинского алфавита, одна – с точкой, одна – с запятой, одна – с вопросительным знаком и один пробел, итого – 30 клавиш. Сидит себе наша мартышка в углу и нажимает клавиши наугад. Любая последовательность букв имеет ненулевую вероятность оказаться напечатанной, а это значит, что есть шанс, что мартышка дословно напечатает пьесы Шекспира. Шансы у нее минимальные, но они точно отличны от нуля. Давайте разберемся, какова вероятность того, что наша мартышка напечатает последовательность из 8 символов “To be or” («быть или не»). Что мы должны для этого сделать? Сначала мы должны посчитать вероятность появления каждого символа. Представим 8 ячеек, в которых окажутся 8 символов, включая пробелы:

t o   b e   o r

Что нужно, чтобы посчитать вероятность появления одного символа? Правильно, нужно

узнать, сколько всего возможно символов и сколько подходящих. Сколько возможных вариантов для одной ячейки? Помним, что всего у воображаемой нами печатающей машинки 30 клавиш, а значит, 30 возможных вариантов. Для первой ячейки – 30, для второй ячейки – 30, и т.д. Какова вероятность символа «t» в первой ячейке? Подходящий символ -1, количество возможных символов – 30, значит, вероятность равна 1/30. Какова вероятность символа «o» во второй ячейке? Тоже 1/30. Составим таблицу:

Символ t o   b e   o r
Вероятность появления символа 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30

Как посчитать вероятность того, что будут напечатаны именно указанные 8 символов? Какая ситуация нам нужна? Нам необходимо, чтобы произошло И первое, И второе, И третье …. И восьмое события, то есть мы должны перемножить вероятности каждого из событий. Получим:

$ P=big(frac{1}{30}big)^{8}=frac{1}{6561}cdot 10^{-8} $

Получили очень малую вероятность. Чтобы понять, насколько она мала, давайте посчитаем, сколько времени придется ждать, чтобы мартышка напечатала указанные символы. Допустим, мартышка бьет по клавише раз в секунду (не прерываясь на сон и другие дела), тогда ожидаемое время составляет чуть более 20 800 лет. Поэтому если вдруг вы затаили дыхание в ожидании Шекспира – выдыхайте, у нее довольно долго будет получаться всякая нечитаемая последовательность типа «xo?h,yt?»

  • Как пишется вермишель или вермешель
  • Как пишется венерина мухоловка
  • Как пишется вермахт с большой или маленькой буквы
  • Как пишется верите или верите
  • Как пишется вери найс по английски