Как правильно пишется словосочетание «виртуальная реальность»
- Как правильно пишется слово «виртуальный»
- Как правильно пишется слово «реальность»
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать
Карту слов. Я отлично
умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: обваленный — это что-то нейтральное, положительное или отрицательное?
Ассоциации к словосочетанию «виртуальная реальность»
Синонимы к словосочетанию «виртуальная реальность»
Предложения со словосочетанием «виртуальная реальность»
- В конце концов, для каждого, кто хотел бы надеть шлем виртуальной реальности и оказаться в компьютерном мире, который становится всё реалистичнее и где возможно всё что угодно.
- Американская сеть оптовой и розничной торговли Walmart использует очки виртуальной реальности, чтобы отработать поведение продавцов в сезон громких распродаж.
- – Хорошо, а что ты делал каждый вечер в капсуле виртуальной реальности?
- (все предложения)
Цитаты из русской классики со словосочетанием «виртуальная реальность»
- Позитивизм и критицизм освободил человека от всякой безусловной реальности, водворил человека на территорию феноменалистического иллюзионизма.
- Он с большим сочувствием читал мою книгу «Дух и реальность» и очень хорошо написал обо мне в своей книге о Ш. Пеги, он видел в моей идее об объективации некоторое родство с Пеги, что лишь отчасти верно.
- Захар. Тут реальность, необходимость…
- (все
цитаты из русской классики)
Сочетаемость слова «реальность»
- объективная реальность
виртуальная реальность
новая реальность - реальность мира
реальность существования
реальность бытия - чувство реальности
ощущение реальности
восприятие реальности - реальность существует
реальность изменилась
реальность оказалась - вернуть кого-либо к реальности
поверить в реальность происходящего
терять связь с реальностью - (полная таблица сочетаемости)
Значение словосочетания «виртуальная реальность»
-
Виртуальная реальность (ВР, англ. virtual reality, VR, искусственная реальность) — созданный техническими средствами мир (объекты и субъекты), передаваемый человеку через его ощущения: зрение, слух, обоняние, осязание и другие. Виртуальная реальность имитирует как воздействие, так и реакции на воздействие. Для создания убедительного комплекса ощущений реальности компьютерный синтез свойств и реакций виртуальной реальности производится в реальном времени. (Википедия)
Все значения словосочетания ВИРТУАЛЬНАЯ РЕАЛЬНОСТЬ
Афоризмы русских писателей со словом «реальность»
- Мы говорим, что ныне в мире господствуют точные науки… Мы знаем многое и в то же время наше познание об объективной реальности, о человеке в ней — еще лишь шаг к полуоткрытой двери, за которой лежит не один пласт неоткрытых возможностей.
- Современность мешает человеку видеть сны. Но стоит ему остаться наедине с собой, и его дневная жизнь пополняется жизнью сна: разноцветная бахрома сновидений волочится за каждым его душевным жестом.
Земля, как и человек, способна видеть сны. Не растревоженная суетой современности, она неторопливо грезит о минувшем, о несбывшемся и о возможном, и сновидения ее достигают зрительной реальности миража. - Мне глубоко симпатичен великий в своих страданиях еврейский народ; я преклоняюсь перед силой его, измученной веками тяжких несправедливостей души, измученной, но горячо и смело мечтающей о свободе. Мне говорят, что сионизм — утопия: не знаю, может быть. Но поскольку в этой утопии я вижу непобедимую, страстную жажду свободы, для меня — это реальность, для меня — это великое дело жизни.
- (все афоризмы русских писателей)
Отправить комментарий
Дополнительно
Смотрите также
Виртуальная реальность (ВР, англ. virtual reality, VR, искусственная реальность) — созданный техническими средствами мир (объекты и субъекты), передаваемый человеку через его ощущения: зрение, слух, обоняние, осязание и другие. Виртуальная реальность имитирует как воздействие, так и реакции на воздействие. Для создания убедительного комплекса ощущений реальности компьютерный синтез свойств и реакций виртуальной реальности производится в реальном времени.
Все значения словосочетания «виртуальная реальность»
-
В конце концов, для каждого, кто хотел бы надеть шлем виртуальной реальности и оказаться в компьютерном мире, который становится всё реалистичнее и где возможно всё что угодно.
-
Американская сеть оптовой и розничной торговли Walmart использует очки виртуальной реальности, чтобы отработать поведение продавцов в сезон громких распродаж.
-
– Хорошо, а что ты делал каждый вечер в капсуле виртуальной реальности?
- (все предложения)
- виртуальность
- ВР
- виртуальные миры
- виртуальное пространство
- шлем виртуальной реальности
- (ещё синонимы…)
- реальность
- (ещё ассоциации…)
- виртуальная реальность
- шлем виртуальной реальности
- становиться виртуальным
- (полная таблица сочетаемости…)
- объективная реальность
- реальность мира
- чувство реальности
- реальность существует
- вернуть кого-либо к реальности
- (полная таблица сочетаемости…)
- Разбор по составу слова «виртуальный»
- Разбор по составу слова «реальность»
- Как правильно пишется слово «виртуальный»
- Как правильно пишется слово «реальность»
Virtual reality (VR) is a simulated experience that employs pose tracking and 3D near-eye displays to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video games), education (such as medical or military training) and business (such as virtual meetings). Other distinct types of VR-style technology include augmented reality and mixed reality, sometimes referred to as extended reality or XR, although definitions are currently changing due to the nascence of the industry.[1]
Currently, standard virtual reality systems use either virtual reality headsets or multi-projected environments to generate realistic images, sounds and other sensations that simulate a user’s physical presence in a virtual environment. A person using virtual reality equipment is able to look around the artificial world, move around in it, and interact with virtual features or items. The effect is commonly created by VR headsets consisting of a head-mounted display with a small screen in front of the eyes, but can also be created through specially designed rooms with multiple large screens. Virtual reality typically incorporates auditory and video feedback, but may also allow other types of sensory and force feedback through haptic technology.
Etymology[edit]
«Virtual» has had the meaning of «being something in essence or effect, though not actually or in fact» since the mid-1400s.[2] The term «virtual» has been used in the computer sense of «not physically existing but made to appear by software» since 1959.[2]
In 1938, French avant-garde playwright Antonin Artaud described the illusory nature of characters and objects in the theatre as «la réalité virtuelle» in a collection of essays, Le Théâtre et son double. The English translation of this book, published in 1958 as The Theater and its Double,[3] is the earliest published use of the term «virtual reality». The term «artificial reality», coined by Myron Krueger, has been in use since the 1970s. The term «virtual reality» was first used in a science fiction context in The Judas Mandala, a 1982 novel by Damien Broderick.
Widespread adoption of the term «virtual reality» in the popular media is attributed to Jaron Lanier, who in the late 1980s designed some of the first business-grade virtual reality hardware under his firm VPL Research, and the 1992 film Lawnmower Man, which features use of virtual reality systems.[4]
Forms and methods[edit]
One method by which virtual reality can be realized is simulation-based virtual reality. Driving simulators, for example, give the driver on board the impression of actually driving an actual vehicle by predicting vehicular motion caused by driver input and feeding back corresponding visual, motion and audio cues to the driver.
With avatar image-based virtual reality, people can join the virtual environment in the form of real video as well as an avatar. One can participate in the 3D distributed virtual environment as form of either a conventional avatar or a real video. Users can select their own type of participation based on the system capability.
In projector-based virtual reality, modeling of the real environment plays a vital role in various virtual reality applications, such as robot navigation, construction modeling, and airplane simulation. Image-based virtual reality systems have been gaining popularity in computer graphics and computer vision communities. In generating realistic models, it is essential to accurately register acquired 3D data; usually, a camera is used for modeling small objects at a short distance.
Desktop-based virtual reality involves displaying a 3D virtual world on a regular desktop display without use of any specialized VR positional tracking equipment. Many modern first-person video games can be used as an example, using various triggers, responsive characters, and other such interactive devices to make the user feel as though they are in a virtual world. A common criticism of this form of immersion is that there is no sense of peripheral vision, limiting the user’s ability to know what is happening around them.
An Omni treadmill being used at a VR convention
A head-mounted display (HMD) more fully immerses the user in a virtual world. A virtual reality headset typically includes two small high resolution OLED or LCD monitors which provide separate images for each eye for stereoscopic graphics rendering a 3D virtual world, a binaural audio system, positional and rotational real-time head tracking for six degrees of movement. Options include motion controls with haptic feedback for physically interacting within the virtual world in an intuitive way with little to no abstraction and an omnidirectional treadmill for more freedom of physical movement allowing the user to perform locomotive motion in any direction.
Augmented reality (AR) is a type of virtual reality technology that blends what the user sees in their real surroundings with digital content generated by computer software. The additional software-generated images with the virtual scene typically enhance how the real surroundings look in some way. AR systems layer virtual information over a camera live feed into a headset or smartglasses or through a mobile device giving the user the ability to view three-dimensional images.
Mixed reality (MR) is the merging of the real world and virtual worlds to produce new environments and visualizations where physical and digital objects co-exist and interact in real time.
A cyberspace is sometimes defined as a networked virtual reality.[5]
Simulated reality is a hypothetical virtual reality as truly immersive as the actual reality, enabling an advanced lifelike experience or even virtual eternity.
History[edit]
View-Master, a stereoscopic visual simulator, was introduced in 1939
The development of perspective in Renaissance European art and the stereoscope were both precursors to virtual reality.[6] The first references to the more modern concept of virtual reality came from science fiction.
20th century[edit]
Morton Heilig wrote in the 1950s of an «Experience Theatre» that could encompass all the senses in an effective manner, thus drawing the viewer into the onscreen activity. He built a prototype of his vision dubbed the Sensorama in 1962, along with five short films to be displayed in it while engaging multiple senses (sight, sound, smell, and touch). Predating digital computing, the Sensorama was a mechanical device. Heilig also developed what he referred to as the «Telesphere Mask» (patented in 1960). The patent application described the device as «a telescopic television apparatus for individual use… The spectator is given a complete sensation of reality, i.e. moving three dimensional images which may be in colour, with 100% peripheral vision, binaural sound, scents and air breezes.»[7]
In 1968, Ivan Sutherland, with the help of his students including Bob Sproull, created what was widely considered to be the first head-mounted display system for use in immersive simulation applications, called The Sword of Damocles. It was primitive both in terms of user interface and visual realism, and the HMD to be worn by the user was so heavy that it had to be suspended from the ceiling, which gave the device a formidable appearance and inspired its name.[8] Technically, the device was an augmented reality device due to optical passthrough. The graphics comprising the virtual environment were simple wire-frame model rooms.
1970–1990[edit]
The virtual reality industry mainly provided VR devices for medical, flight simulation, automobile industry design, and military training purposes from 1970 to 1990.[9]
David Em became the first artist to produce navigable virtual worlds at NASA’s Jet Propulsion Laboratory (JPL) from 1977 to 1984.[10] The Aspen Movie Map, a crude virtual tour in which users could wander the streets of Aspen in one of the three modes (summer, winter, and polygons), was created at MIT in 1978.
In 1979, Eric Howlett developed the Large Expanse, Extra Perspective (LEEP) optical system. The combined system created a stereoscopic image with a field of view wide enough to create a convincing sense of space. The users of the system have been impressed by the sensation of depth (field of view) in the scene and the corresponding realism. The original LEEP system was redesigned for NASA’s Ames Research Center in 1985 for their first virtual reality installation, the VIEW (Virtual Interactive Environment Workstation)[11] by Scott Fisher. The LEEP system provides the basis for most of the modern virtual reality headsets.[12]
A VPL Research DataSuit, a full-body outfit with sensors for measuring the movement of arms, legs, and trunk. Developed circa 1989. Displayed at the Nissho Iwai showroom in Tokyo
By the late 1980s, the term «virtual reality» was popularized by Jaron Lanier, one of the modern pioneers of the field. Lanier had founded the company VPL Research in 1985. VPL Research has developed several VR devices like the DataGlove, the EyePhone, and the AudioSphere. VPL licensed the DataGlove technology to Mattel, which used it to make the Power Glove, an early affordable VR device.
Atari, Inc. founded a research lab for virtual reality in 1982, but the lab was closed after two years due to the Atari Shock (video game crash of 1983). However, its hired employees, such as Tom Zimmerman, Scott Fisher, Jaron Lanier, Michael Naimark, and Brenda Laurel, kept their research and development on VR-related technologies.
In 1988, the Cyberspace Project at Autodesk was the first to implement VR on a low-cost personal computer.[13][14] The project leader Eric Gullichsen left in 1990 to found Sense8 Corporation and develop the WorldToolKit virtual reality SDK,[15] which offered the first real time graphics with Texture mapping on a PC, and was widely used throughout industry and academia.[16][17]
1990–2000[edit]
The 1990s saw the first widespread commercial releases of consumer headsets. In 1992, for instance, Computer Gaming World predicted «affordable VR by 1994».[18]
In 1991, Sega announced the Sega VR headset for the Mega Drive home console. It used LCD screens in the visor, stereo headphones, and inertial sensors that allowed the system to track and react to the movements of the user’s head.[19] In the same year, Virtuality launched and went on to become the first mass-produced, networked, multiplayer VR entertainment system that was released in many countries, including a dedicated VR arcade at Embarcadero Center. Costing up to $73,000 per multi-pod Virtuality system, they featured headsets and exoskeleton gloves that gave one of the first «immersive» VR experiences.[20]
A CAVE system at IDL’s Center for Advanced Energy Studies in 2010
That same year, Carolina Cruz-Neira, Daniel J. Sandin and Thomas A. DeFanti from the Electronic Visualization Laboratory created the first cubic immersive room, the Cave automatic virtual environment (CAVE). Developed as Cruz-Neira’s PhD thesis, it involved a multi-projected environment, similar to the holodeck, allowing people to see their own bodies in relation to others in the room.[21][22] Antonio Medina, a MIT graduate and NASA scientist, designed a virtual reality system to «drive» Mars rovers from Earth in apparent real time despite the substantial delay of Mars-Earth-Mars signals.[23]
Virtual Fixtures immersive AR system developed in 1992. Picture features Dr. Louis Rosenberg interacting freely in 3D with overlaid virtual objects called ‘fixtures’
In 1992, Nicole Stenger created Angels, the first real-time interactive immersive movie where the interaction was facilitated with a dataglove and high-resolution goggles. That same year, Louis Rosenberg created the virtual fixtures system at the U.S. Air Force’s Armstrong Labs using a full upper-body exoskeleton, enabling a physically realistic mixed reality in 3D. The system enabled the overlay of physically real 3D virtual objects registered with a user’s direct view of the real world, producing the first true augmented reality experience enabling sight, sound, and touch.[24][25]
By July 1994, Sega had released the VR-1 motion simulator ride attraction in Joypolis indoor theme parks,[26] as well as the Dennou Senki Net Merc arcade game. Both used an advanced head-mounted display dubbed the «Mega Visor Display» developed in conjunction with Virtuality;[27][28] it was able to track head movement in a 360-degree stereoscopic 3D environment, and in its Net Merc incarnation was powered by the Sega Model 1 arcade system board.[29] Apple released QuickTime VR, which, despite using the term «VR», was unable to represent virtual reality, and instead displayed 360-degree interactive panoramas.
Nintendo’s Virtual Boy console was released in 1995.[30] A group in Seattle created public demonstrations of a «CAVE-like» 270 degree immersive projection room called the Virtual Environment Theater, produced by entrepreneurs Chet Dagit and Bob Jacobson.[31] Forte released the VFX1, a PC-powered virtual reality headset that same year.
In 1999, entrepreneur Philip Rosedale formed Linden Lab with an initial focus on the development of VR hardware. In its earliest form, the company struggled to produce a commercial version of «The Rig», which was realized in prototype form as a clunky steel contraption with several computer monitors that users could wear on their shoulders. The concept was later adapted into the personal computer-based, 3D virtual world program Second Life.[32]
21st century[edit]
The 2000s were a period of relative public and investment indifference to commercially available VR technologies.
In 2001, SAS Cube (SAS3) became the first PC-based cubic room, developed by Z-A Production (Maurice Benayoun, David Nahon), Barco, and Clarté. It was installed in Laval, France. The SAS library gave birth to Virtools VRPack. In 2007, Google introduced Street View, a service that shows panoramic views of an increasing number of worldwide positions such as roads, indoor buildings and rural areas. It also features a stereoscopic 3D mode, introduced in 2010.[33]
2010–present[edit]
An inside view of the Oculus Rift Crescent Bay prototype headset
In 2010, Palmer Luckey designed the first prototype of the Oculus Rift. This prototype, built on a shell of another virtual reality headset, was only capable of rotational tracking. However, it boasted a 90-degree field of vision that was previously unseen in the consumer market at the time. Luckey eliminated distortion issues arising from the type of lens used to create the wide field of vision using software that pre-distorted the rendered image in real-time. This initial design would later serve as a basis from which the later designs came.[34] In 2012, the Rift is presented for the first time at the E3 video game trade show by Carmack.[35][36] In 2014, Facebook purchased Oculus VR for what at the time was stated as $2 billion[37] but later revealed that the more accurate figure was $3 billion.[36] This purchase occurred after the first development kits ordered through Oculus’ 2012 Kickstarter had shipped in 2013 but before the shipping of their second development kits in 2014.[38] ZeniMax, Carmack’s former employer, sued Oculus and Facebook for taking company secrets to Facebook;[36] the verdict was in favour of ZeniMax, settled out of court later.[39]
In 2013, Valve discovered and freely shared the breakthrough of low-persistence displays which make lag-free and smear-free display of VR content possible.[40] This was adopted by Oculus and was used in all their future headsets. In early 2014, Valve showed off their SteamSight prototype, the precursor to both consumer headsets released in 2016. It shared major features with the consumer headsets including separate 1K displays per eye, low persistence, positional tracking over a large area, and fresnel lenses.[41][42] HTC and Valve announced the virtual reality headset HTC Vive and controllers in 2015. The set included tracking technology called Lighthouse, which utilized wall-mounted «base stations» for positional tracking using infrared light.[43][44][45]
In 2014, Sony announced Project Morpheus (its code name for the PlayStation VR), a virtual reality headset for the PlayStation 4 video game console.[46] In 2015, Google announced Cardboard, a do-it-yourself stereoscopic viewer: the user places their smartphone in the cardboard holder, which they wear on their head. Michael Naimark was appointed Google’s first-ever ‘resident artist’ in their new VR division. The Kickstarter campaign for Gloveone, a pair of gloves providing motion tracking and haptic feedback, was successfully funded, with over $150,000 in contributions.[47] Also in 2015, Razer unveiled its open source project OSVR.
By 2016, there were at least 230 companies developing VR-related products. Amazon, Apple, Facebook, Google, Microsoft, Sony and Samsung all had dedicated AR and VR groups. Dynamic binaural audio was common to most headsets released that year. However, haptic interfaces were not well developed, and most hardware packages incorporated button-operated handsets for touch-based interactivity. Visually, displays were still of a low-enough resolution and frame rate that images were still identifiable as virtual.[48]
In 2016, HTC shipped its first units of the HTC Vive SteamVR headset.[49] This marked the first major commercial release of sensor-based tracking, allowing for free movement of users within a defined space.[50] A patent filed by Sony in 2017 showed they were developing a similar location tracking technology to the Vive for PlayStation VR, with the potential for the development of a wireless headset.[51]
In 2019, Oculus released the Oculus Rift S and a standalone headset, the Oculus Quest. These headsets utilized inside-out tracking compared to external outside-in tracking seen in previous generations of headsets.[52]
Later in 2019, Valve released the Valve Index. Notable features include a 130° field of view, off-ear headphones for immersion and comfort, open-handed controllers which allow for individual finger tracking, front facing cameras, and a front expansion slot meant for extensibility.[53]
In 2020, Oculus released the Oculus Quest 2. Some new features include a sharper screen, reduced price, and increased performance. Facebook now requires user to log in with a Facebook account in order to use the new headset.[54] In 2021 the Oculus Quest 2 accounted for 80% of all VR headsets sold.[55]
Robinson R22 Virtual Reality Training Device developed by VRM Switzerland[56]
In 2021, EASA approves the first Virtual Reality (VR) based Flight Simulation Training Device. The device, for rotorcraft pilots, enhances safety by opening up the possibility of practicing risky maneuvers in a virtual environment. This addresses a key risk area in rotorcraft[57] operations, where statistics show that around 20% of accidents occur during training flights.
Future forecast[edit]
Since 2017, major strides in the integration of Virtual Reality and Cognitive Behavioral Therapy have been made, focusing on how to tailor the experience to suit each individual patient.[58]
With the COVID-19 restrictions in 2020, VR is experiencing an enormous rise. According to Grand View Research, the global VR market will grow to 62.1 billion dollars in 2027.[59]
Now in the post-pandemic era, augmented reality and virtual technologies have created a new avenue that may influence the future of occupational safety training and rehabilitation.[60]
Technology[edit]
Software[edit]
The Virtual Reality Modelling Language (VRML), first introduced in 1994, was intended for the development of «virtual worlds» without dependency on headsets.[61] The Web3D consortium was subsequently founded in 1997 for the development of industry standards for web-based 3D graphics. The consortium subsequently developed X3D from the VRML framework as an archival, open-source standard for web-based distribution of VR content.[62] WebVR is an experimental JavaScript application programming interface (API) that provides support for various virtual reality devices, such as the HTC Vive, Oculus Rift, Google Cardboard or OSVR, in a web browser.[63]
Hardware[edit]
Modern virtual reality headset displays are based on technology developed for smartphones including: gyroscopes and motion sensors for tracking head, body, and hand positions; small HD screens for stereoscopic displays; and small, lightweight and fast computer processors. These components led to relative affordability for independent VR developers, and led to the 2012 Oculus Rift Kickstarter offering the first independently developed VR headset.[48]
Independent production of VR images and video has increased alongside the development of affordable omnidirectional cameras, also known as 360-degree cameras or VR cameras, that have the ability to record 360 interactive photography, although at relatively low resolutions or in highly compressed formats for online streaming of 360 video.[64] In contrast, photogrammetry is increasingly used to combine several high-resolution photographs for the creation of detailed 3D objects and environments in VR applications.[65][66]
To create a feeling of immersion, special output devices are needed to display virtual worlds. Well-known formats include head-mounted displays or the CAVE. In order to convey a spatial impression, two images are generated and displayed from different perspectives (stereo projection). There are different technologies available to bring the respective image to the right eye. A distinction is made between active (e.g. shutter glasses) and passive technologies (e.g. polarizing filters or Infitec).[67]
In order to improve the feeling of immersion, wearable multi-string cables offer haptics to complex geometries in virtual reality. These strings offer fine control of each finger joint to simulate the haptics involved in touching these virtual geometries.[68]
Special input devices are required for interaction with the virtual world. Some of the most common input devices are motion controllers and optical tracking sensors. In some cases, wired gloves are used. Controllers typically use optical tracking systems (primarily infrared cameras) for location and navigation, so that the user can move freely without wiring. Some input devices provide the user with force feedback to the hands or other parts of the body, so that the human being can orientate himself in the three-dimensional world through haptics and sensor technology as a further sensory sensation and carry out realistic simulations. This allows for the viewer to have a sense of direction in the artificial landscape. Additional haptic feedback can be obtained from omnidirectional treadmills (with which walking in virtual space is controlled by real walking movements) and vibration gloves and suits.
Virtual reality cameras can be used to create VR photography using 360-degree panorama videos. 360-degree camera shots can be mixed with virtual elements to merge reality and fiction through special effects.[citation needed] VR cameras are available in various formats, with varying numbers of lenses installed in the camera.[69]
Visual immersion experience[edit]
Display resolution[edit]
Minimal Angle of Resolution (MAR) refers to the minimum distance between two display pixels. At the distance, viewer can clearly distinguish the independent pixels. Often measured in arc-seconds, MAR between two pixels has to do with the viewing distance. For the general public, resolution is about 30-65 arc-seconds, which is referred to as the spatial resolution when combined with distance. Given the viewing distance of 1m and 2m respectively, regular viewers won’t be able to perceive two pixels as separate if they are less than 0.29mm apart at 1m and less than 0.58mm apart at 2m.[70]
Image latency and display refresh frequency[edit]
Most small-size displays have a refresh rate of 60 Hz, which adds about 15ms of additional latency. The number is reduced to less than 7ms if the refresh rate is increased to 120 Hz or even 240 Hz and more.[71] Participants generally feel that the experience is more immersive with higher refresh rates as a result. However, higher refresh rates require a more powerful graphics processing unit.
Relationship between display and field of view[edit]
In theory, it represents participant’s field of view (yellow area).
In assessing the achieved immersion by a VR device, we need to consider our field of view (FOV) in addition to quality image. Our eyes have a horizontal FOV of about 140 degrees per side and a vertical FOV of roughly 175 degrees.[72][73] Binocular vision is limited to 120 degrees horizontally where the right and the left visual fields overlap. Overall, we have a FOV of roughly 300 degrees x 175 degrees[74] with two eyes, i.e., approximately one third of the full 360-deg sphere.
Applications[edit]
Virtual reality is most commonly used in entertainment applications such as video games, 3D cinema, amusement park rides including dark rides and social virtual worlds. Consumer virtual reality headsets were first released by video game companies in the early-mid 1990s. Beginning in the 2010s, next-generation commercial tethered headsets were released by Oculus (Rift), HTC (Vive) and Sony (PlayStation VR), setting off a new wave of application development.[75] 3D cinema has been used for sporting events, pornography, fine art, music videos and short films. Since 2015, roller coasters and theme parks have incorporated virtual reality to match visual effects with haptic feedback.[48] VR not only fits the trend of the digital industry but also enhances the film’s visual effect. The film gives the audience more ways to interact through VR technology.[76]
In social sciences and psychology, virtual reality offers a cost-effective tool to study and replicate interactions in a controlled environment.[77] It can be used as a form of therapeutic intervention. For instance, there is the case of the virtual reality exposure therapy (VRET), a form of exposure therapy for treating anxiety disorders such as post traumatic stress disorder (PTSD) and phobias.[78][79][80]
Virtual reality programs are being used in the rehabilitation processes with elderly individuals that have been diagnosed with Alzheimer’s disease. This gives these elderly patients the opportunity to simulate real experiences that they would not otherwise be able to experience due to their current state. 17 recent studies with randomized controlled trials have shown that virtual reality applications are effective in treating cognitive deficits with neurological diagnoses.[81] Loss of mobility in elderly patients can lead to a sense of loneliness and depression. Virtual reality is able to assist in making aging in place a lifeline to an outside world that they cannot easily navigate. Virtual reality allows exposure therapy to take place in a safe environment.[82]
In medicine, simulated VR surgical environments were first developed in the 1990s.[83][84][85] Under the supervision of experts, VR can provide effective and repeatable training[86] at a low cost, allowing trainees to recognize and amend errors as they occur.[87]
Virtual reality has been used in physical rehabilitation since the 2000s. Despite numerous studies conducted, good quality evidence of its efficacy compared to other rehabilitation methods without sophisticated and expensive equipment is lacking for the treatment of Parkinson’s disease.[88] A 2018 review on the effectiveness of mirror therapy by virtual reality and robotics for any type of pathology concluded in a similar way.[89] Another study was conducted that showed the potential for VR to promote mimicry and revealed the difference between neurotypical and autism spectrum disorder individuals in their response to a two-dimensional avatar.[90][91]
Immersive virtual reality technology with myoelectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. Pain scale measurements were taken into account and an interactive 3-D kitchen environment was developed bases on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked VR headset.[92] A systematic search in Pubmed and Embase was performed to determine results that were pooled in two meta-analysis. Meta-analysis showed a significant result in favor of VRT for balance.[93]
In the fast-paced and globalised business world meetings in VR are used to create an environment in which interactions with other people (e.g. colleagues, customers, partners) can feel more natural than a phone call or video chat. In the customisable meeting rooms all parties can join using the VR headset and interact as if they are in the same physical room. Presentations, videos or 3D models (of e.g. products or prototypes) can be uploaded and interacted with.[94] Compared to traditional text-based CMC, Avatar-based interactions in 3D virtual environment lead to higher levels of consensus, satisfaction, and cohesion among group members.[95]
U.S. Navy medic demonstrating a VR parachute simulator at the Naval Survival Training Institute in 2006
VR can simulate real workspaces for workplace occupational safety and health purposes, educational purposes, and training purposes. It can be used to provide learners with a virtual environment where they can develop their skills without the real-world consequences of failing. It has been used and studied in primary education,[96] anatomy teaching,[97][98] military,[99][100] astronaut training,[101][102][103] flight simulators,[104] miner training,[105] medical education,[106] geography education,[107] architectural design,[citation needed] driver training[108] and bridge inspection.[109] Immersive VR engineering systems enable engineers to see virtual prototypes prior to the availability of any physical prototypes.[110] Supplementing training with virtual training environments has been claimed to offer avenues of realism in military[111] and healthcare[112] training while minimizing cost.[113] It also has been claimed to reduce military training costs by minimizing the amounts of ammunition expended during training periods.[111] VR can also be used for the healthcare training and education for medical practitioners.[114][115]
In the engineering field, VR has proved very useful for both engineering educators and the students. A previously expensive cost in the educational department now being much more accessible due to lowered overall costs, has proven to be a very useful tool in educating future engineers. The most significant element lies in the ability for the students to be able to interact with 3-D models that accurately respond based on real world possibilities. This added tool of education provides many the immersion needed to grasp complex topics and be able to apply them.[116] As noted, the future architects and engineers benefit greatly by being able to form understandings between spatial relationships and providing solutions based on real-world future applications.[117]
The first fine art virtual world was created in the 1970s.[118] As the technology developed, more artistic programs were produced throughout the 1990s, including feature films. When commercially available technology became more widespread, VR festivals began to emerge in the mid-2010s. The first uses of VR in museum settings began in the 1990s, seeing a significant increase in the mid-2010s. Additionally, museums have begun making some of their content virtual reality accessible.[119][120]
Virtual reality’s growing market presents an opportunity and an alternative channel for digital marketing.[121] It is also seen as a new platform for e-commerce, particularly in the bid to challenge traditional «brick and mortar» retailers. However, a 2018 study revealed that the majority of goods are still purchased in physical stores.[122]
In the case of education, the uses of virtual reality have demonstrated being capable of promoting higher order thinking,[123] promoting the interest and commitment of students, the acquisition of knowledge, promoting mental habits and understanding that are generally useful within an academic context.[124]
A case has also been made for including virtual reality technology in the context of public libraries. This would give library users access to cutting-edge technology and unique educational experiences.[125] This could include giving users access to virtual, interactive copies of rare texts and artifacts and to tours of famous landmarks and archeological digs (as in the case with the Virtual Ganjali Khan Project).[126]
Starting in the early 2020s, virtual reality has also been discussed as a technological setting that may support people’s griefing process, based on digital recreations of deceased individuals. In 2021, this practice received substantial media attention following a South Korean TV documentary, which invited a griefing mother to interact with a virtual replica of her deceased daughter.[127] Subsequently, scientists have summarized several potential implications of such endeavours, including its potential to facilitate adaptive mourning, but also many ethical challenges.[128][129]
Growing interest in the metaverse has resulted in organizational efforts to incorporate the many diverse applications of virtual reality into ecosystems like VIVERSE, reportedly offering connectivity between platforms for a wide range of uses.[130]
Concerts[edit]
On February 21, 2019, DJ Marshmellow hosted a concert in Fortnite.[131] Travis Scott performed on Fortnite on April 23, 2020.[132] In June of that year, Jean Michel Jarre performed in VRChat.[133] In July, Brendan Bradley released the free FutureStages web-based virtual reality venue for live events and concerts throughout the 2020 shutdown,[134] Justin Bieber performed on November 18, 2021 in WaveXR.[135] On December 2, 2021 Non-Player Character performed at The Mugar Omni Theater with audiences interacting with a live performer in both virtual reality and projected on the IMAX dome screen.[136][137] Meta’s Foo Fighters Super Bowl VR concert performed on Venues.[138] Post Malone performed in Venues starting July 15, 2022.[139] Megan Thee Stallion performed on AmazeVR at AMC Theaters throughout 2022.[140]
On October 24, 2021, Billie Eilish performed on Oculus Venues. Pop group Imagine Dragons performed on June 15, 2022.
Concerns and challenges[edit]
Health and safety[edit]
There are many health and safety considerations of virtual reality. A number of unwanted symptoms have been caused by prolonged use of virtual reality,[141] and these may have slowed proliferation of the technology. Most virtual reality systems come with consumer warnings, including: seizures; developmental issues in children; trip-and-fall and collision warnings; discomfort; repetitive stress injury; and interference with medical devices.[142] Some users may experience twitches, seizures or blackouts while using VR headsets, even if they do not have a history of epilepsy and have never had blackouts or seizures before. One in 4,000 people, or .025%, may experience these symptoms. Motion sickness, eyestrain, headaches, and discomfort are the most prevalent short-term adverse effects. In addition, because of the virtual reality headsets’ heavy weight, discomfort may be more likely among children. Therefore, children are advised against using VR headsets.[143] Other problems may occur in physical interactions with one’s environment. While wearing VR headsets, people quickly lose awareness of their real-world surroundings and may injure themselves by tripping over, or colliding with real-world objects.[144]
VR headsets may regularly cause eye fatigue, as does all screened technology, because people tend to blink less when watching screens, causing their eyes to become more dried out.[145] There have been some concerns about VR headsets contributing to myopia, but although VR headsets sit close to the eyes, they may not necessarily contribute to nearsightedness if the focal length of the image being displayed is sufficiently far away.[146]
Virtual reality sickness (also known as cybersickness) occurs when a person’s exposure to a virtual environment causes symptoms that are similar to motion sickness symptoms.[147] Women are significantly more affected than men by headset-induced symptoms, at rates of around 77% and 33% respectively.[148][149] The most common symptoms are general discomfort, headache, stomach awareness, nausea, vomiting, pallor, sweating, fatigue, drowsiness, disorientation, and apathy.[150] For example, Nintendo’s Virtual Boy received much criticism for its negative physical effects, including «dizziness, nausea, and headaches».[151] These motion sickness symptoms are caused by a disconnect between what is being seen and what the rest of the body perceives. When the vestibular system, the body’s internal balancing system, does not experience the motion that it expects from visual input through the eyes, the user may experience VR sickness. This can also happen if the VR system does not have a high enough frame rate, or if there is a lag between the body’s movement and the onscreen visual reaction to it.[152] Because approximately 25–40% of people experience some kind of VR sickness when using VR machines, companies are actively looking for ways to reduce VR sickness.[153]
Vergence-accommodation conflict (VAC) is one of the main causes of virtual reality sickness.[154]
In January 2022 The Wall Street Journal found that VR usage could lead to physical injuries including leg, hand, arm and shoulder injuries.[155] VR usage has also been tied to incidents that resulted in neck injuries,[156] and death.[157]
Children and teenagers in virtual reality[edit]
Children are becoming increasingly aware of VR, with the number in the USA having never heard of it dropping by half from Autumn 2016 (40%) to Spring 2017 (19%).[158]
A 2022 research report by Piper Sandler revealed that only 26% of U.S. teens own a VR device, 5% use it daily, while 48% of teen headset owners «seldom» use it. Of the teens who don’t own a VR headset, 9% plan to buy one. 50% of surveyed teens are unsure about the metaverse or don’t have any interest, and don’t have any plans to purchase a VR headset.[159]
Studies show that young children, compared to adults, may respond cognitively and behaviorally to immersive VR in ways that differ from adults. VR places users directly into the media content, potentially making the experience very vivid and real for children. For example, children of 6–18 years of age reported higher levels of presence and «realness» of a virtual environment compared with adults 19–65 years of age.[160]
Studies on VR consumer behavior or its effect on children and a code of ethical conduct involving underage users are especially needed, given the availability of VR porn and violent content. Related research on violence in video games suggests that exposure to media violence may affect attitudes, behavior, and even self-concept. Self-concept is a key indicator of core attitudes and coping abilities, particularly in adolescents.[161] Early studies conducted on observing versus participating in violent VR games suggest that physiological arousal and aggressive thoughts, but not hostile feelings, are higher for participants than for observers of the virtual reality game.[162]
Experiencing VR by children may further involve simultaneously holding the idea of the virtual world in mind while experiencing the physical world. Excessive usage of immersive technology that has very salient sensory features may compromise children’s ability to maintain the rules of the physical world, particularly when wearing a VR headset that blocks out the location of objects in the physical world. Immersive VR can provide users with multisensory experiences that replicate reality or create scenarios that are impossible or dangerous in the physical world. Observations of 10 children experiencing VR for the first time suggested that 8-12-years-old kids were more confident to explore VR content when it was in a familiar situation, e.g. the children enjoyed playing in the kitchen context of Job Simulator, and enjoyed breaking rules by engaging in activities they are not allowed to do in reality, such as setting things on fire.[158]
Privacy[edit]
The persistent tracking required by all VR systems makes the technology particularly useful for, and vulnerable to, mass surveillance. The expansion of VR will increase the potential and reduce the costs for information gathering of personal actions, movements and responses.[48] Data from eye tracking sensors, which are projected to become a standard feature in virtual reality headsets,[163][164] may indirectly reveal information about a user’s ethnicity, personality traits, fears, emotions, interests, skills, and physical and mental health condition.[165]
Virtual reality in fiction[edit]
See also[edit]
- 16K resolution
- 360-degree video
- AlloSphere
- Computer-mediated reality
- Diorama
- Extended reality
- Haptic suit
- Holographic principle
- Hyperreality
- Mixed reality
- Virtual body
- Virtual globe
- Virtual machining
- Metaverse
- Gustatory technology
- List of virtual reality headsets
References[edit]
- ^ «Get Ready to Hear a Lot More About ‘XR’«. Wired. 1 May 2019. ISSN 1059-1028. Retrieved 29 August 2020.
- ^ a b «virtual | Search Online Etymology Dictionary». www.etymonline.com.
- ^ Antonin Artaud, The Theatre and its Double Trans. Mary Caroline Richards. (New York: Grove Weidenfeld, 1958).
- ^ Faisal, Aldo (2017). «Computer science: Visionary of virtual reality». Nature. 551 (7680): 298–299. Bibcode:2017Natur.551..298F. doi:10.1038/551298a.
- ^ «Definition of cyberspace | Dictionary.com». www.dictionary.com.
- ^ Baltrušaitis, Jurgis; Strachan, W.J. (1977). Anamorphic art. New York: Harry N. Abrams. p. 4. ISBN 9780810906624.
- ^ Holly Brockwell (3 April 2016). «Forgotten genius: the man who made a working VR machine in 1957». Tech Radar. Retrieved 7 March 2017.
- ^ Watkins, Christopher; Marenka, Stephen (1994). Virtual Reality Excursions with Programs in C. Academic Press Inc. p. 58. ISBN 0-12-737865-0.
- ^ «National Center for Supercomputing Applications: History». The Board of Trustees of the University of Illinois. Archived from the original on 21 August 2015.
- ^ Nelson, Ted (March 1982). «Report on Siggraph ’81». Creative Computing.
- ^ Scott S. Fisher; The NASA Ames VIEWlab Project—A Brief History. Presence: Teleoperators and Virtual Environments 2016; 25 (4): 339–348. doi: https://doi.org/10.1162/PRES_a_00277
- ^ Thomas, Wayne (December 2005). «Section 17». «Virtual Reality and Artificial Environments», A Critical History of Computer Graphics and Animation.
- ^ Barlow, John Perry (1990). «Being in Nothingness». Wired.
- ^ «Cyberspace – The New Explorers». 1989. Retrieved 8 August 2019 – via Internet Archive.
- ^ Delaney, Ben (2017). Virtual Reality 1.0 — The 90s: The Birth of VR. CyberEdge Information Services. p. 40. ISBN 978-1513617039.
- ^ Stoker, Carol. «MARSMAP: AN INTERACTIVE VIRTUAL REALITY MODEL OF THE PATHFINDER LANDING SITE» (PDF). NASA JPL. NASA. Retrieved 7 August 2019.
- ^ Cullen, Chris (13 April 2017). «Pioneering VR Stories Part 1: Idaho National Laboratory In The ’90s». Idaho Virtual Reality Council. Retrieved 7 August 2019.
- ^ Engler, Craig E. (November 1992). «Affordable VR by 1994». Computer Gaming World. p. 80. Retrieved 4 July 2014.
- ^ Horowitz, Ken (28 December 2004). «Sega VR: Great Idea or Wishful Thinking?». Sega-16. Archived from the original on 14 January 2010. Retrieved 21 August 2010.
- ^ «Virtuality». YouTube. Archived from the original on 11 December 2021. Retrieved 21 September 2014.
- ^ Goad, Angela. «Carolina Cruz-Neira | Introductions Necessary». Introductions Necessary. Retrieved 28 March 2017.
- ^ Smith, David (24 November 2014). «Engineer envisions sci-fi as reality». Arkansas Online. Retrieved 28 March 2017.
- ^ Gonzales, D.; Criswell, D.; Heer, E (1991). Gonzales, D. (ed.). «Automation and Robotics for the Space Exploration Initiative: Results from Project Outreach» (PDF). NASA STI/Recon Technical Report N. 92 (17897): 35. Bibcode:1991STIN…9225258G.
- ^ Rosenberg, Louis (1992). «The Use of Virtual Fixtures As Perceptual Overlays to Enhance Operator Performance in Remote Environments.». Technical Report AL-TR-0089, USAF Armstrong Laboratory, Wright-Patterson AFB OH, 1992.
- ^ Rosenberg, L.B. (1993). «Virtual Fixtures: Perceptual Overlays for Telerobotic Manipulation». In Proc. of the IEEE Annual Int. Symposium on Virtual Reality (1993): pp. 76–82.
- ^ «News & Information». Beep! Mega Drive. No. 1994–08. July 1994. p. [1].
- ^ Kevin Williams. «The Virtual Arena – Blast From The Past: The VR-1». VR Focus.
- ^ «Sega Teams Up With W. Industries For Its VR Game». Game Machine. No. 455. August 1993. p. [2].
- ^ NEXT Generation. June 1995. Retrieved 20 October 2015 – via archive.org.
- ^ «Nintendo Virtual Boy on theverge.com». Archived from the original on 1 April 2014.
- ^ Dye, Lee (22 February 1995). «Virtual Reality Applications Expand : Imaging: Technology is finding important places in medicine, engineering and many other realms». Los Angeles Times.
- ^ Au, Wagner James. The Making of Second Life, pg. 19. New York: Collins. ISBN 978-0-06-135320-8.
- ^ «Google Street View in 3D: More Than Just an April Fool’s Joke». 6 April 2010.
- ^ Rubin, Peter (2014). «Oculus Rift». Wired. Vol. 22, no. 6. p. 78.
- ^ «E3 12: John Carmack’s VR Presentation». Gamereactor. 27 July 2012. Archived from the original on 11 December 2021. Retrieved 20 February 2019.
- ^ a b c Gilbert, Ben (12 December 2018). «Facebook just settled a $500 million lawsuit over virtual reality after a years-long battle — here’s what’s going on». Business Insider. Retrieved 20 February 2019.
- ^ «Facebook to buy Oculus virtual reality firm for $2B». Associated Press. 25 March 2014. Retrieved 27 March 2014.
- ^ Metz, Cade (25 March 2014). «Facebook Buys VR Startup Oculus for $2 Billion». WIRED. Retrieved 13 March 2017.
- ^ Spangler, Todd (12 December 2018). «ZeniMax Agrees to Settle Facebook VR Lawsuit». Variety. Retrieved 20 February 2019.
- ^ «Not-quite-live bloga : panel discussion with John Carmack, Tim Sweeney, Johan Andersson». The Tech Report. Retrieved 14 December 2016.
- ^ James, Paul (30 January 2014). «30 Minutes Inside Valve’s Prototype Virtual Reality Headset: Owlchemy Labs Share Their Steam Dev Days Experience – Road to VR». Road to VR. Retrieved 14 December 2016.
- ^ James, Paul (18 November 2013). «Valve to Demonstrate Prototype VR HMD and Talk Changes to Steam to «Support and Promote VR Games» – Road to VR». Road to VR. Retrieved 14 December 2016.
- ^ «Valve showing off new virtual reality hardware and updated Steam controller next week». The Verge. 24 February 2015. Retrieved 1 March 2015.
- ^ «Valve’s VR headset revealed with Oculus-like features». The Verge. 3 June 2014. Retrieved 1 March 2015.
- ^ «HTC Vive: Everything you need to know about the SteamVR headset». Wareable. 5 April 2016. Retrieved 19 June 2016.
- ^ «Sony Announces ‘Project Morpheus:’ Virtual Reality Headset For PS4». Forbes.
- ^ «Gloveone: Feel Virtual Reality». Kickstarter. Retrieved 15 May 2016.
- ^ a b c d Kelly, Kevin (April 2016). «The Untold Story of Magic Leap, the World’s Most Secretive Startup». WIRED. Retrieved 13 March 2017.
- ^ «Vive Shipment Updates – VIVE Blog». VIVE Blog. 7 April 2016. Retrieved 19 June 2016.
- ^ Prasuethsut, Lily (2 August 2016). «HTC Vive: Everything you need to know about the SteamVR headset». Wareable. Retrieved 13 March 2017.
- ^ Martindale, Jon (15 February 2017). «Vive-like sensor spotted in new Sony patent could make its way to PlayStation VR». Digital Trends. Retrieved 13 March 2017.
- ^ «From the lab to the living room: The story behind Facebook’s Oculus Insight technology and a new era of consumer VR». tech.fb.com. 22 August 2019. Retrieved 1 September 2020.
- ^ «Headset — Valve Index® — Upgrade your experience — Valve Corporation». www.valvesoftware.com. 9 May 2019. Retrieved 28 February 2021.
- ^ Robertson, Adi (16 September 2020). «Oculus Quest 2 Review: Better, Cheaper VR». theverge.com. Retrieved 16 December 2020.
- ^ Ochanji, Sam (27 March 2022). «Survey: Quest 2 Accounted for 80% of Headset Sales in 2021». Virtual Reality Times. Retrieved 29 March 2022.
- ^ «VRM Switzerland – Professional Flight Training Solutions». Retrieved 10 May 2021.
- ^ «EASA approves the first Virtual Reality (VR) based Flight Simulation Training Device». EASA. Retrieved 10 May 2021.
- ^ Lindner, Philip (1 March 2021). «Better, Virtually: the Past, Present, and Future of Virtual Reality Cognitive Behavior Therapy». International Journal of Cognitive Therapy. 14 (1): 23–46. doi:10.1007/s41811-020-00090-7. ISSN 1937-1217. S2CID 226321832.
- ^ «2021 wird das Jahr der Virtual Reality». www.inside-it.ch. Retrieved 9 January 2021.
- ^ Junaini, Syahrul Nizam; Kamal, Ahmad Alif; Hashim, Abdul Halim; Mohd Shaipullah, Norhunaini; Truna, Liyana (2022). «Augmented and Virtual Reality Games for Occupational Safety and Health Training: A Systematic Review and Prospects for the Post-Pandemic Era». International Journal of Online and Biomedical Engineering. 18 (10): 43–63. doi:10.3991/ijoe.v18i10.30879. S2CID 251119319. Retrieved 3 August 2022.
- ^ «VRML Virtual Reality Modeling Language». www.w3.org. Retrieved 20 March 2017.
- ^ Brutzman, Don (October 2016). «X3D Graphics and VR» (PDF). web3D.org. Web3D Consortium. Archived (PDF) from the original on 21 March 2017. Retrieved 20 March 2017.
- ^ «WebVR API». Mozilla Developer Network. Retrieved 4 November 2015.
- ^ Orellana, Vanessa Hand (31 May 2016). «10 things I wish I knew before shooting 360 video». CNET. Retrieved 20 March 2017.
- ^ «Resident Evil 7: The Use of Photogrammetry for VR». 80.lv. 28 August 2016. Retrieved 20 March 2017.
- ^ Johnson, Leif (13 March 2016). «Forget 360 Videos, Photogrammetric Virtual Reality Is Where It’s At – Motherboard». Motherboard. Retrieved 20 March 2017.
- ^ «Stereoscopic Display — an overview | ScienceDirect Topics». www.sciencedirect.com. Retrieved 19 October 2022.
- ^ Fang, Cathy; Zhang, Yang; Dworman, Matthew; Harrison, Chris (21 April 2020). «Wireality: Enabling Complex Tangible Geometries in Virtual Reality with Worn Multi-String Haptics». Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Computing Machinery: 1–10. doi:10.1145/3313831.3376470. ISBN 978-1-4503-6708-0. S2CID 218483027.
- ^ Kuhn, Thomas. «Wie Virtual-Reality-Brillen die Arbeit verändern». WirtschaftsWoche. Retrieved 18 November 2020.
- ^ Davson, Hugh (1972). The Physiology of The Eye. Burlington: Elsevier Science. ISBN 978-0-323-14394-3. OCLC 841909276.
- ^ Leclair, Dave (21 September 2022). «From 60Hz to 240Hz: Refresh Rates on Phones Explained». PCMag UK. Retrieved 19 October 2022.
- ^ Strasburger, Hans (2020). «Seven myths on crowding and peripheral vision». i-Perception. 11 (2): 1–45.
- ^ The FOV includes eye movements which are estimated here as roughly 30 deg to either side horizontally/20 vertically, added to the size of the visual field. A reliable source for that estimation would be needed.
- ^ reliable source needed
- ^ «Comparison of VR headsets: Project Morpheus vs. Oculus Rift vs. HTC Vive». Data Reality. Archived from the original on 20 August 2015. Retrieved 15 August 2015.
- ^ He, Jing; Wu, Yanping (10 October 2022). Tirunagari, Santosh (ed.). «Application of Digital Interactive Display Design Based on Computer Technology in VR Film». Mobile Information Systems. 2022: 1–7. doi:10.1155/2022/8462037. ISSN 1875-905X.
- ^ Groom, Victoria; Bailenson, Jeremy N.; Nass, Clifford (1 July 2009). «The influence of racial embodiment on racial bias in immersive virtual environments». Social Influence. 4 (3): 231–248. doi:10.1080/15534510802643750. ISSN 1553-4510. S2CID 15300623.
- ^ Gonçalves, Raquel; Pedrozo, Ana Lúcia; Coutinho, Evandro Silva Freire; Figueira, Ivan; Ventura, Paula (27 December 2012). «Efficacy of Virtual Reality Exposure Therapy in the Treatment of PTSD: A Systematic Review». PLOS ONE. 7 (12): e48469. Bibcode:2012PLoSO…748469G. doi:10.1371/journal.pone.0048469. ISSN 1932-6203. PMC 3531396. PMID 23300515.
- ^ Garrick, Jacqueline; Williams, Mary Beth (2014). Trauma Treatment Techniques: Innovative Trends. London: Routledge. p. 199. ISBN 9781317954934.
- ^ Gerardi, Maryrose (June 2010). «Virtual Reality Exposure Therapy for Post-Traumatic Stress Disorder and Other Anxiety Disorders». Current Psychiatry Reports. 12 (4): 298–305. doi:10.1007/s11920-010-0128-4. PMID 20535592. S2CID 436354.
- ^ [citation needed]
- ^ Kamińska, Magdalena Sylwia; Miller, Agnieszka; Rotter, Iwona; Szylińska, Aleksandra; Grochans, Elżbieta (14 November 2018). «The effectiveness of virtual reality training in reducing the risk of falls among elderly people». Clinical Interventions in Aging. 13: 2329–2338. doi:10.2147/CIA.S183502. PMC 6241865. PMID 30532523.
- ^ Satava, R. M. (1996). «Medical virtual reality. The current status of the future». Studies in Health Technology and Informatics. 29: 100–106. ISSN 0926-9630. PMID 10163742.
- ^ Rosenberg, Louis; Stredney, Don (1996). «A haptic interface for virtual simulation of endoscopic surgery». Studies in Health Technology and Informatics. 29: 371–387. ISSN 0926-9630. PMID 10172846.
- ^ Stredney, D.; Sessanna, D.; McDonald, J. S.; Hiemenz, L.; Rosenberg, L. B. (1996). «A virtual simulation environment for learning epidural anesthesia». Studies in Health Technology and Informatics. 29: 164–175. ISSN 0926-9630. PMID 10163747.
- ^ Thomas, Daniel J.; Singh, Deepti (2 April 2021). «Letter to the Editor: Virtual Reality in Surgical Training». International Journal of Surgery. 89: 105935. doi:10.1016/j.ijsu.2021.105935. ISSN 1743-9191. PMID 33819684. S2CID 233036480.
- ^ Westwood, J.D. Medicine Meets Virtual Reality 21: NextMed / MMVR21. IOS Press. p. 462.
- ^ Dockx, Kim (2016). «Virtual reality for rehabilitation in Parkinson’s disease». Cochrane Database of Systematic Reviews. 2016 (12): CD010760. doi:10.1002/14651858.CD010760.pub2. PMC 6463967. PMID 28000926.
- ^ Darbois, Nelly; Guillaud, Albin; Pinsault, Nicolas (2018). «Does Robotics and Virtual Reality Add Real Progress to Mirror Therapy Rehabilitation? A Scoping Review». Rehabilitation Research and Practice. 2018: 6412318. doi:10.1155/2018/6412318. PMC 6120256. PMID 30210873.
- ^ Forbes, Paul A. G.; Pan, Xueni; Hamilton, Antonia F. de C. (2016). «Reduced Mimicry to Virtual Reality Avatars in Autism Spectrum Disorder». Journal of Autism and Developmental Disorders. 46 (12): 3788–3797. doi:10.1007/s10803-016-2930-2. PMC 5110595. PMID 27696183.
- ^ «How virtual reality is transforming autism studies». Spectrum | Autism Research News. 24 October 2018.
- ^ Chau, Brian (August 2017). «Immersive virtual reality therapy with myoelectric control for treatment-resistant phantom limb pain: Case report». Psychiatry. 14 (7–8): 3–7. PMC 5880370. PMID 29616149.
- ^ Warnier, Nadieh (November 2019). «Effect of virtual reality therapy on balance and walking in children with cerebral palsy: A systematic review». Pediatric Health. 23 (8): 502–518. doi:10.1080/17518423.2019.1683907. PMID 31674852. S2CID 207814817.
- ^ «VR Meetings Are Weird, but They Beat Our Current Reality». Wired. ISSN 1059-1028. Retrieved 3 April 2021.
- ^ Schouten, Alexander P.; van den Hooff, Bart; Feldberg, Frans (March 2016). «Virtual Team Work: Group Decision Making in 3D Virtual Environments». Communication Research. 43 (2): 180–210. doi:10.1177/0093650213509667. ISSN 0093-6502. S2CID 10503426.
- ^ «Online High School In Japan Enters Virtual Reality». blogs.wsj.com. 7 April 2016.
- ^ Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan (17 April 2017). «The effectiveness of virtual and augmented reality in health sciences and medical anatomy: VR and AR in Health Sciences and Medical Anatomy». Anatomical Sciences Education. 10 (6): 549–559. doi:10.1002/ase.1696. PMID 28419750. S2CID 25961448.
- ^ Moro, Christian; Štromberga, Zane; Stirling, Allan (29 November 2017). «Virtualisation devices for student learning: Comparison between desktop-based (Oculus Rift) and mobile-based (Gear VR) virtual reality in medical and health science education». Australasian Journal of Educational Technology. 33 (6). doi:10.14742/ajet.3840. ISSN 1449-5554.
- ^ «DSTS: First immersive virtual training system fielded». www.army.mil. Retrieved 16 March 2017.
- ^ «Virtual reality used to train Soldiers in new training simulator».
- ^ «NASA shows the world its 20-year virtual reality experiment to train astronauts: The inside story – TechRepublic». TechRepublic. Retrieved 15 March 2017.
- ^ James, Paul (19 April 2016). «A Look at NASA’s Hybrid Reality Astronaut Training System, Powered by HTC Vive – Road to VR». Road to VR. Retrieved 15 March 2017.
- ^ «How NASA is Using Virtual and Augmented Reality to Train Astronauts». Unimersiv. 11 April 2016. Retrieved 15 March 2017.
- ^ Dourado, Antônio O.; Martin, C.A. (2013). «New concept of dynamic flight simulator, Part I». Aerospace Science and Technology. 30 (1): 79–82. doi:10.1016/j.ast.2013.07.005.
- ^ «Virtual Reality in Mine Training». www.cdc.gov. 21 September 2012. Retrieved 9 November 2018.
- ^ Moro, C; Birt, J; Stromberga, Z; Phelps, C; Clark, J; Glasziou, P; Scott, AM (May 2021). «Virtual and Augmented Reality Enhancements to Medical and Science Student Physiology and Anatomy Test Performance: A Systematic Review and Meta-Analysis». Anatomical Sciences Education. 14 (3): 368–376. doi:10.1002/ase.2049. PMID 33378557. S2CID 229929326.
- ^ Sedlák, Michal; Šašinka, Čeněk; Stachoň, Zdeněk; Chmelík, Jiří; Doležal, Milan (18 October 2022). «Collaborative and individual learning of geography in immersive virtual reality: An effectiveness study». PLOS ONE. 17 (10): e0276267. doi:10.1371/journal.pone.0276267. ISSN 1932-6203. PMC 9578614. PMID 36256672.
- ^ «How Virtual Reality Military Applications Work». 27 August 2007.
- ^ Omer; et al. (2018). «Performance evaluation of bridges using virtual reality». Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, Scotland.
- ^ Seu; et al. (2018). «Use of gaming and affordable VR technology for the visualization of complex flow fields». Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, Scotland.
- ^ a b Shufelt, Jr., J.W. (2006) A Vision for Future Virtual Training. In Virtual Media for Military Applications (pp. KN2-1 – KN2-12). Meeting Proceedings RTO-MP-HFM-136, Keynote 2. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp Archived 2007-06-13 at the Wayback Machine
- ^ Bukhari, Hatim; Andreatta, Pamela; Goldiez, Brian; Rabelo, Luis (1 January 2017). «A Framework for Determining the Return on Investment of Simulation-Based Training in Health Care». INQUIRY: The Journal of Health Care Organization, Provision, and Financing. 54: 0046958016687176. doi:10.1177/0046958016687176. ISSN 0046-9580. PMC 5798742. PMID 28133988.
- ^ Smith, Roger (1 February 2010). «The Long History of Gaming in Military Training». Simulation & Gaming. 41 (1): 6–19. doi:10.1177/1046878109334330. ISSN 1046-8781. S2CID 13051996.
- ^ Dennis, Ophelie Puissegur; Patterson, Rita M. (April 2020). «Medical virtual reality». Journal of Hand Therapy. 33 (2): 243–245. doi:10.1016/j.jht.2020.02.003. ISSN 1545-004X. PMID 32451173. S2CID 218895372.
- ^ Bueckle, Andreas; Buehling, Kilian; Shih, Patrick C.; Börner, Katy (27 October 2021). «3D virtual reality vs. 2D desktop registration user interface comparison». PLOS ONE. 16 (10): e0258103. arXiv:2102.12030. Bibcode:2021PLoSO..1658103B. doi:10.1371/journal.pone.0258103. ISSN 1932-6203. PMC 8550408. PMID 34705835.
- ^ Abulrub, Abdul-Hadi G.; Attridge, Alex N.; Williams, Mark A. (April 2011). «Virtual reality in engineering education: The future of creative learning». 2011 IEEE Global Engineering Education Conference (EDUCON): 751–757. doi:10.1109/EDUCON.2011.5773223. ISBN 978-1-61284-642-2.
- ^ Makaklı, Elif Süyük (2019). «STEAM approach in architectural education». SHS Web of Conferences. 66: 01012. doi:10.1051/shsconf/20196601012. ISSN 2261-2424.
- ^ Mura, Gianluca (2011). Metaplasticity in Virtual Worlds: Aesthetics and Semantic Concepts. Hershey, Pennsylvania: Information Science Reference. p. 203. ISBN 978-1-60960-077-8.
- ^ «Virtual reality at the British Museum: What is the value of virtual reality environments for learning by children and young people, schools, and families? – MW2016: Museums and the Web 2016».
- ^ «Extending the Museum Experience with Virtual Reality». 18 March 2016.
- ^ Shirer, Michael; Torchia, Marcus (27 February 2017). «Worldwide Spending on Augmented and Virtual Reality Forecast to Reach $13.9 Billion in 2017, According to IDC». International Data Corporation. International Data Corporation. Archived from the original on 19 March 2018. Retrieved 16 March 2018.
- ^ «How Technology is Expanding the Scope of Online Commerce Beyond Retail». www.walkersands.com. Retrieved 31 August 2018.
- ^ Thomas, Daniel J. (December 2016). «Augmented reality in surgery: The Computer-Aided Medicine revolution». International Journal of Surgery (London, England). 36 (Pt A): 25. doi:10.1016/j.ijsu.2016.10.003. ISSN 1743-9159. PMID 27741424.
- ^ Sáez-López, José-Manuel; García, María Luisa Sevillano-García; Pascual-Sevillano, María de los Ángeles (2019). «Aplicación del juego ubicuo con realidad aumentada en Educación Primaria». Comunicar (in Spanish). 27 (61): 71–82. doi:10.3916/C61-2019-06. ISSN 1134-3478.
- ^ Kirsch, Breanne (2019). «Virtual Reality: The Next Big Thing for Libraries to Consider». Information Technology and Libraries. 38 (4): 4–5. doi:10.6017/ital.v38i4.11847.
- ^ Bozorgi, Khosrow; Lischer-Katz, Zack (2020). «Using 3D/VR for Research and Cultural Heritage Preservation: Project Update on the Virtual Ganjali Khan Project». Preservation, Digital Technology & Culture. 49 (2): 45–57. doi:10.1515/pdtc-2020-0017. S2CID 221160772.
- ^ «Meeting You VR Documentary on MBC Global Media». MBC Global Media. 2 February 2022.
- ^ Nikolaou, Niki (25 September 2020). «The reconnection with a deceased loved one through virtual reality. Opinions and concerns against an unprecedented challenge». Bioethica. 6 (2): 52–64. doi:10.12681/bioeth.24851. S2CID 225264729.
- ^ Stein, Jan-Philipp (2021). «Conjuring up the departed in virtual reality: The good, the bad, and the potentially ugly». Psychology of Popular Media. 10 (4): 505–510. doi:10.1037/ppm0000315. S2CID 233628743.
- ^ Takle, Steve (28 February 2022). «HTC Vive partners with holoride; private 5G solution; location based entertainment». The Virtual Report. Retrieved 14 March 2022.
- ^ Webster, Andrew (21 February 2019). «Fortnite’s Marshmello concert was the game’s biggest event ever». The Verge. Retrieved 6 October 2022.
- ^ «Opinion | Coronavirus forced stars like Travis Scott to get creative — and fans are benefiting». NBC News. Retrieved 6 October 2022.
- ^ Hayden, Scott (18 June 2020). «Electronic Music Pioneer Jean-Michel Jarre to Host Concert in ‘VRChat’ This Weekend». Road to VR. Retrieved 6 October 2022.
- ^ FIERBERG, RUTHIE (20 July 2020). «Can This Game-Changing Innovation Get Live Theatre Back Before the Pandemic Ends?». PLAYBILL. Retrieved 6 October 2022.
- ^ Aswad, Jem (9 November 2021). «Justin Bieber to Stage Interactive Virtual Concert With Wave». Variety. Retrieved 6 October 2022.
- ^ «Stage And Screen: Virtual Creators Take The Next Step». The Metaculture. 1 October 2022. Retrieved 6 October 2022.
- ^ Moseley, Martin (20 July 2022). «Brendan Bradley’s virtual reality musical Non-Player Character debuts on Top Soundtrack Chart with first single ‘Reprogram Me’ arriving at No. 25 on iTunes». Urbanista Magazine. Retrieved 6 October 2022.
- ^ Hamish Hector (14 February 2022). «Meta’s Foo Fighters Super Bowl VR concert failed in the most basic ways». TechRadar. Retrieved 6 October 2022.
- ^ Havens, Lyndsey (6 July 2022). «Post Malone to Perform ‘Twelve Carat Toothache’ in a Virtual Reality Concert Hosted by Meta: Exclusive». Billboard. Retrieved 6 October 2022.
- ^ «Megan Thee Stallion To Hit the Virtual Road With «Enter Thee Hottieverse» VR Concert Tour». HYPEBEAST. 1 March 2022. Retrieved 6 October 2022.
- ^ Lawson, B. D. (2014). Motion sickness symptomatology and origins. Handbook of Virtual Environments: Design, Implementation, and Applications, 531-599.
- ^ «Oculus Rift Health and Safety Notice» (PDF). Archived from the original (PDF) on 6 July 2017. Retrieved 13 March 2017.
- ^ Araiza-Alba, Paola; Keane, Therese; Kaufman, Jordy (30 January 2022). «Are we ready for virtual reality in K–12 classrooms?». Technology, Pedagogy and Education. 31 (4): 471–491. doi:10.1080/1475939X.2022.2033307. ISSN 1475-939X. S2CID 246439125.
- ^ Fagan, Kaylee. «Here’s what happens to your body when you’ve been in virtual reality for too long». Business Insider. Retrieved 5 September 2018.
- ^ Mukamal, Reena (28 February 2017). «Are Virtual Reality Headsets Safe for Eyes?». American Academy of Ophthalmology. Retrieved 11 September 2018.
- ^ Langley, Hugh (22 August 2017). «We need to look more carefully into the long-term effects of VR». Wareable.com. Retrieved 11 September 2018.
- ^ Kiryu, T; So, RH (25 September 2007). «Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation». Journal of Neuroengineering and Rehabilitation. 4: 34. doi:10.1186/1743-0003-4-34. PMC 2117018. PMID 17894857.
- ^ Munafo, Justin; Diedrick, Meg; Stoffregen, Thomas A. (3 December 2016). «The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects». Experimental Brain Research. 235 (3): 889–901. doi:10.1007/s00221-016-4846-7. hdl:11299/224663. PMID 27915367. S2CID 13740398.
- ^ Park, George D.; Allen, R. Wade; Fiorentino, Dary; Rosenthal, Theodore J.; Cook, Marcia L. (5 November 2016). «Simulator Sickness Scores According to Symptom Susceptibility, Age, and Gender for an Older Driver Assessment Study». Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 50 (26): 2702–2706. doi:10.1177/154193120605002607. S2CID 111310621.
- ^ Hicks, Jamison S.; Durbin, David B. (June 2011). «ARL-TR-5573: A Summary of Simulator Sickness Ratings for U.S. Army Aviation Engineering Simulators» (PDF). US Army Research Laboratory. Archived (PDF) from the original on 27 July 2018.
- ^ Frischling, Bill (25 October 1995). «Sideline Play». The Washington Post. p. 11 – via ProQuest.
- ^ Caddy, Becca (19 October 2016). «Vomit Reality: Why VR makes some of us feel sick and how to make it stop». Wareable.com. Retrieved 11 September 2018.
- ^ Samit, Jay. «A Possible Cure for Virtual Reality Motion Sickness». Fortune.com. Retrieved 11 September 2018.
- ^ Lawson, Ben D.; Stanney, Kay M. (2021). «Editorial: Cybersickness in Virtual Reality and Augmented Reality». Frontiers in Virtual Reality. 2. doi:10.3389/frvir.2021.759682. ISSN 2673-4192.
- ^ Rodriguez, Sarah E. Needleman and Salvador (1 February 2022). «VR to the ER: Metaverse Early Adopters Prove Accident-Prone». The Wall Street Journal. ISSN 0099-9660. Retrieved 2 February 2022.
- ^ Elgueta, Adriana (31 January 2022). «Man breaks neck playing virtual reality game». news.com.au — Australia’s leading news site. Retrieved 2 February 2022.
- ^ Tyler Wilde (22 December 2017). «Man dies in VR accident, reports Russian news agency». PC Gamer. Retrieved 2 February 2022.
- ^ a b Yamada-Rice, Dylan; Mushtaq, Faisal; Woodgate, Adam; Bosmans, D.; Douthwaite, A.; Douthwaite, I.; Harris, W.; Holt, R.; Kleeman, D. (12 September 2017). «Children and Virtual Reality: Emerging Possibilities and Challenges» (PDF). digilitey.eu. Archived from the original (PDF) on 17 May 2018. Retrieved 27 April 2020.
- ^ «Teens are split on the metaverse, most barely use VR headsets, survey shows». PC Gamer. 14 April 2022.
- ^ Bailey, Jakki O.; Bailenson, Jeremy N. (1 January 2017), Blumberg, Fran C.; Brooks, Patricia J. (eds.), «Chapter 9 – Immersive Virtual Reality and the Developing Child», Cognitive Development in Digital Contexts, Academic Press, pp. 181–200, doi:10.1016/B978-0-12-809481-5.00009-2, ISBN 978-0-12-809481-5, retrieved 27 April 2020
- ^ Funk, Jeanne B.; Buchman, Debra D. (1 June 1996). «Playing Violent Video and Computer Games and Adolescent Self-Concept». Journal of Communication. 46 (2): 19–32. doi:10.1111/j.1460-2466.1996.tb01472.x. ISSN 0021-9916.
- ^ Calvert, Sandra L.; Tan, Siu-Lan (January 1994). «Impact of virtual reality on young adults’ physiological arousal and aggressive thoughts: Interaction versus observation». Journal of Applied Developmental Psychology. 15 (1): 125–139. doi:10.1016/0193-3973(94)90009-4. ISSN 0193-3973.
- ^ Rogers, Sol (5 February 2019). «Seven Reasons Why Eye-tracking Will Fundamentally Change VR». Forbes. Retrieved 13 May 2020.
- ^ Stein, Scott (31 January 2020). «Eye tracking is the next phase for VR, ready or not». CNET. Retrieved 8 April 2021.
- ^ Kröger, Jacob Leon; Lutz, Otto Hans-Martin; Müller, Florian (2020). «What Does Your Gaze Reveal About You? On the Privacy Implications of Eye Tracking». Privacy and Identity Management. Data for Better Living: AI and Privacy. IFIP Advances in Information and Communication Technology. Vol. 576. pp. 226–241. doi:10.1007/978-3-030-42504-3_15. ISBN 978-3-030-42503-6. ISSN 1868-4238.
Further reading[edit]
- Choi, SangSu, Kiwook Jung, and Sang Do Noh (2015). «Virtual reality applications in manufacturing industries: Past research, present findings, and future directions». Concurrent Engineering. 1063293X14568814.
{{cite web}}
: CS1 maint: multiple names: authors list (link)
External links[edit]
- Isaac, Joseph (2016). «Step into a new world – Virtual Reality (VR)». Retrieved 2 July 2016. Basic Concepts of Virtual Reality along with Research Challenges explained in simple words.
- Mixed Reality Scale – Milgram and Kishino’s (1994) Virtuality Continuum paraphrase with examples.
- Drummond, Katie (2014). «The Rise and Fall and Rise of Virtual Reality». The Verge. Retrieved 15 November 2014. Interviews on the history and future of virtual reality by leaders in the field.
- «Virtual reality in human-system interaction».
External video Virtual Reality, Computer Chronicles (1992)
Virtual reality (VR) is a simulated experience that employs pose tracking and 3D near-eye displays to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video games), education (such as medical or military training) and business (such as virtual meetings). Other distinct types of VR-style technology include augmented reality and mixed reality, sometimes referred to as extended reality or XR, although definitions are currently changing due to the nascence of the industry.[1]
Currently, standard virtual reality systems use either virtual reality headsets or multi-projected environments to generate realistic images, sounds and other sensations that simulate a user’s physical presence in a virtual environment. A person using virtual reality equipment is able to look around the artificial world, move around in it, and interact with virtual features or items. The effect is commonly created by VR headsets consisting of a head-mounted display with a small screen in front of the eyes, but can also be created through specially designed rooms with multiple large screens. Virtual reality typically incorporates auditory and video feedback, but may also allow other types of sensory and force feedback through haptic technology.
Etymology[edit]
«Virtual» has had the meaning of «being something in essence or effect, though not actually or in fact» since the mid-1400s.[2] The term «virtual» has been used in the computer sense of «not physically existing but made to appear by software» since 1959.[2]
In 1938, French avant-garde playwright Antonin Artaud described the illusory nature of characters and objects in the theatre as «la réalité virtuelle» in a collection of essays, Le Théâtre et son double. The English translation of this book, published in 1958 as The Theater and its Double,[3] is the earliest published use of the term «virtual reality». The term «artificial reality», coined by Myron Krueger, has been in use since the 1970s. The term «virtual reality» was first used in a science fiction context in The Judas Mandala, a 1982 novel by Damien Broderick.
Widespread adoption of the term «virtual reality» in the popular media is attributed to Jaron Lanier, who in the late 1980s designed some of the first business-grade virtual reality hardware under his firm VPL Research, and the 1992 film Lawnmower Man, which features use of virtual reality systems.[4]
Forms and methods[edit]
One method by which virtual reality can be realized is simulation-based virtual reality. Driving simulators, for example, give the driver on board the impression of actually driving an actual vehicle by predicting vehicular motion caused by driver input and feeding back corresponding visual, motion and audio cues to the driver.
With avatar image-based virtual reality, people can join the virtual environment in the form of real video as well as an avatar. One can participate in the 3D distributed virtual environment as form of either a conventional avatar or a real video. Users can select their own type of participation based on the system capability.
In projector-based virtual reality, modeling of the real environment plays a vital role in various virtual reality applications, such as robot navigation, construction modeling, and airplane simulation. Image-based virtual reality systems have been gaining popularity in computer graphics and computer vision communities. In generating realistic models, it is essential to accurately register acquired 3D data; usually, a camera is used for modeling small objects at a short distance.
Desktop-based virtual reality involves displaying a 3D virtual world on a regular desktop display without use of any specialized VR positional tracking equipment. Many modern first-person video games can be used as an example, using various triggers, responsive characters, and other such interactive devices to make the user feel as though they are in a virtual world. A common criticism of this form of immersion is that there is no sense of peripheral vision, limiting the user’s ability to know what is happening around them.
An Omni treadmill being used at a VR convention
A head-mounted display (HMD) more fully immerses the user in a virtual world. A virtual reality headset typically includes two small high resolution OLED or LCD monitors which provide separate images for each eye for stereoscopic graphics rendering a 3D virtual world, a binaural audio system, positional and rotational real-time head tracking for six degrees of movement. Options include motion controls with haptic feedback for physically interacting within the virtual world in an intuitive way with little to no abstraction and an omnidirectional treadmill for more freedom of physical movement allowing the user to perform locomotive motion in any direction.
Augmented reality (AR) is a type of virtual reality technology that blends what the user sees in their real surroundings with digital content generated by computer software. The additional software-generated images with the virtual scene typically enhance how the real surroundings look in some way. AR systems layer virtual information over a camera live feed into a headset or smartglasses or through a mobile device giving the user the ability to view three-dimensional images.
Mixed reality (MR) is the merging of the real world and virtual worlds to produce new environments and visualizations where physical and digital objects co-exist and interact in real time.
A cyberspace is sometimes defined as a networked virtual reality.[5]
Simulated reality is a hypothetical virtual reality as truly immersive as the actual reality, enabling an advanced lifelike experience or even virtual eternity.
History[edit]
View-Master, a stereoscopic visual simulator, was introduced in 1939
The development of perspective in Renaissance European art and the stereoscope were both precursors to virtual reality.[6] The first references to the more modern concept of virtual reality came from science fiction.
20th century[edit]
Morton Heilig wrote in the 1950s of an «Experience Theatre» that could encompass all the senses in an effective manner, thus drawing the viewer into the onscreen activity. He built a prototype of his vision dubbed the Sensorama in 1962, along with five short films to be displayed in it while engaging multiple senses (sight, sound, smell, and touch). Predating digital computing, the Sensorama was a mechanical device. Heilig also developed what he referred to as the «Telesphere Mask» (patented in 1960). The patent application described the device as «a telescopic television apparatus for individual use… The spectator is given a complete sensation of reality, i.e. moving three dimensional images which may be in colour, with 100% peripheral vision, binaural sound, scents and air breezes.»[7]
In 1968, Ivan Sutherland, with the help of his students including Bob Sproull, created what was widely considered to be the first head-mounted display system for use in immersive simulation applications, called The Sword of Damocles. It was primitive both in terms of user interface and visual realism, and the HMD to be worn by the user was so heavy that it had to be suspended from the ceiling, which gave the device a formidable appearance and inspired its name.[8] Technically, the device was an augmented reality device due to optical passthrough. The graphics comprising the virtual environment were simple wire-frame model rooms.
1970–1990[edit]
The virtual reality industry mainly provided VR devices for medical, flight simulation, automobile industry design, and military training purposes from 1970 to 1990.[9]
David Em became the first artist to produce navigable virtual worlds at NASA’s Jet Propulsion Laboratory (JPL) from 1977 to 1984.[10] The Aspen Movie Map, a crude virtual tour in which users could wander the streets of Aspen in one of the three modes (summer, winter, and polygons), was created at MIT in 1978.
In 1979, Eric Howlett developed the Large Expanse, Extra Perspective (LEEP) optical system. The combined system created a stereoscopic image with a field of view wide enough to create a convincing sense of space. The users of the system have been impressed by the sensation of depth (field of view) in the scene and the corresponding realism. The original LEEP system was redesigned for NASA’s Ames Research Center in 1985 for their first virtual reality installation, the VIEW (Virtual Interactive Environment Workstation)[11] by Scott Fisher. The LEEP system provides the basis for most of the modern virtual reality headsets.[12]
A VPL Research DataSuit, a full-body outfit with sensors for measuring the movement of arms, legs, and trunk. Developed circa 1989. Displayed at the Nissho Iwai showroom in Tokyo
By the late 1980s, the term «virtual reality» was popularized by Jaron Lanier, one of the modern pioneers of the field. Lanier had founded the company VPL Research in 1985. VPL Research has developed several VR devices like the DataGlove, the EyePhone, and the AudioSphere. VPL licensed the DataGlove technology to Mattel, which used it to make the Power Glove, an early affordable VR device.
Atari, Inc. founded a research lab for virtual reality in 1982, but the lab was closed after two years due to the Atari Shock (video game crash of 1983). However, its hired employees, such as Tom Zimmerman, Scott Fisher, Jaron Lanier, Michael Naimark, and Brenda Laurel, kept their research and development on VR-related technologies.
In 1988, the Cyberspace Project at Autodesk was the first to implement VR on a low-cost personal computer.[13][14] The project leader Eric Gullichsen left in 1990 to found Sense8 Corporation and develop the WorldToolKit virtual reality SDK,[15] which offered the first real time graphics with Texture mapping on a PC, and was widely used throughout industry and academia.[16][17]
1990–2000[edit]
The 1990s saw the first widespread commercial releases of consumer headsets. In 1992, for instance, Computer Gaming World predicted «affordable VR by 1994».[18]
In 1991, Sega announced the Sega VR headset for the Mega Drive home console. It used LCD screens in the visor, stereo headphones, and inertial sensors that allowed the system to track and react to the movements of the user’s head.[19] In the same year, Virtuality launched and went on to become the first mass-produced, networked, multiplayer VR entertainment system that was released in many countries, including a dedicated VR arcade at Embarcadero Center. Costing up to $73,000 per multi-pod Virtuality system, they featured headsets and exoskeleton gloves that gave one of the first «immersive» VR experiences.[20]
A CAVE system at IDL’s Center for Advanced Energy Studies in 2010
That same year, Carolina Cruz-Neira, Daniel J. Sandin and Thomas A. DeFanti from the Electronic Visualization Laboratory created the first cubic immersive room, the Cave automatic virtual environment (CAVE). Developed as Cruz-Neira’s PhD thesis, it involved a multi-projected environment, similar to the holodeck, allowing people to see their own bodies in relation to others in the room.[21][22] Antonio Medina, a MIT graduate and NASA scientist, designed a virtual reality system to «drive» Mars rovers from Earth in apparent real time despite the substantial delay of Mars-Earth-Mars signals.[23]
Virtual Fixtures immersive AR system developed in 1992. Picture features Dr. Louis Rosenberg interacting freely in 3D with overlaid virtual objects called ‘fixtures’
In 1992, Nicole Stenger created Angels, the first real-time interactive immersive movie where the interaction was facilitated with a dataglove and high-resolution goggles. That same year, Louis Rosenberg created the virtual fixtures system at the U.S. Air Force’s Armstrong Labs using a full upper-body exoskeleton, enabling a physically realistic mixed reality in 3D. The system enabled the overlay of physically real 3D virtual objects registered with a user’s direct view of the real world, producing the first true augmented reality experience enabling sight, sound, and touch.[24][25]
By July 1994, Sega had released the VR-1 motion simulator ride attraction in Joypolis indoor theme parks,[26] as well as the Dennou Senki Net Merc arcade game. Both used an advanced head-mounted display dubbed the «Mega Visor Display» developed in conjunction with Virtuality;[27][28] it was able to track head movement in a 360-degree stereoscopic 3D environment, and in its Net Merc incarnation was powered by the Sega Model 1 arcade system board.[29] Apple released QuickTime VR, which, despite using the term «VR», was unable to represent virtual reality, and instead displayed 360-degree interactive panoramas.
Nintendo’s Virtual Boy console was released in 1995.[30] A group in Seattle created public demonstrations of a «CAVE-like» 270 degree immersive projection room called the Virtual Environment Theater, produced by entrepreneurs Chet Dagit and Bob Jacobson.[31] Forte released the VFX1, a PC-powered virtual reality headset that same year.
In 1999, entrepreneur Philip Rosedale formed Linden Lab with an initial focus on the development of VR hardware. In its earliest form, the company struggled to produce a commercial version of «The Rig», which was realized in prototype form as a clunky steel contraption with several computer monitors that users could wear on their shoulders. The concept was later adapted into the personal computer-based, 3D virtual world program Second Life.[32]
21st century[edit]
The 2000s were a period of relative public and investment indifference to commercially available VR technologies.
In 2001, SAS Cube (SAS3) became the first PC-based cubic room, developed by Z-A Production (Maurice Benayoun, David Nahon), Barco, and Clarté. It was installed in Laval, France. The SAS library gave birth to Virtools VRPack. In 2007, Google introduced Street View, a service that shows panoramic views of an increasing number of worldwide positions such as roads, indoor buildings and rural areas. It also features a stereoscopic 3D mode, introduced in 2010.[33]
2010–present[edit]
An inside view of the Oculus Rift Crescent Bay prototype headset
In 2010, Palmer Luckey designed the first prototype of the Oculus Rift. This prototype, built on a shell of another virtual reality headset, was only capable of rotational tracking. However, it boasted a 90-degree field of vision that was previously unseen in the consumer market at the time. Luckey eliminated distortion issues arising from the type of lens used to create the wide field of vision using software that pre-distorted the rendered image in real-time. This initial design would later serve as a basis from which the later designs came.[34] In 2012, the Rift is presented for the first time at the E3 video game trade show by Carmack.[35][36] In 2014, Facebook purchased Oculus VR for what at the time was stated as $2 billion[37] but later revealed that the more accurate figure was $3 billion.[36] This purchase occurred after the first development kits ordered through Oculus’ 2012 Kickstarter had shipped in 2013 but before the shipping of their second development kits in 2014.[38] ZeniMax, Carmack’s former employer, sued Oculus and Facebook for taking company secrets to Facebook;[36] the verdict was in favour of ZeniMax, settled out of court later.[39]
In 2013, Valve discovered and freely shared the breakthrough of low-persistence displays which make lag-free and smear-free display of VR content possible.[40] This was adopted by Oculus and was used in all their future headsets. In early 2014, Valve showed off their SteamSight prototype, the precursor to both consumer headsets released in 2016. It shared major features with the consumer headsets including separate 1K displays per eye, low persistence, positional tracking over a large area, and fresnel lenses.[41][42] HTC and Valve announced the virtual reality headset HTC Vive and controllers in 2015. The set included tracking technology called Lighthouse, which utilized wall-mounted «base stations» for positional tracking using infrared light.[43][44][45]
In 2014, Sony announced Project Morpheus (its code name for the PlayStation VR), a virtual reality headset for the PlayStation 4 video game console.[46] In 2015, Google announced Cardboard, a do-it-yourself stereoscopic viewer: the user places their smartphone in the cardboard holder, which they wear on their head. Michael Naimark was appointed Google’s first-ever ‘resident artist’ in their new VR division. The Kickstarter campaign for Gloveone, a pair of gloves providing motion tracking and haptic feedback, was successfully funded, with over $150,000 in contributions.[47] Also in 2015, Razer unveiled its open source project OSVR.
By 2016, there were at least 230 companies developing VR-related products. Amazon, Apple, Facebook, Google, Microsoft, Sony and Samsung all had dedicated AR and VR groups. Dynamic binaural audio was common to most headsets released that year. However, haptic interfaces were not well developed, and most hardware packages incorporated button-operated handsets for touch-based interactivity. Visually, displays were still of a low-enough resolution and frame rate that images were still identifiable as virtual.[48]
In 2016, HTC shipped its first units of the HTC Vive SteamVR headset.[49] This marked the first major commercial release of sensor-based tracking, allowing for free movement of users within a defined space.[50] A patent filed by Sony in 2017 showed they were developing a similar location tracking technology to the Vive for PlayStation VR, with the potential for the development of a wireless headset.[51]
In 2019, Oculus released the Oculus Rift S and a standalone headset, the Oculus Quest. These headsets utilized inside-out tracking compared to external outside-in tracking seen in previous generations of headsets.[52]
Later in 2019, Valve released the Valve Index. Notable features include a 130° field of view, off-ear headphones for immersion and comfort, open-handed controllers which allow for individual finger tracking, front facing cameras, and a front expansion slot meant for extensibility.[53]
In 2020, Oculus released the Oculus Quest 2. Some new features include a sharper screen, reduced price, and increased performance. Facebook now requires user to log in with a Facebook account in order to use the new headset.[54] In 2021 the Oculus Quest 2 accounted for 80% of all VR headsets sold.[55]
Robinson R22 Virtual Reality Training Device developed by VRM Switzerland[56]
In 2021, EASA approves the first Virtual Reality (VR) based Flight Simulation Training Device. The device, for rotorcraft pilots, enhances safety by opening up the possibility of practicing risky maneuvers in a virtual environment. This addresses a key risk area in rotorcraft[57] operations, where statistics show that around 20% of accidents occur during training flights.
Future forecast[edit]
Since 2017, major strides in the integration of Virtual Reality and Cognitive Behavioral Therapy have been made, focusing on how to tailor the experience to suit each individual patient.[58]
With the COVID-19 restrictions in 2020, VR is experiencing an enormous rise. According to Grand View Research, the global VR market will grow to 62.1 billion dollars in 2027.[59]
Now in the post-pandemic era, augmented reality and virtual technologies have created a new avenue that may influence the future of occupational safety training and rehabilitation.[60]
Technology[edit]
Software[edit]
The Virtual Reality Modelling Language (VRML), first introduced in 1994, was intended for the development of «virtual worlds» without dependency on headsets.[61] The Web3D consortium was subsequently founded in 1997 for the development of industry standards for web-based 3D graphics. The consortium subsequently developed X3D from the VRML framework as an archival, open-source standard for web-based distribution of VR content.[62] WebVR is an experimental JavaScript application programming interface (API) that provides support for various virtual reality devices, such as the HTC Vive, Oculus Rift, Google Cardboard or OSVR, in a web browser.[63]
Hardware[edit]
Modern virtual reality headset displays are based on technology developed for smartphones including: gyroscopes and motion sensors for tracking head, body, and hand positions; small HD screens for stereoscopic displays; and small, lightweight and fast computer processors. These components led to relative affordability for independent VR developers, and led to the 2012 Oculus Rift Kickstarter offering the first independently developed VR headset.[48]
Independent production of VR images and video has increased alongside the development of affordable omnidirectional cameras, also known as 360-degree cameras or VR cameras, that have the ability to record 360 interactive photography, although at relatively low resolutions or in highly compressed formats for online streaming of 360 video.[64] In contrast, photogrammetry is increasingly used to combine several high-resolution photographs for the creation of detailed 3D objects and environments in VR applications.[65][66]
To create a feeling of immersion, special output devices are needed to display virtual worlds. Well-known formats include head-mounted displays or the CAVE. In order to convey a spatial impression, two images are generated and displayed from different perspectives (stereo projection). There are different technologies available to bring the respective image to the right eye. A distinction is made between active (e.g. shutter glasses) and passive technologies (e.g. polarizing filters or Infitec).[67]
In order to improve the feeling of immersion, wearable multi-string cables offer haptics to complex geometries in virtual reality. These strings offer fine control of each finger joint to simulate the haptics involved in touching these virtual geometries.[68]
Special input devices are required for interaction with the virtual world. Some of the most common input devices are motion controllers and optical tracking sensors. In some cases, wired gloves are used. Controllers typically use optical tracking systems (primarily infrared cameras) for location and navigation, so that the user can move freely without wiring. Some input devices provide the user with force feedback to the hands or other parts of the body, so that the human being can orientate himself in the three-dimensional world through haptics and sensor technology as a further sensory sensation and carry out realistic simulations. This allows for the viewer to have a sense of direction in the artificial landscape. Additional haptic feedback can be obtained from omnidirectional treadmills (with which walking in virtual space is controlled by real walking movements) and vibration gloves and suits.
Virtual reality cameras can be used to create VR photography using 360-degree panorama videos. 360-degree camera shots can be mixed with virtual elements to merge reality and fiction through special effects.[citation needed] VR cameras are available in various formats, with varying numbers of lenses installed in the camera.[69]
Visual immersion experience[edit]
Display resolution[edit]
Minimal Angle of Resolution (MAR) refers to the minimum distance between two display pixels. At the distance, viewer can clearly distinguish the independent pixels. Often measured in arc-seconds, MAR between two pixels has to do with the viewing distance. For the general public, resolution is about 30-65 arc-seconds, which is referred to as the spatial resolution when combined with distance. Given the viewing distance of 1m and 2m respectively, regular viewers won’t be able to perceive two pixels as separate if they are less than 0.29mm apart at 1m and less than 0.58mm apart at 2m.[70]
Image latency and display refresh frequency[edit]
Most small-size displays have a refresh rate of 60 Hz, which adds about 15ms of additional latency. The number is reduced to less than 7ms if the refresh rate is increased to 120 Hz or even 240 Hz and more.[71] Participants generally feel that the experience is more immersive with higher refresh rates as a result. However, higher refresh rates require a more powerful graphics processing unit.
Relationship between display and field of view[edit]
In theory, it represents participant’s field of view (yellow area).
In assessing the achieved immersion by a VR device, we need to consider our field of view (FOV) in addition to quality image. Our eyes have a horizontal FOV of about 140 degrees per side and a vertical FOV of roughly 175 degrees.[72][73] Binocular vision is limited to 120 degrees horizontally where the right and the left visual fields overlap. Overall, we have a FOV of roughly 300 degrees x 175 degrees[74] with two eyes, i.e., approximately one third of the full 360-deg sphere.
Applications[edit]
Virtual reality is most commonly used in entertainment applications such as video games, 3D cinema, amusement park rides including dark rides and social virtual worlds. Consumer virtual reality headsets were first released by video game companies in the early-mid 1990s. Beginning in the 2010s, next-generation commercial tethered headsets were released by Oculus (Rift), HTC (Vive) and Sony (PlayStation VR), setting off a new wave of application development.[75] 3D cinema has been used for sporting events, pornography, fine art, music videos and short films. Since 2015, roller coasters and theme parks have incorporated virtual reality to match visual effects with haptic feedback.[48] VR not only fits the trend of the digital industry but also enhances the film’s visual effect. The film gives the audience more ways to interact through VR technology.[76]
In social sciences and psychology, virtual reality offers a cost-effective tool to study and replicate interactions in a controlled environment.[77] It can be used as a form of therapeutic intervention. For instance, there is the case of the virtual reality exposure therapy (VRET), a form of exposure therapy for treating anxiety disorders such as post traumatic stress disorder (PTSD) and phobias.[78][79][80]
Virtual reality programs are being used in the rehabilitation processes with elderly individuals that have been diagnosed with Alzheimer’s disease. This gives these elderly patients the opportunity to simulate real experiences that they would not otherwise be able to experience due to their current state. 17 recent studies with randomized controlled trials have shown that virtual reality applications are effective in treating cognitive deficits with neurological diagnoses.[81] Loss of mobility in elderly patients can lead to a sense of loneliness and depression. Virtual reality is able to assist in making aging in place a lifeline to an outside world that they cannot easily navigate. Virtual reality allows exposure therapy to take place in a safe environment.[82]
In medicine, simulated VR surgical environments were first developed in the 1990s.[83][84][85] Under the supervision of experts, VR can provide effective and repeatable training[86] at a low cost, allowing trainees to recognize and amend errors as they occur.[87]
Virtual reality has been used in physical rehabilitation since the 2000s. Despite numerous studies conducted, good quality evidence of its efficacy compared to other rehabilitation methods without sophisticated and expensive equipment is lacking for the treatment of Parkinson’s disease.[88] A 2018 review on the effectiveness of mirror therapy by virtual reality and robotics for any type of pathology concluded in a similar way.[89] Another study was conducted that showed the potential for VR to promote mimicry and revealed the difference between neurotypical and autism spectrum disorder individuals in their response to a two-dimensional avatar.[90][91]
Immersive virtual reality technology with myoelectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. Pain scale measurements were taken into account and an interactive 3-D kitchen environment was developed bases on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked VR headset.[92] A systematic search in Pubmed and Embase was performed to determine results that were pooled in two meta-analysis. Meta-analysis showed a significant result in favor of VRT for balance.[93]
In the fast-paced and globalised business world meetings in VR are used to create an environment in which interactions with other people (e.g. colleagues, customers, partners) can feel more natural than a phone call or video chat. In the customisable meeting rooms all parties can join using the VR headset and interact as if they are in the same physical room. Presentations, videos or 3D models (of e.g. products or prototypes) can be uploaded and interacted with.[94] Compared to traditional text-based CMC, Avatar-based interactions in 3D virtual environment lead to higher levels of consensus, satisfaction, and cohesion among group members.[95]
U.S. Navy medic demonstrating a VR parachute simulator at the Naval Survival Training Institute in 2006
VR can simulate real workspaces for workplace occupational safety and health purposes, educational purposes, and training purposes. It can be used to provide learners with a virtual environment where they can develop their skills without the real-world consequences of failing. It has been used and studied in primary education,[96] anatomy teaching,[97][98] military,[99][100] astronaut training,[101][102][103] flight simulators,[104] miner training,[105] medical education,[106] geography education,[107] architectural design,[citation needed] driver training[108] and bridge inspection.[109] Immersive VR engineering systems enable engineers to see virtual prototypes prior to the availability of any physical prototypes.[110] Supplementing training with virtual training environments has been claimed to offer avenues of realism in military[111] and healthcare[112] training while minimizing cost.[113] It also has been claimed to reduce military training costs by minimizing the amounts of ammunition expended during training periods.[111] VR can also be used for the healthcare training and education for medical practitioners.[114][115]
In the engineering field, VR has proved very useful for both engineering educators and the students. A previously expensive cost in the educational department now being much more accessible due to lowered overall costs, has proven to be a very useful tool in educating future engineers. The most significant element lies in the ability for the students to be able to interact with 3-D models that accurately respond based on real world possibilities. This added tool of education provides many the immersion needed to grasp complex topics and be able to apply them.[116] As noted, the future architects and engineers benefit greatly by being able to form understandings between spatial relationships and providing solutions based on real-world future applications.[117]
The first fine art virtual world was created in the 1970s.[118] As the technology developed, more artistic programs were produced throughout the 1990s, including feature films. When commercially available technology became more widespread, VR festivals began to emerge in the mid-2010s. The first uses of VR in museum settings began in the 1990s, seeing a significant increase in the mid-2010s. Additionally, museums have begun making some of their content virtual reality accessible.[119][120]
Virtual reality’s growing market presents an opportunity and an alternative channel for digital marketing.[121] It is also seen as a new platform for e-commerce, particularly in the bid to challenge traditional «brick and mortar» retailers. However, a 2018 study revealed that the majority of goods are still purchased in physical stores.[122]
In the case of education, the uses of virtual reality have demonstrated being capable of promoting higher order thinking,[123] promoting the interest and commitment of students, the acquisition of knowledge, promoting mental habits and understanding that are generally useful within an academic context.[124]
A case has also been made for including virtual reality technology in the context of public libraries. This would give library users access to cutting-edge technology and unique educational experiences.[125] This could include giving users access to virtual, interactive copies of rare texts and artifacts and to tours of famous landmarks and archeological digs (as in the case with the Virtual Ganjali Khan Project).[126]
Starting in the early 2020s, virtual reality has also been discussed as a technological setting that may support people’s griefing process, based on digital recreations of deceased individuals. In 2021, this practice received substantial media attention following a South Korean TV documentary, which invited a griefing mother to interact with a virtual replica of her deceased daughter.[127] Subsequently, scientists have summarized several potential implications of such endeavours, including its potential to facilitate adaptive mourning, but also many ethical challenges.[128][129]
Growing interest in the metaverse has resulted in organizational efforts to incorporate the many diverse applications of virtual reality into ecosystems like VIVERSE, reportedly offering connectivity between platforms for a wide range of uses.[130]
Concerts[edit]
On February 21, 2019, DJ Marshmellow hosted a concert in Fortnite.[131] Travis Scott performed on Fortnite on April 23, 2020.[132] In June of that year, Jean Michel Jarre performed in VRChat.[133] In July, Brendan Bradley released the free FutureStages web-based virtual reality venue for live events and concerts throughout the 2020 shutdown,[134] Justin Bieber performed on November 18, 2021 in WaveXR.[135] On December 2, 2021 Non-Player Character performed at The Mugar Omni Theater with audiences interacting with a live performer in both virtual reality and projected on the IMAX dome screen.[136][137] Meta’s Foo Fighters Super Bowl VR concert performed on Venues.[138] Post Malone performed in Venues starting July 15, 2022.[139] Megan Thee Stallion performed on AmazeVR at AMC Theaters throughout 2022.[140]
On October 24, 2021, Billie Eilish performed on Oculus Venues. Pop group Imagine Dragons performed on June 15, 2022.
Concerns and challenges[edit]
Health and safety[edit]
There are many health and safety considerations of virtual reality. A number of unwanted symptoms have been caused by prolonged use of virtual reality,[141] and these may have slowed proliferation of the technology. Most virtual reality systems come with consumer warnings, including: seizures; developmental issues in children; trip-and-fall and collision warnings; discomfort; repetitive stress injury; and interference with medical devices.[142] Some users may experience twitches, seizures or blackouts while using VR headsets, even if they do not have a history of epilepsy and have never had blackouts or seizures before. One in 4,000 people, or .025%, may experience these symptoms. Motion sickness, eyestrain, headaches, and discomfort are the most prevalent short-term adverse effects. In addition, because of the virtual reality headsets’ heavy weight, discomfort may be more likely among children. Therefore, children are advised against using VR headsets.[143] Other problems may occur in physical interactions with one’s environment. While wearing VR headsets, people quickly lose awareness of their real-world surroundings and may injure themselves by tripping over, or colliding with real-world objects.[144]
VR headsets may regularly cause eye fatigue, as does all screened technology, because people tend to blink less when watching screens, causing their eyes to become more dried out.[145] There have been some concerns about VR headsets contributing to myopia, but although VR headsets sit close to the eyes, they may not necessarily contribute to nearsightedness if the focal length of the image being displayed is sufficiently far away.[146]
Virtual reality sickness (also known as cybersickness) occurs when a person’s exposure to a virtual environment causes symptoms that are similar to motion sickness symptoms.[147] Women are significantly more affected than men by headset-induced symptoms, at rates of around 77% and 33% respectively.[148][149] The most common symptoms are general discomfort, headache, stomach awareness, nausea, vomiting, pallor, sweating, fatigue, drowsiness, disorientation, and apathy.[150] For example, Nintendo’s Virtual Boy received much criticism for its negative physical effects, including «dizziness, nausea, and headaches».[151] These motion sickness symptoms are caused by a disconnect between what is being seen and what the rest of the body perceives. When the vestibular system, the body’s internal balancing system, does not experience the motion that it expects from visual input through the eyes, the user may experience VR sickness. This can also happen if the VR system does not have a high enough frame rate, or if there is a lag between the body’s movement and the onscreen visual reaction to it.[152] Because approximately 25–40% of people experience some kind of VR sickness when using VR machines, companies are actively looking for ways to reduce VR sickness.[153]
Vergence-accommodation conflict (VAC) is one of the main causes of virtual reality sickness.[154]
In January 2022 The Wall Street Journal found that VR usage could lead to physical injuries including leg, hand, arm and shoulder injuries.[155] VR usage has also been tied to incidents that resulted in neck injuries,[156] and death.[157]
Children and teenagers in virtual reality[edit]
Children are becoming increasingly aware of VR, with the number in the USA having never heard of it dropping by half from Autumn 2016 (40%) to Spring 2017 (19%).[158]
A 2022 research report by Piper Sandler revealed that only 26% of U.S. teens own a VR device, 5% use it daily, while 48% of teen headset owners «seldom» use it. Of the teens who don’t own a VR headset, 9% plan to buy one. 50% of surveyed teens are unsure about the metaverse or don’t have any interest, and don’t have any plans to purchase a VR headset.[159]
Studies show that young children, compared to adults, may respond cognitively and behaviorally to immersive VR in ways that differ from adults. VR places users directly into the media content, potentially making the experience very vivid and real for children. For example, children of 6–18 years of age reported higher levels of presence and «realness» of a virtual environment compared with adults 19–65 years of age.[160]
Studies on VR consumer behavior or its effect on children and a code of ethical conduct involving underage users are especially needed, given the availability of VR porn and violent content. Related research on violence in video games suggests that exposure to media violence may affect attitudes, behavior, and even self-concept. Self-concept is a key indicator of core attitudes and coping abilities, particularly in adolescents.[161] Early studies conducted on observing versus participating in violent VR games suggest that physiological arousal and aggressive thoughts, but not hostile feelings, are higher for participants than for observers of the virtual reality game.[162]
Experiencing VR by children may further involve simultaneously holding the idea of the virtual world in mind while experiencing the physical world. Excessive usage of immersive technology that has very salient sensory features may compromise children’s ability to maintain the rules of the physical world, particularly when wearing a VR headset that blocks out the location of objects in the physical world. Immersive VR can provide users with multisensory experiences that replicate reality or create scenarios that are impossible or dangerous in the physical world. Observations of 10 children experiencing VR for the first time suggested that 8-12-years-old kids were more confident to explore VR content when it was in a familiar situation, e.g. the children enjoyed playing in the kitchen context of Job Simulator, and enjoyed breaking rules by engaging in activities they are not allowed to do in reality, such as setting things on fire.[158]
Privacy[edit]
The persistent tracking required by all VR systems makes the technology particularly useful for, and vulnerable to, mass surveillance. The expansion of VR will increase the potential and reduce the costs for information gathering of personal actions, movements and responses.[48] Data from eye tracking sensors, which are projected to become a standard feature in virtual reality headsets,[163][164] may indirectly reveal information about a user’s ethnicity, personality traits, fears, emotions, interests, skills, and physical and mental health condition.[165]
Virtual reality in fiction[edit]
See also[edit]
- 16K resolution
- 360-degree video
- AlloSphere
- Computer-mediated reality
- Diorama
- Extended reality
- Haptic suit
- Holographic principle
- Hyperreality
- Mixed reality
- Virtual body
- Virtual globe
- Virtual machining
- Metaverse
- Gustatory technology
- List of virtual reality headsets
References[edit]
- ^ «Get Ready to Hear a Lot More About ‘XR’«. Wired. 1 May 2019. ISSN 1059-1028. Retrieved 29 August 2020.
- ^ a b «virtual | Search Online Etymology Dictionary». www.etymonline.com.
- ^ Antonin Artaud, The Theatre and its Double Trans. Mary Caroline Richards. (New York: Grove Weidenfeld, 1958).
- ^ Faisal, Aldo (2017). «Computer science: Visionary of virtual reality». Nature. 551 (7680): 298–299. Bibcode:2017Natur.551..298F. doi:10.1038/551298a.
- ^ «Definition of cyberspace | Dictionary.com». www.dictionary.com.
- ^ Baltrušaitis, Jurgis; Strachan, W.J. (1977). Anamorphic art. New York: Harry N. Abrams. p. 4. ISBN 9780810906624.
- ^ Holly Brockwell (3 April 2016). «Forgotten genius: the man who made a working VR machine in 1957». Tech Radar. Retrieved 7 March 2017.
- ^ Watkins, Christopher; Marenka, Stephen (1994). Virtual Reality Excursions with Programs in C. Academic Press Inc. p. 58. ISBN 0-12-737865-0.
- ^ «National Center for Supercomputing Applications: History». The Board of Trustees of the University of Illinois. Archived from the original on 21 August 2015.
- ^ Nelson, Ted (March 1982). «Report on Siggraph ’81». Creative Computing.
- ^ Scott S. Fisher; The NASA Ames VIEWlab Project—A Brief History. Presence: Teleoperators and Virtual Environments 2016; 25 (4): 339–348. doi: https://doi.org/10.1162/PRES_a_00277
- ^ Thomas, Wayne (December 2005). «Section 17». «Virtual Reality and Artificial Environments», A Critical History of Computer Graphics and Animation.
- ^ Barlow, John Perry (1990). «Being in Nothingness». Wired.
- ^ «Cyberspace – The New Explorers». 1989. Retrieved 8 August 2019 – via Internet Archive.
- ^ Delaney, Ben (2017). Virtual Reality 1.0 — The 90s: The Birth of VR. CyberEdge Information Services. p. 40. ISBN 978-1513617039.
- ^ Stoker, Carol. «MARSMAP: AN INTERACTIVE VIRTUAL REALITY MODEL OF THE PATHFINDER LANDING SITE» (PDF). NASA JPL. NASA. Retrieved 7 August 2019.
- ^ Cullen, Chris (13 April 2017). «Pioneering VR Stories Part 1: Idaho National Laboratory In The ’90s». Idaho Virtual Reality Council. Retrieved 7 August 2019.
- ^ Engler, Craig E. (November 1992). «Affordable VR by 1994». Computer Gaming World. p. 80. Retrieved 4 July 2014.
- ^ Horowitz, Ken (28 December 2004). «Sega VR: Great Idea or Wishful Thinking?». Sega-16. Archived from the original on 14 January 2010. Retrieved 21 August 2010.
- ^ «Virtuality». YouTube. Archived from the original on 11 December 2021. Retrieved 21 September 2014.
- ^ Goad, Angela. «Carolina Cruz-Neira | Introductions Necessary». Introductions Necessary. Retrieved 28 March 2017.
- ^ Smith, David (24 November 2014). «Engineer envisions sci-fi as reality». Arkansas Online. Retrieved 28 March 2017.
- ^ Gonzales, D.; Criswell, D.; Heer, E (1991). Gonzales, D. (ed.). «Automation and Robotics for the Space Exploration Initiative: Results from Project Outreach» (PDF). NASA STI/Recon Technical Report N. 92 (17897): 35. Bibcode:1991STIN…9225258G.
- ^ Rosenberg, Louis (1992). «The Use of Virtual Fixtures As Perceptual Overlays to Enhance Operator Performance in Remote Environments.». Technical Report AL-TR-0089, USAF Armstrong Laboratory, Wright-Patterson AFB OH, 1992.
- ^ Rosenberg, L.B. (1993). «Virtual Fixtures: Perceptual Overlays for Telerobotic Manipulation». In Proc. of the IEEE Annual Int. Symposium on Virtual Reality (1993): pp. 76–82.
- ^ «News & Information». Beep! Mega Drive. No. 1994–08. July 1994. p. [1].
- ^ Kevin Williams. «The Virtual Arena – Blast From The Past: The VR-1». VR Focus.
- ^ «Sega Teams Up With W. Industries For Its VR Game». Game Machine. No. 455. August 1993. p. [2].
- ^ NEXT Generation. June 1995. Retrieved 20 October 2015 – via archive.org.
- ^ «Nintendo Virtual Boy on theverge.com». Archived from the original on 1 April 2014.
- ^ Dye, Lee (22 February 1995). «Virtual Reality Applications Expand : Imaging: Technology is finding important places in medicine, engineering and many other realms». Los Angeles Times.
- ^ Au, Wagner James. The Making of Second Life, pg. 19. New York: Collins. ISBN 978-0-06-135320-8.
- ^ «Google Street View in 3D: More Than Just an April Fool’s Joke». 6 April 2010.
- ^ Rubin, Peter (2014). «Oculus Rift». Wired. Vol. 22, no. 6. p. 78.
- ^ «E3 12: John Carmack’s VR Presentation». Gamereactor. 27 July 2012. Archived from the original on 11 December 2021. Retrieved 20 February 2019.
- ^ a b c Gilbert, Ben (12 December 2018). «Facebook just settled a $500 million lawsuit over virtual reality after a years-long battle — here’s what’s going on». Business Insider. Retrieved 20 February 2019.
- ^ «Facebook to buy Oculus virtual reality firm for $2B». Associated Press. 25 March 2014. Retrieved 27 March 2014.
- ^ Metz, Cade (25 March 2014). «Facebook Buys VR Startup Oculus for $2 Billion». WIRED. Retrieved 13 March 2017.
- ^ Spangler, Todd (12 December 2018). «ZeniMax Agrees to Settle Facebook VR Lawsuit». Variety. Retrieved 20 February 2019.
- ^ «Not-quite-live bloga : panel discussion with John Carmack, Tim Sweeney, Johan Andersson». The Tech Report. Retrieved 14 December 2016.
- ^ James, Paul (30 January 2014). «30 Minutes Inside Valve’s Prototype Virtual Reality Headset: Owlchemy Labs Share Their Steam Dev Days Experience – Road to VR». Road to VR. Retrieved 14 December 2016.
- ^ James, Paul (18 November 2013). «Valve to Demonstrate Prototype VR HMD and Talk Changes to Steam to «Support and Promote VR Games» – Road to VR». Road to VR. Retrieved 14 December 2016.
- ^ «Valve showing off new virtual reality hardware and updated Steam controller next week». The Verge. 24 February 2015. Retrieved 1 March 2015.
- ^ «Valve’s VR headset revealed with Oculus-like features». The Verge. 3 June 2014. Retrieved 1 March 2015.
- ^ «HTC Vive: Everything you need to know about the SteamVR headset». Wareable. 5 April 2016. Retrieved 19 June 2016.
- ^ «Sony Announces ‘Project Morpheus:’ Virtual Reality Headset For PS4». Forbes.
- ^ «Gloveone: Feel Virtual Reality». Kickstarter. Retrieved 15 May 2016.
- ^ a b c d Kelly, Kevin (April 2016). «The Untold Story of Magic Leap, the World’s Most Secretive Startup». WIRED. Retrieved 13 March 2017.
- ^ «Vive Shipment Updates – VIVE Blog». VIVE Blog. 7 April 2016. Retrieved 19 June 2016.
- ^ Prasuethsut, Lily (2 August 2016). «HTC Vive: Everything you need to know about the SteamVR headset». Wareable. Retrieved 13 March 2017.
- ^ Martindale, Jon (15 February 2017). «Vive-like sensor spotted in new Sony patent could make its way to PlayStation VR». Digital Trends. Retrieved 13 March 2017.
- ^ «From the lab to the living room: The story behind Facebook’s Oculus Insight technology and a new era of consumer VR». tech.fb.com. 22 August 2019. Retrieved 1 September 2020.
- ^ «Headset — Valve Index® — Upgrade your experience — Valve Corporation». www.valvesoftware.com. 9 May 2019. Retrieved 28 February 2021.
- ^ Robertson, Adi (16 September 2020). «Oculus Quest 2 Review: Better, Cheaper VR». theverge.com. Retrieved 16 December 2020.
- ^ Ochanji, Sam (27 March 2022). «Survey: Quest 2 Accounted for 80% of Headset Sales in 2021». Virtual Reality Times. Retrieved 29 March 2022.
- ^ «VRM Switzerland – Professional Flight Training Solutions». Retrieved 10 May 2021.
- ^ «EASA approves the first Virtual Reality (VR) based Flight Simulation Training Device». EASA. Retrieved 10 May 2021.
- ^ Lindner, Philip (1 March 2021). «Better, Virtually: the Past, Present, and Future of Virtual Reality Cognitive Behavior Therapy». International Journal of Cognitive Therapy. 14 (1): 23–46. doi:10.1007/s41811-020-00090-7. ISSN 1937-1217. S2CID 226321832.
- ^ «2021 wird das Jahr der Virtual Reality». www.inside-it.ch. Retrieved 9 January 2021.
- ^ Junaini, Syahrul Nizam; Kamal, Ahmad Alif; Hashim, Abdul Halim; Mohd Shaipullah, Norhunaini; Truna, Liyana (2022). «Augmented and Virtual Reality Games for Occupational Safety and Health Training: A Systematic Review and Prospects for the Post-Pandemic Era». International Journal of Online and Biomedical Engineering. 18 (10): 43–63. doi:10.3991/ijoe.v18i10.30879. S2CID 251119319. Retrieved 3 August 2022.
- ^ «VRML Virtual Reality Modeling Language». www.w3.org. Retrieved 20 March 2017.
- ^ Brutzman, Don (October 2016). «X3D Graphics and VR» (PDF). web3D.org. Web3D Consortium. Archived (PDF) from the original on 21 March 2017. Retrieved 20 March 2017.
- ^ «WebVR API». Mozilla Developer Network. Retrieved 4 November 2015.
- ^ Orellana, Vanessa Hand (31 May 2016). «10 things I wish I knew before shooting 360 video». CNET. Retrieved 20 March 2017.
- ^ «Resident Evil 7: The Use of Photogrammetry for VR». 80.lv. 28 August 2016. Retrieved 20 March 2017.
- ^ Johnson, Leif (13 March 2016). «Forget 360 Videos, Photogrammetric Virtual Reality Is Where It’s At – Motherboard». Motherboard. Retrieved 20 March 2017.
- ^ «Stereoscopic Display — an overview | ScienceDirect Topics». www.sciencedirect.com. Retrieved 19 October 2022.
- ^ Fang, Cathy; Zhang, Yang; Dworman, Matthew; Harrison, Chris (21 April 2020). «Wireality: Enabling Complex Tangible Geometries in Virtual Reality with Worn Multi-String Haptics». Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Computing Machinery: 1–10. doi:10.1145/3313831.3376470. ISBN 978-1-4503-6708-0. S2CID 218483027.
- ^ Kuhn, Thomas. «Wie Virtual-Reality-Brillen die Arbeit verändern». WirtschaftsWoche. Retrieved 18 November 2020.
- ^ Davson, Hugh (1972). The Physiology of The Eye. Burlington: Elsevier Science. ISBN 978-0-323-14394-3. OCLC 841909276.
- ^ Leclair, Dave (21 September 2022). «From 60Hz to 240Hz: Refresh Rates on Phones Explained». PCMag UK. Retrieved 19 October 2022.
- ^ Strasburger, Hans (2020). «Seven myths on crowding and peripheral vision». i-Perception. 11 (2): 1–45.
- ^ The FOV includes eye movements which are estimated here as roughly 30 deg to either side horizontally/20 vertically, added to the size of the visual field. A reliable source for that estimation would be needed.
- ^ reliable source needed
- ^ «Comparison of VR headsets: Project Morpheus vs. Oculus Rift vs. HTC Vive». Data Reality. Archived from the original on 20 August 2015. Retrieved 15 August 2015.
- ^ He, Jing; Wu, Yanping (10 October 2022). Tirunagari, Santosh (ed.). «Application of Digital Interactive Display Design Based on Computer Technology in VR Film». Mobile Information Systems. 2022: 1–7. doi:10.1155/2022/8462037. ISSN 1875-905X.
- ^ Groom, Victoria; Bailenson, Jeremy N.; Nass, Clifford (1 July 2009). «The influence of racial embodiment on racial bias in immersive virtual environments». Social Influence. 4 (3): 231–248. doi:10.1080/15534510802643750. ISSN 1553-4510. S2CID 15300623.
- ^ Gonçalves, Raquel; Pedrozo, Ana Lúcia; Coutinho, Evandro Silva Freire; Figueira, Ivan; Ventura, Paula (27 December 2012). «Efficacy of Virtual Reality Exposure Therapy in the Treatment of PTSD: A Systematic Review». PLOS ONE. 7 (12): e48469. Bibcode:2012PLoSO…748469G. doi:10.1371/journal.pone.0048469. ISSN 1932-6203. PMC 3531396. PMID 23300515.
- ^ Garrick, Jacqueline; Williams, Mary Beth (2014). Trauma Treatment Techniques: Innovative Trends. London: Routledge. p. 199. ISBN 9781317954934.
- ^ Gerardi, Maryrose (June 2010). «Virtual Reality Exposure Therapy for Post-Traumatic Stress Disorder and Other Anxiety Disorders». Current Psychiatry Reports. 12 (4): 298–305. doi:10.1007/s11920-010-0128-4. PMID 20535592. S2CID 436354.
- ^ [citation needed]
- ^ Kamińska, Magdalena Sylwia; Miller, Agnieszka; Rotter, Iwona; Szylińska, Aleksandra; Grochans, Elżbieta (14 November 2018). «The effectiveness of virtual reality training in reducing the risk of falls among elderly people». Clinical Interventions in Aging. 13: 2329–2338. doi:10.2147/CIA.S183502. PMC 6241865. PMID 30532523.
- ^ Satava, R. M. (1996). «Medical virtual reality. The current status of the future». Studies in Health Technology and Informatics. 29: 100–106. ISSN 0926-9630. PMID 10163742.
- ^ Rosenberg, Louis; Stredney, Don (1996). «A haptic interface for virtual simulation of endoscopic surgery». Studies in Health Technology and Informatics. 29: 371–387. ISSN 0926-9630. PMID 10172846.
- ^ Stredney, D.; Sessanna, D.; McDonald, J. S.; Hiemenz, L.; Rosenberg, L. B. (1996). «A virtual simulation environment for learning epidural anesthesia». Studies in Health Technology and Informatics. 29: 164–175. ISSN 0926-9630. PMID 10163747.
- ^ Thomas, Daniel J.; Singh, Deepti (2 April 2021). «Letter to the Editor: Virtual Reality in Surgical Training». International Journal of Surgery. 89: 105935. doi:10.1016/j.ijsu.2021.105935. ISSN 1743-9191. PMID 33819684. S2CID 233036480.
- ^ Westwood, J.D. Medicine Meets Virtual Reality 21: NextMed / MMVR21. IOS Press. p. 462.
- ^ Dockx, Kim (2016). «Virtual reality for rehabilitation in Parkinson’s disease». Cochrane Database of Systematic Reviews. 2016 (12): CD010760. doi:10.1002/14651858.CD010760.pub2. PMC 6463967. PMID 28000926.
- ^ Darbois, Nelly; Guillaud, Albin; Pinsault, Nicolas (2018). «Does Robotics and Virtual Reality Add Real Progress to Mirror Therapy Rehabilitation? A Scoping Review». Rehabilitation Research and Practice. 2018: 6412318. doi:10.1155/2018/6412318. PMC 6120256. PMID 30210873.
- ^ Forbes, Paul A. G.; Pan, Xueni; Hamilton, Antonia F. de C. (2016). «Reduced Mimicry to Virtual Reality Avatars in Autism Spectrum Disorder». Journal of Autism and Developmental Disorders. 46 (12): 3788–3797. doi:10.1007/s10803-016-2930-2. PMC 5110595. PMID 27696183.
- ^ «How virtual reality is transforming autism studies». Spectrum | Autism Research News. 24 October 2018.
- ^ Chau, Brian (August 2017). «Immersive virtual reality therapy with myoelectric control for treatment-resistant phantom limb pain: Case report». Psychiatry. 14 (7–8): 3–7. PMC 5880370. PMID 29616149.
- ^ Warnier, Nadieh (November 2019). «Effect of virtual reality therapy on balance and walking in children with cerebral palsy: A systematic review». Pediatric Health. 23 (8): 502–518. doi:10.1080/17518423.2019.1683907. PMID 31674852. S2CID 207814817.
- ^ «VR Meetings Are Weird, but They Beat Our Current Reality». Wired. ISSN 1059-1028. Retrieved 3 April 2021.
- ^ Schouten, Alexander P.; van den Hooff, Bart; Feldberg, Frans (March 2016). «Virtual Team Work: Group Decision Making in 3D Virtual Environments». Communication Research. 43 (2): 180–210. doi:10.1177/0093650213509667. ISSN 0093-6502. S2CID 10503426.
- ^ «Online High School In Japan Enters Virtual Reality». blogs.wsj.com. 7 April 2016.
- ^ Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan (17 April 2017). «The effectiveness of virtual and augmented reality in health sciences and medical anatomy: VR and AR in Health Sciences and Medical Anatomy». Anatomical Sciences Education. 10 (6): 549–559. doi:10.1002/ase.1696. PMID 28419750. S2CID 25961448.
- ^ Moro, Christian; Štromberga, Zane; Stirling, Allan (29 November 2017). «Virtualisation devices for student learning: Comparison between desktop-based (Oculus Rift) and mobile-based (Gear VR) virtual reality in medical and health science education». Australasian Journal of Educational Technology. 33 (6). doi:10.14742/ajet.3840. ISSN 1449-5554.
- ^ «DSTS: First immersive virtual training system fielded». www.army.mil. Retrieved 16 March 2017.
- ^ «Virtual reality used to train Soldiers in new training simulator».
- ^ «NASA shows the world its 20-year virtual reality experiment to train astronauts: The inside story – TechRepublic». TechRepublic. Retrieved 15 March 2017.
- ^ James, Paul (19 April 2016). «A Look at NASA’s Hybrid Reality Astronaut Training System, Powered by HTC Vive – Road to VR». Road to VR. Retrieved 15 March 2017.
- ^ «How NASA is Using Virtual and Augmented Reality to Train Astronauts». Unimersiv. 11 April 2016. Retrieved 15 March 2017.
- ^ Dourado, Antônio O.; Martin, C.A. (2013). «New concept of dynamic flight simulator, Part I». Aerospace Science and Technology. 30 (1): 79–82. doi:10.1016/j.ast.2013.07.005.
- ^ «Virtual Reality in Mine Training». www.cdc.gov. 21 September 2012. Retrieved 9 November 2018.
- ^ Moro, C; Birt, J; Stromberga, Z; Phelps, C; Clark, J; Glasziou, P; Scott, AM (May 2021). «Virtual and Augmented Reality Enhancements to Medical and Science Student Physiology and Anatomy Test Performance: A Systematic Review and Meta-Analysis». Anatomical Sciences Education. 14 (3): 368–376. doi:10.1002/ase.2049. PMID 33378557. S2CID 229929326.
- ^ Sedlák, Michal; Šašinka, Čeněk; Stachoň, Zdeněk; Chmelík, Jiří; Doležal, Milan (18 October 2022). «Collaborative and individual learning of geography in immersive virtual reality: An effectiveness study». PLOS ONE. 17 (10): e0276267. doi:10.1371/journal.pone.0276267. ISSN 1932-6203. PMC 9578614. PMID 36256672.
- ^ «How Virtual Reality Military Applications Work». 27 August 2007.
- ^ Omer; et al. (2018). «Performance evaluation of bridges using virtual reality». Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, Scotland.
- ^ Seu; et al. (2018). «Use of gaming and affordable VR technology for the visualization of complex flow fields». Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, Scotland.
- ^ a b Shufelt, Jr., J.W. (2006) A Vision for Future Virtual Training. In Virtual Media for Military Applications (pp. KN2-1 – KN2-12). Meeting Proceedings RTO-MP-HFM-136, Keynote 2. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp Archived 2007-06-13 at the Wayback Machine
- ^ Bukhari, Hatim; Andreatta, Pamela; Goldiez, Brian; Rabelo, Luis (1 January 2017). «A Framework for Determining the Return on Investment of Simulation-Based Training in Health Care». INQUIRY: The Journal of Health Care Organization, Provision, and Financing. 54: 0046958016687176. doi:10.1177/0046958016687176. ISSN 0046-9580. PMC 5798742. PMID 28133988.
- ^ Smith, Roger (1 February 2010). «The Long History of Gaming in Military Training». Simulation & Gaming. 41 (1): 6–19. doi:10.1177/1046878109334330. ISSN 1046-8781. S2CID 13051996.
- ^ Dennis, Ophelie Puissegur; Patterson, Rita M. (April 2020). «Medical virtual reality». Journal of Hand Therapy. 33 (2): 243–245. doi:10.1016/j.jht.2020.02.003. ISSN 1545-004X. PMID 32451173. S2CID 218895372.
- ^ Bueckle, Andreas; Buehling, Kilian; Shih, Patrick C.; Börner, Katy (27 October 2021). «3D virtual reality vs. 2D desktop registration user interface comparison». PLOS ONE. 16 (10): e0258103. arXiv:2102.12030. Bibcode:2021PLoSO..1658103B. doi:10.1371/journal.pone.0258103. ISSN 1932-6203. PMC 8550408. PMID 34705835.
- ^ Abulrub, Abdul-Hadi G.; Attridge, Alex N.; Williams, Mark A. (April 2011). «Virtual reality in engineering education: The future of creative learning». 2011 IEEE Global Engineering Education Conference (EDUCON): 751–757. doi:10.1109/EDUCON.2011.5773223. ISBN 978-1-61284-642-2.
- ^ Makaklı, Elif Süyük (2019). «STEAM approach in architectural education». SHS Web of Conferences. 66: 01012. doi:10.1051/shsconf/20196601012. ISSN 2261-2424.
- ^ Mura, Gianluca (2011). Metaplasticity in Virtual Worlds: Aesthetics and Semantic Concepts. Hershey, Pennsylvania: Information Science Reference. p. 203. ISBN 978-1-60960-077-8.
- ^ «Virtual reality at the British Museum: What is the value of virtual reality environments for learning by children and young people, schools, and families? – MW2016: Museums and the Web 2016».
- ^ «Extending the Museum Experience with Virtual Reality». 18 March 2016.
- ^ Shirer, Michael; Torchia, Marcus (27 February 2017). «Worldwide Spending on Augmented and Virtual Reality Forecast to Reach $13.9 Billion in 2017, According to IDC». International Data Corporation. International Data Corporation. Archived from the original on 19 March 2018. Retrieved 16 March 2018.
- ^ «How Technology is Expanding the Scope of Online Commerce Beyond Retail». www.walkersands.com. Retrieved 31 August 2018.
- ^ Thomas, Daniel J. (December 2016). «Augmented reality in surgery: The Computer-Aided Medicine revolution». International Journal of Surgery (London, England). 36 (Pt A): 25. doi:10.1016/j.ijsu.2016.10.003. ISSN 1743-9159. PMID 27741424.
- ^ Sáez-López, José-Manuel; García, María Luisa Sevillano-García; Pascual-Sevillano, María de los Ángeles (2019). «Aplicación del juego ubicuo con realidad aumentada en Educación Primaria». Comunicar (in Spanish). 27 (61): 71–82. doi:10.3916/C61-2019-06. ISSN 1134-3478.
- ^ Kirsch, Breanne (2019). «Virtual Reality: The Next Big Thing for Libraries to Consider». Information Technology and Libraries. 38 (4): 4–5. doi:10.6017/ital.v38i4.11847.
- ^ Bozorgi, Khosrow; Lischer-Katz, Zack (2020). «Using 3D/VR for Research and Cultural Heritage Preservation: Project Update on the Virtual Ganjali Khan Project». Preservation, Digital Technology & Culture. 49 (2): 45–57. doi:10.1515/pdtc-2020-0017. S2CID 221160772.
- ^ «Meeting You VR Documentary on MBC Global Media». MBC Global Media. 2 February 2022.
- ^ Nikolaou, Niki (25 September 2020). «The reconnection with a deceased loved one through virtual reality. Opinions and concerns against an unprecedented challenge». Bioethica. 6 (2): 52–64. doi:10.12681/bioeth.24851. S2CID 225264729.
- ^ Stein, Jan-Philipp (2021). «Conjuring up the departed in virtual reality: The good, the bad, and the potentially ugly». Psychology of Popular Media. 10 (4): 505–510. doi:10.1037/ppm0000315. S2CID 233628743.
- ^ Takle, Steve (28 February 2022). «HTC Vive partners with holoride; private 5G solution; location based entertainment». The Virtual Report. Retrieved 14 March 2022.
- ^ Webster, Andrew (21 February 2019). «Fortnite’s Marshmello concert was the game’s biggest event ever». The Verge. Retrieved 6 October 2022.
- ^ «Opinion | Coronavirus forced stars like Travis Scott to get creative — and fans are benefiting». NBC News. Retrieved 6 October 2022.
- ^ Hayden, Scott (18 June 2020). «Electronic Music Pioneer Jean-Michel Jarre to Host Concert in ‘VRChat’ This Weekend». Road to VR. Retrieved 6 October 2022.
- ^ FIERBERG, RUTHIE (20 July 2020). «Can This Game-Changing Innovation Get Live Theatre Back Before the Pandemic Ends?». PLAYBILL. Retrieved 6 October 2022.
- ^ Aswad, Jem (9 November 2021). «Justin Bieber to Stage Interactive Virtual Concert With Wave». Variety. Retrieved 6 October 2022.
- ^ «Stage And Screen: Virtual Creators Take The Next Step». The Metaculture. 1 October 2022. Retrieved 6 October 2022.
- ^ Moseley, Martin (20 July 2022). «Brendan Bradley’s virtual reality musical Non-Player Character debuts on Top Soundtrack Chart with first single ‘Reprogram Me’ arriving at No. 25 on iTunes». Urbanista Magazine. Retrieved 6 October 2022.
- ^ Hamish Hector (14 February 2022). «Meta’s Foo Fighters Super Bowl VR concert failed in the most basic ways». TechRadar. Retrieved 6 October 2022.
- ^ Havens, Lyndsey (6 July 2022). «Post Malone to Perform ‘Twelve Carat Toothache’ in a Virtual Reality Concert Hosted by Meta: Exclusive». Billboard. Retrieved 6 October 2022.
- ^ «Megan Thee Stallion To Hit the Virtual Road With «Enter Thee Hottieverse» VR Concert Tour». HYPEBEAST. 1 March 2022. Retrieved 6 October 2022.
- ^ Lawson, B. D. (2014). Motion sickness symptomatology and origins. Handbook of Virtual Environments: Design, Implementation, and Applications, 531-599.
- ^ «Oculus Rift Health and Safety Notice» (PDF). Archived from the original (PDF) on 6 July 2017. Retrieved 13 March 2017.
- ^ Araiza-Alba, Paola; Keane, Therese; Kaufman, Jordy (30 January 2022). «Are we ready for virtual reality in K–12 classrooms?». Technology, Pedagogy and Education. 31 (4): 471–491. doi:10.1080/1475939X.2022.2033307. ISSN 1475-939X. S2CID 246439125.
- ^ Fagan, Kaylee. «Here’s what happens to your body when you’ve been in virtual reality for too long». Business Insider. Retrieved 5 September 2018.
- ^ Mukamal, Reena (28 February 2017). «Are Virtual Reality Headsets Safe for Eyes?». American Academy of Ophthalmology. Retrieved 11 September 2018.
- ^ Langley, Hugh (22 August 2017). «We need to look more carefully into the long-term effects of VR». Wareable.com. Retrieved 11 September 2018.
- ^ Kiryu, T; So, RH (25 September 2007). «Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation». Journal of Neuroengineering and Rehabilitation. 4: 34. doi:10.1186/1743-0003-4-34. PMC 2117018. PMID 17894857.
- ^ Munafo, Justin; Diedrick, Meg; Stoffregen, Thomas A. (3 December 2016). «The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects». Experimental Brain Research. 235 (3): 889–901. doi:10.1007/s00221-016-4846-7. hdl:11299/224663. PMID 27915367. S2CID 13740398.
- ^ Park, George D.; Allen, R. Wade; Fiorentino, Dary; Rosenthal, Theodore J.; Cook, Marcia L. (5 November 2016). «Simulator Sickness Scores According to Symptom Susceptibility, Age, and Gender for an Older Driver Assessment Study». Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 50 (26): 2702–2706. doi:10.1177/154193120605002607. S2CID 111310621.
- ^ Hicks, Jamison S.; Durbin, David B. (June 2011). «ARL-TR-5573: A Summary of Simulator Sickness Ratings for U.S. Army Aviation Engineering Simulators» (PDF). US Army Research Laboratory. Archived (PDF) from the original on 27 July 2018.
- ^ Frischling, Bill (25 October 1995). «Sideline Play». The Washington Post. p. 11 – via ProQuest.
- ^ Caddy, Becca (19 October 2016). «Vomit Reality: Why VR makes some of us feel sick and how to make it stop». Wareable.com. Retrieved 11 September 2018.
- ^ Samit, Jay. «A Possible Cure for Virtual Reality Motion Sickness». Fortune.com. Retrieved 11 September 2018.
- ^ Lawson, Ben D.; Stanney, Kay M. (2021). «Editorial: Cybersickness in Virtual Reality and Augmented Reality». Frontiers in Virtual Reality. 2. doi:10.3389/frvir.2021.759682. ISSN 2673-4192.
- ^ Rodriguez, Sarah E. Needleman and Salvador (1 February 2022). «VR to the ER: Metaverse Early Adopters Prove Accident-Prone». The Wall Street Journal. ISSN 0099-9660. Retrieved 2 February 2022.
- ^ Elgueta, Adriana (31 January 2022). «Man breaks neck playing virtual reality game». news.com.au — Australia’s leading news site. Retrieved 2 February 2022.
- ^ Tyler Wilde (22 December 2017). «Man dies in VR accident, reports Russian news agency». PC Gamer. Retrieved 2 February 2022.
- ^ a b Yamada-Rice, Dylan; Mushtaq, Faisal; Woodgate, Adam; Bosmans, D.; Douthwaite, A.; Douthwaite, I.; Harris, W.; Holt, R.; Kleeman, D. (12 September 2017). «Children and Virtual Reality: Emerging Possibilities and Challenges» (PDF). digilitey.eu. Archived from the original (PDF) on 17 May 2018. Retrieved 27 April 2020.
- ^ «Teens are split on the metaverse, most barely use VR headsets, survey shows». PC Gamer. 14 April 2022.
- ^ Bailey, Jakki O.; Bailenson, Jeremy N. (1 January 2017), Blumberg, Fran C.; Brooks, Patricia J. (eds.), «Chapter 9 – Immersive Virtual Reality and the Developing Child», Cognitive Development in Digital Contexts, Academic Press, pp. 181–200, doi:10.1016/B978-0-12-809481-5.00009-2, ISBN 978-0-12-809481-5, retrieved 27 April 2020
- ^ Funk, Jeanne B.; Buchman, Debra D. (1 June 1996). «Playing Violent Video and Computer Games and Adolescent Self-Concept». Journal of Communication. 46 (2): 19–32. doi:10.1111/j.1460-2466.1996.tb01472.x. ISSN 0021-9916.
- ^ Calvert, Sandra L.; Tan, Siu-Lan (January 1994). «Impact of virtual reality on young adults’ physiological arousal and aggressive thoughts: Interaction versus observation». Journal of Applied Developmental Psychology. 15 (1): 125–139. doi:10.1016/0193-3973(94)90009-4. ISSN 0193-3973.
- ^ Rogers, Sol (5 February 2019). «Seven Reasons Why Eye-tracking Will Fundamentally Change VR». Forbes. Retrieved 13 May 2020.
- ^ Stein, Scott (31 January 2020). «Eye tracking is the next phase for VR, ready or not». CNET. Retrieved 8 April 2021.
- ^ Kröger, Jacob Leon; Lutz, Otto Hans-Martin; Müller, Florian (2020). «What Does Your Gaze Reveal About You? On the Privacy Implications of Eye Tracking». Privacy and Identity Management. Data for Better Living: AI and Privacy. IFIP Advances in Information and Communication Technology. Vol. 576. pp. 226–241. doi:10.1007/978-3-030-42504-3_15. ISBN 978-3-030-42503-6. ISSN 1868-4238.
Further reading[edit]
- Choi, SangSu, Kiwook Jung, and Sang Do Noh (2015). «Virtual reality applications in manufacturing industries: Past research, present findings, and future directions». Concurrent Engineering. 1063293X14568814.
{{cite web}}
: CS1 maint: multiple names: authors list (link)
External links[edit]
- Isaac, Joseph (2016). «Step into a new world – Virtual Reality (VR)». Retrieved 2 July 2016. Basic Concepts of Virtual Reality along with Research Challenges explained in simple words.
- Mixed Reality Scale – Milgram and Kishino’s (1994) Virtuality Continuum paraphrase with examples.
- Drummond, Katie (2014). «The Rise and Fall and Rise of Virtual Reality». The Verge. Retrieved 15 November 2014. Interviews on the history and future of virtual reality by leaders in the field.
- «Virtual reality in human-system interaction».
External video Virtual Reality, Computer Chronicles (1992)
#статьи
- 23 мар 2020
-
13
Современные технологии позволяют нам получить опыт, который раньше даже представить было сложно. Узнайте, как далеко мы зашли.
vlada_maestro / shutterstock
Пишет о программировании, в свободное время создаёт игры. Мечтает открыть свою студию и выпускать ламповые RPG.
Существование VR уже не так удивляет, как несколько лет назад. Однако стереотипов о виртуальной реальности до сих пор много. Самые популярные:
- Для VR нет хороших игр — только технодемо (демонстрация возможностей технологии) и ролики.
- От VR тошнит — после получаса в шлеме вас вывернет наизнанку.
- Это дорого.
В этой статье мы разберёмся, как работает VR, и немного разрушим эти стереотипы.
Кстати! Вам не обязательно быть разработчиком игр, чтобы понять эту статью, — она для всех.
VR — сокращение от Virtual Reality, что переводится как «виртуальная реальность». Эта технология позволяет погрузить пользователя в виртуальный мир, который трудно отличить от реальности.
Это не обязательно должна быть игра — может быть и просто видео в формате 360 градусов.
Существованием этой технологии мы обязаны устройству человеческих глаз. Благодаря бинокулярному зрению (зрение, в котором используются два глаза) мы можем различать не только цвета, но и глубину — так мы определяем расстояние до объектов и поэтому не врезаемся в препятствия.
Картинки почти идентичны, но можно заметить, что ракурсы немного различаются. Мозг накладывает эти изображения друг на друга так, как это показано на схеме ниже:
Цветами обозначены глаза и поле зрения каждого из них. Там, где поля пересекаются, образуется область, в которой мы можем воспринимать глубину. Всё остальное — периферийное зрение.
Мозг складывает оба изображения, чтобы в итоге получилось одно; именно его мы и видим.
VR-шлемы оснащены двумя мониторами (или одним, который разделён на две части). Каждый из этих мониторов показывает отдельные изображения для каждого глаза. А чтобы правильно сфокусировать взгляд, используются линзы.
Линзы помогают сфокусировать взгляд так, что мозг воспринимает игровой мир как реальный и более реалистичный — это происходит благодаря когнитивному искажению. Поэтому даже посредственная по современным меркам графика выглядит хорошо. Это на руку как разработчикам, так и игрокам, потому что устройству требуется в два раза больше ресурсов, чтобы рендерить сразу два изображения вместо одного.
Если линзы настроены правильно, картинка получается правдоподобной. Если же нет, то это может быть причиной как ухудшения изображения, так и тошноты.
Также на самочувствие человека влияет частота кадров. Раньше считалось, что 90 кадров в секунду достаточно, чтобы сделать погружение максимально правдоподобным. Появление шлема с частотой обновления мониторов в 144 Hz показало, что 90 кадров — не предел. Разумеется, если частота будет низкой, то от дёрганого изображения станет плохо.
В конце концов, не стоит игнорировать и особенности организма. Например, если вестибулярный аппарат плохо развит, то человека будет укачивать даже в самом продвинутом шлеме.
На данный момент есть два основных варианта использования VR-шлема — видео в формате 360 градусов и игры. В первом случае берётся уже существующая запись, а потом разбивается на два экрана.
Чтобы посмотреть, как это выглядит, откройте видео ниже со смартфона — в настройках ролика можно выбрать вариант просмотра в VR-очках.
Что же касается игр и любых 3D-пространств, то тут для пользователя изначально готовятся два разных изображения, которые выводятся отдельно для каждого глаза.
Для этого в пространстве устанавливается сразу две камеры вместо одной. Они располагаются рядом, как глаза человека.
Устройства для VR бывают двух типов:
- Полноценные VR-наборы (VR-Kit), в которые входят шлемы, камеры и контроллеры.
- Cardboard — очки, для работы которых нужен смартфон.
Самые известные наборы — это HTC Vive, Oculus Rift, PS VR и Valve Index.
Стоят они достаточно дорого — за эти деньги можно купить приличный игровой ноутбук. Но тут за эту сумму вы приобретаете опыт, который невозможно получить с помощью дешёвых Cardboard.
Контроллеры помогают управлять игрой или приложением, а камеры служат дополнительным источником ввода (считывают движения игрока) и средством безопасности: вы можете отметить границы, за которые нельзя выходить, а камеры будут предупреждать вас, когда вы будете возле этих границ.
Контроллеры устроены сложнее, чем клавиатура или мышь, — в них есть не только кнопки, но и различные датчики. Рассмотрим на примере контроллеров для Valve Index.
Эти контроллеры определяют расстояние от рукоятки до каждого из ваших пальцев, а также силу нажатия, положение руки и многие другие вещи — датчиков в контроллере больше 80. Это позволяет показать в игре реалистичные руки, которые будут повторять движения игрока.
В шлеме тоже есть датчики. Например, гироскоп, который позволяет фиксировать положение и наклон головы. Но это не единственный вариант. Так, например, PS VR захватывает ваши движения с помощью камеры — на шлеме располагаются светящиеся полоски, по которым консоль понимает, в каком положении ваша голова.
Что же касается Cardboard, то это просто держатель для телефона с линзами.
Такой шлем можно собрать самостоятельно, скачав инструкцию от Google.
Либо вы можете найти готовый Cardboard в магазине — цены начинаются от 500 рублей, если не ниже. Конечно, качество у настолько дешёвых вариантов плохое.
Бюджетные варианты позволяют управлять игрой или приложением с помощью смартфона. Но так как тачскрин недоступен из-за шлема, остаётся только гироскоп. Поэтому для Cardboard можно либо создавать очень простые игры, либо снимать видеоаттракционы.
Также существует Gear VR — устройство от Samsung, в которое также вставляется смартфон. От Cardboard оно отличается тем, что на шлеме есть контроллер.
Но для него, ожидаемо, можно использовать только некоторые модели смартфонов Samsung.
Для других смартфонов есть шлемы вроде FreeFly VR, с которым тоже идёт контроллер, но такой вариант более дорогой — около 10 000 рублей.
На данный момент (февраль 2020 года) игр для VR действительно немного. Большинство из них представляют из себя аттракционы, технодемо и казуалки. Одна из лучших казуалок на данный момент — Beat Saber.
Однако в последнее время игр становится больше. Например, вышедшая в прошлом году Boneworks, которая не просто показывает впечатляющие возможности физики и управления, но и обладает хорошим левел-дизайном и кое-каким сюжетом.
Но самый громкий анонс на данный момент — Half-Life: Alyx:
Из-за последней игры вы больше не сможете купить Valve Index, разве что у перекупщиков с огромной наценкой:
Мы выяснили, что от современного качественного VR может не тошнить, дешёвые шлемы можно найти и за 500 рублей, а приличные — за 10 000 рублей. Ну а игры есть, и их становится больше. Уже сам факт, что новый Half-Life вышел именно для VR, даст большой толчок развитию этой технологии.
Может показаться, что создавать игры для VR сложно, но на самом деле для этого достаточно базовых знаний C# и Unity — на этом движке можно создавать игры для любого из перечисленных выше шлемов.
Разумеется, чтобы добавить в свою игру поддержку дорогих моделей, надо иметь эту модель в распоряжении, чтобы всё протестировать. Благо в магазине ассетов для Unity уже есть готовые шаблоны, которые можно использовать как образец.
Если вы планируете стать разработчиком игр, то рекомендую наш курс
по Unity — он поможет освоить этот движок, а после курса у вас уже будет несколько проектов для портфолио. Также в курсе есть модули по VR и AR.
Ну и я в скором времени свои пять копеек вставлю. Ждите новую серию статей.
Учись бесплатно:
вебинары по программированию, маркетингу и дизайну.
Участвовать
Обучение: Разработчик VR с нуля до PRO
Узнать больше
Шлем и перчатки виртуальной реальности
Виртуа́льная реа́льность, ВР, искусственная реальность, электронная реальность, компьютерная модель реальности (англ. virtual reality, VR) — созданный техническими средствами мир (объекты и субъекты), передаваемый человеку через его ощущения: зрение, слух, обоняние, осязание и другие. Виртуальная реальность имитирует как воздействие, так и реакции на воздействие. Для создания убедительного комплекса ощущений реальности компьютерный синтез свойств и реакций виртуальной реальности производится в реальном времени.
Объекты виртуальной реальности обычно ведут себя близко к поведению аналогичных объектов материальной реальности. Пользователь может воздействовать на эти объекты в согласии с реальными законами физики (гравитация, свойства воды, столкновение с предметами, отражение и т. п.). Однако часто в развлекательных целях пользователям виртуальных миров позволяется больше, чем возможно в реальной жизни (например: летать, создавать любые предметы и т. п.)[1]
Не следует путать виртуальную реальность с дополненной. Их коренное различие в том, что виртуальная конструирует новый искусственный мир, а дополненная реальность лишь вносит отдельные искусственные элементы в восприятие мира реального.
Содержание
- 1 Реализация
- 1.1 Изображение
- 1.1.1 Звук
- 1.2 Имитация тактильных ощущений
- 1.3 Управление
- 1.4 Прямое подключение к нервной системе
- 1.1 Изображение
- 2 Применение
- 2.1 Компьютерные игры
- 2.2 Обучение
- 3 История
- 4 Философское понятие
- 5 Дополненная реальность
- 6 Известные реализации
- 7 В культуре
- 7.1 Фильмы
- 7.2 Книги
- 8 См. также
- 9 Примечания
- 10 Литература
- 11 Ссылки
Реализация
Комната системы CAVE
Системами «виртуальной реальности» называются устройства, которые более полно по сравнению с обычными компьютерными системами имитируют взаимодействие с виртуальной средой, путём воздействия на все пять имеющихся у человека органов чувств.
Изображение
Плоское изображение монитора может обеспечивать небольшой стереоэффект за счёт разной скорости движения частей изображения.[2] Полный стереоэффект обеспечивается предоставлением каждому глазу своей картинки. Изображение может формироваться монитором с цветовым смещением (анаглиф), или с попеременным показыванием каждому глазу своей картинки. Существуют ЖК-мониторы, формирующие объёмное изображение за счёт разного угла обзора.[3]
Для индивидуального погружения в виртуальный мир важен широкий угол обзора и изменение направления взгляда вместе с поворотом головы, так, чтобы оно оставалось перед глазами, что обеспечивает шлем виртуальной реальности со встроеными гироскопами. Также используется виртуальный ретинальный монитор.
На данный момент самыми совершенными системами виртуальной реальности являются проекционные системы, выполненные в компоновке комнаты виртуальной реальности (CAVE)[4]. Такая система представляет собой комнату, на все стены которой проецируется 3D-стереоизображение. Положение пользователя, повороты его головы отслеживаются трекинговыми системами, что позволяет добиться максимального эффекта погружения. Данные системы активно используются в маркетинговых, военных, научных и других целях.
Звук
Многоканальная акустическая система, позволяет производить локализацию источника звука, что позволяет пользователю ориентироваться в виртуальном мире с помощью слуха.
Имитация тактильных ощущений
Имитация тактильных или осязательных ощущений уже нашла свое применение в системах виртуальной реальности. Это так называемые устройства с обратной связью.[5] Применяются для решения задач виртуального прототипирования и эргономического проектирования, создания различных тренажеров, медицинских тренажеров, дистанционном управлении роботами, в том числе микро и нано, системах создания виртуальных скульптур.
Управление
С целью наиболее точного воссоздания контакта пользователя с окружением, применяются интерфейсы пользователя, наиболее реалистично соответствующие моделируемым: компьютерный руль с педалями, рукояти управления устройствами, целеуказатель в виде пистолета и т. д.
Для бесконтактного управления объектами используются как перчатки виртуальной реальности, так и отслеживание перемещений рук, осуществляемое с помощью видеокамер. Последнее обычно реализуется в небольшой зоне и не требует от пользователя дополнительного оборудования.[6]
Перчатки виртуальной реальности могут быть составной частью костюма виртуальной реальности, отслеживающего изменение положения всего тела и передающего также тактильные, температурные и вибрационные ощущения.
Устройство для отслеживания перемещений пользователя может представлять собой свободно вращаемый шар, в который помещают пользователя или осуществляться лишь с помощью подвешенного в воздухе или погружённого в жидкость костюма виртуальной реальности. Также разрабатываются технические средства для моделирования запахов.[7]
Прямое подключение к нервной системе
Описанные выше устройства воздействуют на органы чувств человека, но данные могут передаваться и непосредственно нервным окончаниям, и даже напрямую в головной мозг посредством мозговых интерфейсов[8][9] . Подобная технология применяется в медицине для замены утраченных чувствительных способностей[8], но пока она слишком дорога для повседневного применения и не достигает качества передачи данных, приемлемого для передачи виртуальной реальности.
Применение
Симулятор вождения автомобиля
Компьютерные игры
Интерактивные компьютерные игры основаны на взаимодействии игрока с создаваемым ими виртуальным миром. Многие из них основаны на отождествлении игрока с персонажем игры, видимым или подразумеваемым.
Существует устоявшееся мнение, что качественная трёхмерная графика обязательна для качественного приближения виртуального мира игры к реальности. Если виртуальный мир игры не отличается графической красотой, схематичен и даже двумерен, погружение пользователя в этот мир может происходить за счёт захватывающего игрового процесса (см. поток), характеристики которого индивидуальны для каждого пользователя.
Существует целый класс игр-симуляторов какого-либо рода деятельности. Распространены авиасимуляторы, автосимуляторы, разного рода экономические и спортивные симуляторы, игровой мир которых моделирует важные для данного рода физические законы, создавая приближенную к реальности модель.
Специально оборудованные тренажёры и определённый вид игровых автоматов к выводу изображения и звука компьютерной игры/симулятора добавляют другие ощущения, такие как наклон мотоцикла или тряска кресла автомобиля. Подобные профессиональные тренажёры с соответствующими реальным средствами управления применяются для обучения пилотов.
Несоответствие команд интерфейса пользователя осуществляемым в игре действиям, его сложность могут мешать погружению в мир игры. С целью снять эту проблему используется не только компьютерная клавиатура и мышь, но и компьютерный руль с педалями, целеуказатель в виде пистолета и другие игровые манипуляторы.
Обучение
Виртуальная реальность применяется для обучения профессиям, где эксплуатация реальных устройств и механизмов связана с повышенным риском, либо связано с большими затратами (пилот самолёта, машинист поезда, диспетчер, водитель и т. п.).
История
Слово виртуальный берет свои истоки от слова vir (лат. мужчина). Римляне образовали от него другое слово — virtus, которое использовали для обозначения совокупности всех превосходных качеств, присущих мужчинам (физическая сила, доблестное поведение, моральное достоинство). Такое же имя было у богини Виртус из древнеримской мифологии. Из латинского слово проникает в старофранцузский, а в XIII веке — из французского в английский. В английском слово virtual приобрело дополнительный оттенок «но не существующий в действительности».[источник не указан 187 дней]
Понятие «виртуал» появилось в ранневизантийской философии IV века. Василий Великий в книге «Беседы на шестоднев» написал: «Некая реальность может породить другую реальность, законы существования которой не будут сводиться к законам порождающей реальности»[10].
Понятие искусственной реальности было впервые введено Майроном Крюгером (англ. Myron Krueger) в конце 1960-х. В 1964 году Станислав Лем в своей книге «Сумма Технологий» под термином «Фантомология» описывает задачи и суть ответа на вопрос «как создать действительность, которая для разумных существ, живущих в ней, ничем не отличалась бы от нормальной действительности, но подчинялась бы другим законам?». Первая система виртуальной реальности появилась в 1962 году, когда Мортон Хейлиг (англ. Morton Heilig) представил первый прототип мультисенсорного симулятора, который он называл «Сенсорама» (Sensorama). Сенсорама погружала зрителя в виртуальную реальность при помощи коротких фильмов, которые сопровождались запахами, ветром (при помощи фена) и шумом мегаполиса с аудиозаписи. В 1967 году Айвен Сазерленд (англ. Ivan Sutherland) описал и сконструировал первый шлем, изображение на который генерировалось при помощи компьютера. Шлем Сазерленда позволял изменять изображения соответственно движениям головы (зрительная обратная связь).
В 1970-х годах компьютерная графика полностью заменила видеосъемку, до того использовавшуюся в симуляторах. Графика была крайне примитивной, однако важным было то, что тренажеры (это были симуляторы полетов) работали в режиме реального времени. Первой реализацией виртуальной реальности считается «Кинокарта Аспена» (Aspen Movie Map), созданная в Массачусетском Технологическом Институте в 1977 году. Эта компьютерная программа симулировала прогулку по городу Аспен, штат Колорадо, давая возможность выбрать между разными способами отображения местности. Летний и зимний варианты были основаны на реальных фотографиях.
В середине 1980-х появились системы, в которых пользователь мог манипулировать с трехмерными объектами на экране благодаря их отклику на движения руки. В 1989 году Джарон Ланьер ввёл более популярный ныне термин «виртуальная реальность». В фантастической литературе поджанра киберпанк виртуальная реальность есть способ общения человека с «киберпространством» — некой средой взаимодействия людей и машин, создаваемой в компьютерных сетях.
В данный момент технологии виртуальной реальности широко применяются в различных областях человеческой деятельности: проектировании и дизайне, добыче полезных ископаемых, военных технологиях, строительстве, тренажерах и симуляторах, маркетинге и рекламе, индустрии развлечений и т. д.[11] Объём рынка технологий виртуальной реальности оценивается в 15 млрд долларов в год.[12]
Философское понятие
Философия абстрагирует идею виртуальной реальности от её технического воплощения. Виртуальную реальность можно толковать как совокупность моделируемых реальными процессами объектов[13], содержание и форма которых не совпадает с этими процессами. Существование моделируемых объектов сопоставимо с реальностью, но рассматривается обособленно от неё — виртуальные объекты существуют, но не как субстанции реального мира. В то же время эти объекты актуальны, а не потенциальны. «Виртуальность» (мнимость, ложная кажимость) реальности устанавливается по отношению к обуславливающей её «основной» реальности. Виртуальные реальности могут быть вложены друг в друга.[14] При завершении моделирующих процессов, идущих в «основной» реальности, виртуальная реальность исчезает.[15]
В этом свете идеальный внутренний мир человека можно считать виртуальной реальностью, моделируемой электрохимическими процессами взаимодействия нейронов. Психологическими проблемами виртуальной реальности занимается виртуальная психология, предметом которой является система «человек-виртуальная реальность».
Дополненная реальность
Дополненная реальность — добавление к поступающим из реального мира ощущениям мнимых объектов, обычно вспомогательно-информативного свойства. В западном научном сообществе данное направление получило устоявшуюся терминологию — англ. Augmented Reality, AR. По своей сути это родственное искусственной реальности явление.
Известным примером дополненной реальности может служить нашлемное целеуказание в самолётах-истребителях (Су-27 и др.), вывод дополнительной информации на ветровое стекло автомобиля.
Известные реализации
- Second Life — сетевой трехмерный виртуальный мир с элементами социальной сети, который насчитывает свыше 1 млн активных пользователей. Самая популярная на сегодняшний день реализация виртуальной реальности.
- Active Worlds
В культуре
Фильмы
- Газонокосильщик; Газонокосильщик 2: За пределами киберпространства
- Матрица
- Vr5 (многосерийный фильм)
- Тринадцатый этаж
- Virtual Combat
- Начало
- Авалон
- Экзистенция
- Нирвана
- Виртуозность
- Виртуальный кошмар
- Аватар
- Соблазн подсознания
- Трон: Наследие
- Призрак в машине
- Мозговой штурм (фильм)
- Звёздный инспектор
- Исходный код (фильм)
- Закрытые пространства
Книги
- Глубина (Лукьяненко)
- Донерджек (Желязны)
- Мультиверсум (Алёхин)
- Киберпространство (Гибсон)
- Слепое Пятно (Плеханов)
См. также
- Виртуальность
- Аватар
- Системы трекинга
- Телеприсутствие
- Теледильдоника
- Параллельный мир (фантастика)
- Вымышленный мир
Примечания
- ↑ «Виртуальная реальность» в словаре по естественным наукам
- ↑ Использование трехмерных редакторов в изготовлении стереоизображений.
- ↑ Новый трёхмерный дисплей поднимает изображения над собой
- ↑ Система виртуальной реальности типа CAVE, виртуальная комната
- ↑ heptics force feedback устройства.
- ↑ Новый 3D-киоск позволяет вращать изображения руками
- ↑ Учёные создают магнитофон для запахов
- ↑ 1 2 Человек-машина. Частный Корреспондент. chaskor.ru (1 декабря 2008). Архивировано из первоисточника 21 августа 2011.
- ↑ VEG — Мозговые интерфейсы
- ↑ Розенсон, 2006
- ↑ Применение технологий виртуальной реальности
- ↑ Объём рынка технологий виртуальной реальности
- ↑ Виртуальная реальность Энциклопедия социологии
- ↑ Станислав Лем — Сумма Технологии
- ↑ Носов Н. А. Манифест виртуалистики. — М.: Путь, 2001.
Литература
- А. Россохин, В. Измагурова. Виртуальное счастье или виртуальная зависимость // Россохин А. В., Измагурова В. Л. Личность в измененных состояниях сознания. М.: Смысл, 2004, с. 516—523
- Таратута Е. Е. Философия виртуальной реальности — СПб, СПбГУ, 2007 ISBN 978-5-288-04291-1
- Myron W. Krueger, Artificial Reality (1983), Artificial Reality II (1991)
- Wellner, P., Mackay, W. & Gold, R. Eds. Special issue on computer augmented environments: back to the real world. Communications of the ACM, Volume 36, Issue 7 (Июль 1993).
- Носов Н. Виртуальная психология. — М.,:»Аграф», 2000.
- Розенсон И. А. Основы теории дизайна. — Питер, 2006. — С. 153-156. — 224 с. — (Учебник для вузов). — ISBN 5-469-01143-9, Происхождение понятия «виртуальная реальность»
Ссылки
- Проекты на стыке дополненной реальности и ubiquitous computing // Компьютерра, № 34, 2008
- История развития технологий виртуальной реальности / 2010-05-17
- Виртуальная лекционная аудитория — проект Duke University и Cisco
- iCube – технология создания трехмерной виртуальной реальности //dailytechinfo.org, 19 апреля 2009
В декабре мы писали о том, на какие тенденции в мире IT стоит обратить внимание в будущем 2017 году. Одним из пунктов обозначили виртуальную реальность, и не зря. Интерес к VR сильно вырос за последние 2–3 года и продолжает расти, появляется всё больше различного оборудования и технологий, а главное — новых идей, для реализации которых нужны разработчики.
В этой вводной статье мы поговорим о свойствах, типах и областях применения VR — это поможет лучше сориентироваться тем, кто хочет начать свой путь в развивающейся и актуальной сфере.
Виртуальная реальность — это генерируемая с помощью компьютера трехмерная среда, с которой пользователь может взаимодействовать, полностью или частично в неё погружаясь.
Свойства VR
Полный набор встретить можно редко, но ниже перечислены те особенности, на которые нужно ориентироваться при создании виртуальной реальности.
- Правдоподобная — поддерживает у пользователя ощущение реальности происходящего.
- Интерактивная — обеспечивает взаимодействие со средой.
- Машинно-генерируемая — базируется на мощном аппаратном обеспечении.
- Доступная для изучения — предоставляет возможность исследовать большой детализированный мир.
- Создающая эффект присутствия — вовлекает в процесс как мозг, так и тело пользователя, воздействуя на максимально возможное число органов чувств.
Типы VR
VR с эффектом полного погружения
Этот тип подразумевает наличие трех факторов:
- Правдоподобная симуляция мира с высокой степенью детализации.
- Высокопроизводительный компьютер, способный распознавать действия пользователя и реагировать на них в режиме реального времени.
- Специальное оборудование, соединенное с компьютером, которое обеспечивает эффект погружения в процессе исследования среды. О нём мы чуть позже поговорим более подробно.
VR без погружения
Не каждому и не всегда необходимо полное погружение в альтернативную реальность. К типу «без погружения» относятся симуляции с качественным изображением, звуком и контроллерами, в идеале транслируемые на широкоформатный экран. Также в эту категорию попадают такие проекты, как археологические 3D-реконструкции древних поселений или модели зданий, которые архитекторы создают для демонстрации своей работы клиенту. Все перечисленные выше примеры не отвечают стандартам VR в полной мере, но позволяют прочувствовать моделируемый мир на несколько уровней глубже, чем другие средства мультимедиа, а потому причисляются к виртуальной реальности.
VR с совместной инфраструктурой
Сюда можно отнести «виртуальные миры» вроде Second Life и Minecraft. Единственное свойство из перечисленного выше, которого им не хватает для полного комплекта — создание эффекта присутствия: такие миры не обеспечивают полного погружения (в случае с Minecraft это касается только стандартного управления — у игры уже существует версия для виртуальной реальности, поддерживающая шлемы Oculus Rift и Gear VR). Тем не менее, в виртуальных мирах хорошо прописано взаимодействие с другими пользователями, чего часто не хватает продуктам «настоящей» виртуальной реальности.
Виртуальные миры используются не только в игровой индустрии: благодаря таким платформам, как 3D Immersive Collaboration и Open Cobalt можно организовывать рабочие и учебные 3D-пространства — это называется «совместная работа с эффектом присутствия».
Создание возможности одновременного взаимодействия в сообществе и полного погружения сейчас является одним из важных направлений развития VR (вспомним тот же Minecraft).
VR на базе интернет-технологий
Специалисты в области компьютерных наук разработали способ создания виртуальных миров в Интернете, используя технологию Virtual Reality Markup Language, аналогичную HTML. Она на какое-то время была обделена вниманием и сейчас считается устаревшей, но учитывая возрастающий интерес Facebook к VR, в будущем виртуальная реальность обещает основываться не только на взаимодействии, но и на интернет-технологиях.
Еще есть AR, не путать с VR
AR (augmented reality) — это дополненная реальность. Да, PokemonGo (про который, кстати, все уже забыли), относится именно к этой категории, хотя и является несколько упрощенным примером. В отличие от VR, в которой мы намеренно отгораживаемся от окружающей среды, дополненная реальность позволяет создать наложение виртуального мира на реальный в поле восприятия пользователя. Таким образом мы можем одновременно получать информацию из двух источников.
Технически, AR — это не виртуальная реальность, но вопросы, возникающие при её создании сходны с теми, что возникают при создании VR (например, как заставить устройство вычислять своё точное расположение и подстраиваться под мельчайшие изменения, вносимые пользователем в реальном времени). Поэтому технологии AR и VR считают довольно тесно связанными.
Предлагаем подробнее ознакомиться с особенностями дополненной реальности, прочитать руководство для начинающих AR-разработчиков и посмотреть видеообзоры 12 платформ разработки AR-приложений.
Оборудование
Шлемы и очки / Head Mounted Display, HMD
Такие устройства состоят из двух небольших экранов, расположенных напротив каждого глаза, шор, предотвращающих попадание внешнего света, и стереонаушников. Экраны показывают слегка смещенные друг относительно друга стереоскопические изображения, обеспечивая реалистичное 3D-восприятие. В шлемах также содержатся встроенные акселерометры и датчики положения. В большинстве своем продвинутые VR-шлемы довольно громоздкие, но в последнее время появилась тенденция к созданию упрощенных легковесных вариантов (в том числе картонных, как на картинке выше), которые обычно предназначены для смартфонов с VR-приложениями.
Шлемы для виртуальной реальности делятся на три типа:
- Для компьютера — работают в связке с ПК или консолями: Oculus Rift, HTC Vive, Playstation VR.
- Для мобильных устройств — называются гарнитурами и работают в связке со смартфонами, представляют из себя держатель с линзами: Google Cardboard, Samsung Gear VR, YesVR.
- Независимые очки виртуальной реальности — самостоятельные устройства, работают под управлением специальных или адаптированных ОС: Sulon Q, DeePoon, AuraVisor.
На Wearable выложен список лучших VR-шлемов 2017 года. Подробнее о шлемах виртуальной реальности можно прочитать на сайте Virtual Reality Society.
Комнаты / Cave Automatic Virtual Environment, CAVE
Альтернатива для тех, кто не хочет испортить прическу — изображения в данном случае транслируются не в шлем, а на стены помещения, часто представляющие собой дисплеи MotionParallax3D (хотя для более полного UX в некоторых таких комнатах нужно надевать 3D-очки или даже комбинировать CAVE и HMD). Есть мнение, что VR-комнаты гораздо лучше VR-шлемов: более высокое разрешение, нет необходимости таскать на себе громоздкое устройство, в котором некоторых даже укачивает, и самоидентификация происходит проще благодаря тому, что пользователь имеет возможность постоянно себя видеть. Тем не менее, приобретение такой комнаты, понятное дело, выйдет гораздо дороже, чем покупка шлема.
Информационные перчатки / Datagloves
Для удовлетворения инстинктивной потребности пользователя потрогать руками то, что он находит для себя интересным в процессе изучения среды, были созданы перчатки с сенсорами для захвата движений кистей и пальцев рук. Техническое обеспечение такого процесса варьируется — возможно использование оптоволоконных кабелей, тензометрических или пьезоэлектрических датчиков, а также электромеханических приспособлений (таких как потенциометры).
Джойстики (геймпады) / Wands
Специальные устройства для взаимодействия с виртуальной средой, содержащие встроенные датчики положения и движения, а также кнопки и колеса прокрутки, как у мыши. Сейчас их все все чаще делают беспроводными, чтобы избежать неудобств и нагромождений при подсоединении к компьютеру.
Области применения VR
Обучение
VR используется для моделирования среды тренировок в тех занятиях, в которых необходима предварительная подготовка: например, управление самолетом, прыжки с парашютом и даже операции на мозге.
Наука
VR позволяет улучшить и ускорить исследование молекулярного и атомного мира: погружаясь в виртуальную среду, ученый может обращаться с частицами так, будто это кубики LEGO.
Медицина
Кроме помощи в обучении хирургов, технология VR оказывается полезной и на самих операциях: врач, используя специальное оборудование, может управлять движениями робота, получая при этом возможность лучше контролировать процесс.
Промышленный дизайн и архитектура
Вместо того, чтобы строить дорогостоящие модели машин, самолетов или зданий, можно создать виртуальную модель, позволяющую не только исследовать проект изнутри, но и проводить тестирование его технических характеристик.
Игры и развлечения
На данный момент это самая известная и самая широкая область использования VR: сюда входят как игры, так и кино, виртуальный туризм и посещение различных мероприятий.
Как мы уже говорили, VR продолжает интегрироваться с разными сферами нашей жизни и из мифа научной фантастики она превратилась в (виртуальную) реальность, так что выбирайте область для разработки, и — вперед. Стандартизацией технологий VR сейчас занимается международная организация Global Virtual Reality Association.
Перевод статьи «Virtual reality»