Как пишется время в физике

Попробуйте сходу дать точное определение: что такое время? Мысль вертится вокруг этого понятия, пытается ухватиться, но вот сформулировать однозначное определение сложно. Есть разные концепции и трактовки времени в философии, физике, метрологии.

В классической механике и теории относительности используются совершенно разные концепции времени. В первом случае время характеризует последовательность событий, происходящих в трехмерном пространстве. Во втором рассматривается еще и как четвертая координата.

Но обо всем по порядку. Давайте узнаем, как люди измеряли время, почему секунда — его мельчайшая принятая единица. Также определим понятие времени в физике, рассмотрим явления релятивистского и гравитационного замедления времени.

Что такое время?

Течение времени – совершенно естественное явление. Время идет, все вокруг меняется, происходят разные события. Именно поэтому о времени с точки зрения физики, в первую очередь, стоит говорить в контексте событий.

Если бы вокруг ничего не происходило, понятие времени не имело бы традиционного смысла. Другими словами, без событий времени не существует. Итак:

Время – мера того, как меняется окружающий мир. Время определяет длительность существования объектов, изменение их состояний и процессы, протекающие в них.

В системе СИ время измеряется в секундах и обозначается буквой t.

Как люди измеряли время?

Для измерения времени нужны какие-либо повторяющиеся с одинаковым периодом события. Например, смена дня и ночи. Солнце каждый день встает на востоке и садится на западе, а Луна каждый синодический месяц проходит весь цикл фаз освещенности солнцем — от тоненького серпа полумесяца до полнолуния.

Синодический месяц – время от одного новолуния до другого. За синодический месяц Луна совершает оборот вокруг Земли.

Древним людям ничего не оставалось, как привязать отсчет времени к движению небесных тел и событиям, связанным с ним. А именно – к смене дней, ночей и сезонов года.

В году 4 сезона и 12 месяцев. Именно столько раз за весну, лето, осень и зиму Луна меняет свои фазы.

По мере развития прогресса методы измерения времени совершенствовались, появились солнечные, водяные, песочные, огненные, механические, электронные и, наконец, молекулярные часы.

Часы FOCS 1

Часы FOCS 1

Часы FOCS 1 в Швейцарии измеряют время с погрешностью хода около одной секунды за 30 миллионов лет. Это очень точные часы, но через 30 миллионов лет их все же придется «подвести».

Почему в часе 60 минут, в минуте – 60 секунд, а в сутках – 24 часа?

Сразу оговоримся, что изложенное ниже во многом является личными предположениями автора, сделанными на основе исторических сведений. Если у наших читателей появятся уточнения или вопросы, мы будем рады видеть их в обсуждениях.

Древним народам нужна была какая-то основа, чтобы строить свои системы счисления. В Вавилоне за такую основу было взято число 60

Именно благодаря шестидесятеричной системе счисления, придуманной шумерами и позже распространившейся в Древнем Вавилоне, окружность содержит 360 градусов, градус – 60 минут, а минута – 60 секунд.

Год можно представить в виде окружности, содержащей 360 градусов. Возможно, число 360 в данном контексте взялось оттого, что в году 365 дней, и эту цифру просто округлили до 360.

Когда-то самой короткой единицей измерения времени был час. Древние вавилоняне были сильными математиками и решили ввести меньшие единицы времени, используя свое любимое число 60. Поэтому, в часе 60 минут, а в минуте 60 секунд.

Но почему день делится на 12 часов? За это нужно сказать спасибо древним египтянам и их двенадцатиричной системе.  День и ночь делились на 12 раных частей, считаясь разными царствами бытия. Скорее всего, первоначально использование числа 12 связано с количеством оборотов Луны вокруг Земли за год.

Самая большая единица измерения времени

Самая большая единица измерения времени – кальпа.  Кальпа является понятием из индуизма и буддизма. Она равняется примерно 4,32 миллиардам лет, что совпадает с возрастом Земли с точностью до 5%.

Как в голову древним индуистам пришли такие цифры? Ответа на этот вопрос мы не знаем, но вся система как будто говорит нам, что тогда люди знали о Вселенной немного больше, чем мы.

Представление о времени

Представление о времени

Кальпу в индуизме еще называют «днем Брахмы». День сменяется ночью, равной ему по продолжительности. 30 дней и ночей составляют месяц, а год  состоит из 12 месяцев. Вся жизнь Брахмы – 100 лет, по прошествии которых мир погибает вместе с ним.

Если перевести сто лет Брахмы в наши традиционные годы, получится 311 триллионов и 40 миллиардов лет! Нынешнему Брахме 51 год.

Вывод: если все это правда, то беспокоится не стоит — Вселенная будет существовать еще долгое время.

Кальпа – самая большая единица измерения времени согласно книге рекордов Гиннеса.

Первые часы

Сначала было достаточно палочки, на которой каменным топором можно делать зарубки и тем самым отсчитывать прошедшие дни. Но это скорее был календарь, а не часы.

Первые и самые древние часы – солнечные. Их действие основано на изменении длины тени предметов по мере того, как солнце движется по небосводу.  Такие часы представляли собой гномон – длинный шест, воткнутый в землю.  Солнечные часы применялись в Древнем Египте и Китае. О них было доподлинно известно уже в 1200 году до нашей эры.

Солнечные часы в Китае

Солнечные часы в Китае

Затем появились водяные, песочные и огненные часы. Работа этих механизмов не была привязана к движению небесных светил. Долгое время водяные часы были главным инструментом для измерения времени.

Первые механические часы были изготовлены китайскими мастерами в 725 году нашей эры. Однако широкое распространение они получили относительно недавно.

В средневековой Европе механические часы устанавливались в башнях соборов и имели только одну стрелку – часовую. Карманные часы появились только в 1675 году (изобретение запатентовал Гюйгенс), а наручные – намного позже.

Первые наручные часы были исключительно женским аксессуаром. Они представляли собой богато украшенные изделия, точность хода которых отличалась огромными погрешностями. У уважающего себя мужчины не могло быть и мысли о том, чтобы носить наручные часы.

Современные часы

Сейчас механические или электронные часы есть у каждого. Они измеряют время с относительно небольшими погрешностями.  Однако самыми точными часами в мире являются атомные часы. Их еще называют молекулярными или квантовыми.

Биг Бен - одни из самых знаменитых башенных часов

Биг Бен — знаменитые башенные часы

Как мы помним, для определения единицы времени необходим какой-то периодический процесс. Когда-то самой короткой единицей был день. То есть единица измерения время была привязана к периодичности восхода и заката солнца. Потом минимальной единицей стал час, и так далее.

С 1967 года, согласно международной системе СИ, определение одной секунды привязано к периоду электромагнитного излучения, возникающего при переходе между сверхтонкими уровнями основного состояния атома Цезия-133. А именно: одна секунда равна 9 192 631 770 таким периодам.

Время в физике

На данный момент не существует определенной и единой концепции определения времени в физике.

В классической механике время считается  непрерывной, априорной и ничем не определяемой характеристикой мира.

Для измерения времени используется какая-либо периодическая последовательность событий. В классической физике время инвариантно относительно любой системы отсчета. То есть во всех системах события происходят одновременно.

Как найти время в физике? Простейшая формула, определяющая связь между  пройденным путем, скоростью и временем, известна каждому школьнику и имеет вид:

физика скорость время формула

Это формула времени для равномерного и прямолинейного движения. Здесь t — время, S — пройденное расстояние, v — cкорость.

Более подробно об основах классической механики читайте в нашей отдельной статье.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Термодинамика говорит, что время необратимо. Необратимо по причине возрастания энтропии замкнутой системы. Кстати, в нашем тематическом материале читайте о том, что такое энтропия.

Но самое интересное начинается в релятивистской физике. Приведем цитату Стивена Хокинга, физика, написавшего краткую историю времени.

Нам приходится принять, что время не отделено полностью от пространства и не независимо от него, но вместе с ним образует единый объект, который называется пространством-временем

Также в релятивистской физике время перестает быть инвариантом и можно говорить об относительности времени.  Другими словами, ход времени зависит от движения системы отсчета.

Это так называемое релятивистское замедление времени. Если часы находятся в неподвижной системе отсчета, то в движущемся теле все процессы происходят медленнее, чем в неподвижном. Именно поэтому космонавт, путешествующий в космосе на супер скоростном корабле, практически не постареет по сравнению со своим братом близнецом, оставшимся на Земле.

Релятивистское замедление времени

Релятивистское замедление времени

Помимо релятивистского существует гравитационное замедление времени. Что это такое? Гравитационное замедление времени – изменение хода часов в гравитационном поле. Чем сильнее поле гравитации, тем сильнее замедление.

Вспомним о том, что секунда – это время, за которое атом изотопа цезия совершает 9 192 631 770 квантовых переходов.  В зависимости от того, где находится атом (на земле, в космосе, вдали от любого объекта или у черной дыры) секунда будет иметь разные значения.

Поэтому и время процессов, связанных с данной системой отсчета, будет отличаться. Так, для наблюдателя у горизонта событий Шварцшильдовской черной дыры время практически остановится, а для наблюдателя на Земле все произойдет почти мгновенно.

Людей всегда волновала тема путешествий во времени. Предлагаем вам посмотреть научно-популярный фильм на эту тему и напоминаем, что если у вас совершенно нет времени на учебные дела, наш студенческий сервис всегда поможет справится с актуальными задачами и проблемами.

Формула времени

Общая характеристика

Скорость, время и расстояние являются физическими показателями, взаимосвязанными между собой процессом движения. На практике и теории известно равномерное и равноускоренное движение тел. Первый случай описывает постоянство времени, а второй — его изменение.

Основные понятия

Течение времени является естественным процессом

Однозначное и конкретное определение тяжело сформулировать, но существуют разные концепции современной философской мысли в математике и физике. Течение времени является естественным процессом. Оно уходит, меняется все вокруг, совершаются разные события в мире, поэтому для физической меры характерен контекст событий.

Чтобы измерить время, нужно знать общие повторяющиеся события с одинаковым периодом. Это может быть смена дня, ночи или времени года. Чтобы определить единицу измерения времени (метр, час, секунда), ученые обращались к древнейшим источникам познаний.

Год состоит из двенадцати месяцев или четырех сезонов. Такое количество раз в весенний, летний, зимний и осенний периоды главный спутник Земли меняет свои фазы.

По мере развития прогресса измерение t модифицировалось, появлялись новые солнечные, водные, песчаные, огненные, механические, электронные и молекулярные измерители времени — часы.

Время включено в семь основных физических величин международной системы единиц СИ. Этот показатель используют для остальных составляющих. Четкое понимание t помогает проведению экспериментов и в обычной жизни.

Основной целью навигации и астрономии было измерение t. С 1000 по 1960 год секундное измерение воспринималось как 1/86400 дней. С 1970 г. это понятие видоизменилось, поскольку стала учитываться периодичность земной орбиты.

Швейцарские часы FOCS

Самые точные мерила —швейцарские часы FOCS, измеряющие t с погрешностью хода в одну секунду за 30 млн лет.

Физическая величина отражает свойство материальных процессов, имеет определенную продолжительность, следует друг за другом. Взаимосвязан этот показатель с материей, движением, так как является формой его существования.

Длительность физического процесса, происходящего в определенной точке, устанавливают с помощью часов, расположенных в ней. Здесь используется прямое сравнение, уравнивается длительность процессов. Измерение продолжительности сводится к фиксированию начала и окончанию процесса на шкале. Когда говорят о фиксации показаний часов во время начала и завершения процесса, это не относится к фактическому месту их нахождения.

Теория относительности Эйнштейна меняет понимание времени, утверждая, что прогресс его не универсален и зависит от того, кто его изменяет. В такой картине реальности часы тикают с разной скоростью в зависимости от того, кто их носит.

Принимая большое ускорение или располагаясь рядом с сильными силами гравитации (вблизи черной дыры), можно изменить скорость течения времени, остановить его или возвратить. Для человека, находящегося внутри черной дыры, пространство и время кажутся взаимозаменяемыми, поэтому спуск в нее неизбежен, как и течение t вне этой области. Относительность уравнивает время и пространство.

Древняя система исчисления

Древняя система исчисления

До существования нашей эры люди привязывали отсчет времени к движению небесных тел или событий, связанных с ними. Древние народы искали основу для построения своей системы исчисления. В Вавилоне это было число 60, благодаря ему окружность содержит 360°, градус равен 60 минутам, а каждая из них состоит из 60 секунд.

Год представлялся окружностью в 360 градусов. Когда-то минимальной мерой исчисления был час. Жители Древнего Вавилона оказались сильны в математике, поэтому производили важные расчеты и решали задачи. Вводилась наименьшая единица времени. 60 минут составляют час, а в минуте столько же секунд.

Объяснение того, что сутки составляют 24 часа, а день делится пополам и равен 12 часам, выявили египтяне. Самой большой единицей измерения является индуистское и буддистское понятие Кальпа. Величина равна 4,32 млрд лет, что совпадает с возрастом планеты. Если перевести век Брахмы в обычные годы, получится 311 трлн и 40 млрд лет.

Первыми старинными часами являются солнечные мерила. Действие их основывается на изменении длины теней предметов по мере движения Солнца по небу. Такие часы внешне представляли собой длинный шест, воткнутый в землю. Затем возникли водяные, песчаные и огненные часы. Работа таких механизмов не привязывалась к движению Солнца, Луны либо звезд.

Первые механические мерила начали производиться мастерами Китая в 725 г. Жители Европы в Средние века устанавливали на башнях соборов часы, которые имели только одну часовую стрелку. Карманные измерители возникли в середине XVII века, а наручные намного позже.

В соответствии с международной системой измерения определение одной секунды привязано к периоду электромагнитного излучения, начинающемуся при переходе между тонкими уровнями основного состояния атома цезия-133. Одна секунда составляет 919 263 770 периодов.

Показатели физики

Не существует определенной концепции или класса времени. Показатель непрерывности процессов можно вычислить по формуле, проанализировать на графике или диаграмме.

Определения и концепции расчета

Термодинамика гласит, что время не вернуть. Его ход зависит от движения системы отсчета и может быть мгновенным.

«релятивистское замедление времени»

Существует понятие «релятивистское замедление времени»: если часы находятся в неподвижной системе, то в движущемся теле все процессы замедлены. Этап старения для двух братьев-близнецов может пройти по-разному, если одного отправить в космос, а другого оставить на Земле. Человек в космосе не постареет, поскольку там изменяется масса его тела, а также замедляется гравитационное время. В условиях притяжения меняется ход часов. Чем сильнее поле гравитации, тем больше замедление. Между объектами, имеющими массу, создается взаимодействие.

Периодическая цепь событий рассчитывается неодинаково в зависимости от показателей. Зависимые величины:

  • время;
  • скорость;
  • расстояние.

Секунда — стандартная единица, характеризующая время. Его определение в физике представляется как продолжительный показатель. Время через расстояние и скорость вычисляется по формуле t=S/V. Стандартная расшифровка:

  • S — расстояние;
  • V — конечная скорость (километровое значение);
  • t — время.

Когда скорость измеряется в км/ч, то и время выражается в часах. В любой системе события развиваются одновременно.

Вычисление времени

Формула времени при равноускоренном движении выглядит как t = (V — V0)/a или t = S/(V — V0), где V0 — начальная скорость, a — ускорение. Таблица показателей:

Вид движения Скорость (V) Перемещение (S) Время (t)
Равномерное V = знак постоянства (const) S = Vt t = S/V
Равноускоренное V = V0+at S = V0t+at2/2 t = V-V0/a

Атом изотопа цезия за секунду совершает 9192631770 собственных квантовых переходов. В зависимости от его расположения секунда имеет разные значения.

Решение задач

Понять действие формул времени при равномерном движении или равноускоренном можно, решив задачу. Многие сайты предлагают онлайн-калькулятор для удобного подсчета. В соответствующие графы достаточно ввести основные данные, после чего программа рассчитает все самостоятельно.

Задача 1. Автомобиль ехал со скоростью 200 км/ч и проехал всего 80 км. Требуется определить время движения машины. Условные обозначения:

  • V — скорость;
  • S — расстояние;
  • t — время.

Показатели нужно перевести из километров в метры, из часов в секунды: 1 км = 1 тыс. м, 1 час = 3600 секунд. Получаем S = 80000 м, V= 200000/3600 = 55,55 м/с. Находим скорость по формуле: V= S/t = 80000/55,55 = 1440,14 сек.

Решение задач

t = 1440

14/3600 = 0,4 часа.

Ответ: автомобиль пройдет 0,4 ч.

При неравномерном движении путь, пройденный телом, равен произведению средней скорости на время, в течение которого тело перемещалось.

Задача 2. Движение точки задано уравнением: х = 2t — 0,03t2. Нужно определить, в какой период скорость точки сближения сравняется с нулевой отметкой. Коэффициенты равны 2м/с, 0,03 м/с2.

Условия задачи содержат функцию x (t). Скорость можно вычислить по формуле V = dx/dt = 2 — 0,06t Приравниваем скорость к 0, находим t:

2 — 0,06t = 0

t = 2/0,06 = 33,33 сек.

Необходимо определить зависимость модуля ускорения от времени: A (t)= dv/dt = -0,06.

Задача 3. Самолет для взлета набирает 350 км/ч. Нужно определить время разгона, если скорость достигается в конце взлетной полосы длиной в 2 км. Движение считается равноускоренным.

При равноускоренном движении формула выглядит как S = V0t+at2/2. При этом V= V0+at. Разгон самолета начинается с состояния покоя, то есть V0 = 0.

S = at2/2

V=at.

S = (V/t)*(t2/2) = Vt/2.

S = 2000 м

V=350 км/ч = 97,2 м/с.

t= 2S/V = 2*2000/97,2 = 41,15.

Благодаря вычислению известно, что разгон самолета длится 41,15 сек.

Задача 4. Скорость конькобежца составляет 15 м/с. Нужно вычислить время, за которое он пробежит путь 3 км.

Как решить задачу

V= 15 м/с.

S = 3 км (3000 м).

t = S/V = 3000/15 = 200

Ответ: за 200 секунд конькобежец пробежит 3 км.

Современная наука распределяет известные представления о времени в разные концепции — относительную и вещественную. По мнению относительной, в природе не существует временных рамок, а понятие времени является отношением между событиями. Время — проявление свойств физических тел и изменений, оно статично, как и пространство.

Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future.[1][2][3] It is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience.[4][5][6][7] Time is often referred to as a fourth dimension, along with three spatial dimensions.[8]

Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars.[7][9]
Nevertheless, diverse fields such as business, industry, sports, the sciences, and the performing arts all incorporate some notion of time into their respective measuring systems.[10][11][12]

Time in physics is operationally defined as «what a clock reads».[6][13][14]

The physical nature of time is addressed by general relativity with respect to events in spacetime. Examples of events are the collision of two particles, the explosion of a supernova, or the arrival of a rocket ship. Every event can be assigned four numbers representing its time and position (the event’s coordinates). However, the numerical values are different for different observers. In general relativity, the question of what time it is now only has meaning relative to a particular observer. Distance and time are intimately related, and the time required for light to travel a specific distance is the same for all observers, as first publicly demonstrated by Michelson and Morley. General relativity does not address the nature of time for extremely small intervals where quantum mechanics holds. At this time, there is no generally accepted theory of quantum general relativity.[15]

Time is one of the seven fundamental physical quantities in both the International System of Units (SI) and International System of Quantities. The SI base unit of time is the second, which is defined by measuring the electronic transition frequency of caesium atoms. Time is used to define other quantities, such as velocity, so defining time in terms of such quantities would result in circularity of definition.[16] An operational definition of time, wherein one says that observing a certain number of repetitions of one or another standard cyclical event (such as the passage of a free-swinging pendulum) constitutes one standard unit such as the second, is highly useful in the conduct of both advanced experiments and everyday affairs of life. To describe observations of an event, a location (position in space) and time are typically noted.

The operational definition of time does not address what the fundamental nature of time is. It does not address why events can happen forward and backward in space, whereas events only happen in the forward progress of time. Investigations into the relationship between space and time led physicists to define the spacetime continuum. General relativity is the primary framework for understanding how spacetime works.[17] Through advances in both theoretical and experimental investigations of spacetime, it has been shown that time can be distorted and dilated, particularly at the edges of black holes.

Temporal measurement has occupied scientists and technologists and was a prime motivation in navigation and astronomy. Periodic events and periodic motion have long served as standards for units of time. Examples include the apparent motion of the sun across the sky, the phases of the moon, and the swing of a pendulum. Time is also of significant social importance, having economic value («time is money») as well as personal value, due to an awareness of the limited time in each day and in human life spans.

There are many systems for determining what time it is, including the Global Positioning System, other satellite systems, Coordinated Universal Time and mean solar time. In general, the numbers obtained from different time systems differ from one another.

Measurement

The flow of sand in an hourglass can be used to measure the passage of time. It also concretely represents the present as being between the past and the future.

Generally speaking, methods of temporal measurement, or chronometry, take two distinct forms: the calendar, a mathematical tool for organising intervals of time,[18]
and the clock, a physical mechanism that counts the passage of time. In day-to-day life, the clock is consulted for periods less than a day, whereas the calendar is consulted for periods longer than a day. Increasingly, personal electronic devices display both calendars and clocks simultaneously. The number (as on a clock dial or calendar) that marks the occurrence of a specified event as to hour or date is obtained by counting from a fiducial epoch – a central reference point.

History of the calendar

Artifacts from the Paleolithic suggest that the moon was used to reckon time as early as 6,000 years ago.[19] Lunar calendars were among the first to appear, with years of either 12 or 13 lunar months (either 354 or 384 days). Without intercalation to add days or months to some years, seasons quickly drift in a calendar based solely on twelve lunar months. Lunisolar calendars have a thirteenth month added to some years to make up for the difference between a full year (now known to be about 365.24 days) and a year of just twelve lunar months. The numbers twelve and thirteen came to feature prominently in many cultures, at least partly due to this relationship of months to years. Other early forms of calendars originated in Mesoamerica, particularly in ancient Mayan civilization. These calendars were religiously and astronomically based, with 18 months in a year and 20 days in a month, plus five epagomenal days at the end of the year.[20]

The reforms of Julius Caesar in 45 BC put the Roman world on a solar calendar. This Julian calendar was faulty in that its intercalation still allowed the astronomical solstices and equinoxes to advance against it by about 11 minutes per year. Pope Gregory XIII introduced a correction in 1582; the Gregorian calendar was only slowly adopted by different nations over a period of centuries, but it is now by far the most commonly used calendar around the world.

During the French Revolution, a new clock and calendar were invented in an attempt to de-Christianize time and create a more rational system in order to replace the Gregorian calendar. The French Republican Calendar’s days consisted of ten hours of a hundred minutes of a hundred seconds, which marked a deviation from the base 12 (duodecimal) system used in many other devices by many cultures. The system was abolished in 1806.[21]

History of other devices

A large variety of devices have been invented to measure time. The study of these devices is called horology.[22]

An Egyptian device that dates to c. 1500 BC, similar in shape to a bent T-square, measured the passage of time from the shadow cast by its crossbar on a nonlinear rule. The T was oriented eastward in the mornings. At noon, the device was turned around so that it could cast its shadow in the evening direction.[23]

A sundial uses a gnomon to cast a shadow on a set of markings calibrated to the hour. The position of the shadow marks the hour in local time. The idea to separate the day into smaller parts is credited to Egyptians because of their sundials, which operated on a duodecimal system. The importance of the number 12 is due to the number of lunar cycles in a year and the number of stars used to count the passage of night.[24]

The most precise timekeeping device of the ancient world was the water clock, or clepsydra, one of which was found in the tomb of Egyptian pharaoh Amenhotep I. They could be used to measure the hours even at night but required manual upkeep to replenish the flow of water. The ancient Greeks and the people from Chaldea (southeastern Mesopotamia) regularly maintained timekeeping records as an essential part of their astronomical observations. Arab inventors and engineers, in particular, made improvements on the use of water clocks up to the Middle Ages.[25] In the 11th century, Chinese inventors and engineers invented the first mechanical clocks driven by an escapement mechanism.

The hourglass uses the flow of sand to measure the flow of time. They were used in navigation. Ferdinand Magellan used 18 glasses on each ship for his circumnavigation of the globe (1522).[26]

Incense sticks and candles were, and are, commonly used to measure time in temples and churches across the globe. Waterclocks, and later, mechanical clocks, were used to mark the events of the abbeys and monasteries of the Middle Ages. Richard of Wallingford (1292–1336), abbot of St. Alban’s abbey, famously built a mechanical clock as an astronomical orrery about 1330.[27][28]

Great advances in accurate time-keeping were made by Galileo Galilei and especially Christiaan Huygens with the invention of pendulum-driven clocks along with the invention of the minute hand by Jost Burgi.[29]

The English word clock probably comes from the Middle Dutch word klocke which, in turn, derives from the medieval Latin word clocca, which ultimately derives from Celtic and is cognate with French, Latin, and German words that mean bell. The passage of the hours at sea was marked by bells and denoted the time (see ship’s bell). The hours were marked by bells in abbeys as well as at sea.

Chip-scale atomic clocks, such as this one unveiled in 2004, are expected to greatly improve GPS location.[30]

Clocks can range from watches to more exotic varieties such as the Clock of the Long Now. They can be driven by a variety of means, including gravity, springs, and various forms of electrical power, and regulated by a variety of means such as a pendulum.

Alarm clocks first appeared in ancient Greece around 250 BC with a water clock that would set off a whistle. This idea was later mechanized by Levi Hutchins and Seth E. Thomas.[29]

A chronometer is a portable timekeeper that meets certain precision standards. Initially, the term was used to refer to the marine chronometer, a timepiece used to determine longitude by means of celestial navigation, a precision firstly achieved by John Harrison. More recently, the term has also been applied to the chronometer watch, a watch that meets precision standards set by the Swiss agency COSC.

The most accurate timekeeping devices are atomic clocks, which are accurate to seconds in many millions of years,[31] and are used to calibrate other clocks and timekeeping instruments.

Atomic clocks use the frequency of electronic transitions in certain atoms to measure the second. One of the atoms used is caesium, most modern atomic clocks probe caesium with microwaves to determine the frequency of these electron vibrations.[32] Since 1967, the International System of Measurements bases its unit of time, the second, on the properties of caesium atoms. SI defines the second as 9,192,631,770 cycles of the radiation that corresponds to the transition between two electron spin energy levels of the ground state of the 133Cs atom.

Today, the Global Positioning System in coordination with the Network Time Protocol can be used to synchronize timekeeping systems across the globe.

In medieval philosophical writings, the atom was a unit of time referred to as the smallest possible division of time. The earliest known occurrence in English is in Byrhtferth’s Enchiridion (a science text) of 1010–1012,[33] where it was defined as 1/564 of a momentum (112 minutes),[34] and thus equal to 15/94 of a second. It was used in the computus, the process of calculating the date of Easter.

As of May 2010, the smallest time interval uncertainty in direct measurements is on the order of 12 attoseconds (1.2 × 10−17 seconds), about 3.7 × 1026 Planck times.[35]

Units

The second (s) is the SI base unit. A minute (min) is 60 seconds in length, and an hour is 60 minutes or 3600 seconds in length. A day is usually 24 hours or 86,400 seconds in length; however, the duration of a calendar day can vary due to Daylight saving time and Leap seconds.

Definitions and standards

A time standard is a specification for measuring time: assigning a number or calendar date to an instant (point in time), quantifying the duration of a time interval, and establishing a chronology (ordering of events). In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. The invention in 1955 of the caesium atomic clock has led to the replacement of older and purely astronomical time standards such as sidereal time and ephemeris time, for most practical purposes, by newer time standards based wholly or partly on atomic time using the SI second.

International Atomic Time (TAI) is the primary international time standard from which other time standards are calculated. Universal Time (UT1) is mean solar time at 0° longitude, computed from astronomical observations. It varies from TAI because of the irregularities in Earth’s rotation. Coordinated Universal Time (UTC) is an atomic time scale designed to approximate Universal Time. UTC differs from TAI by an integral number of seconds. UTC is kept within 0.9 second of UT1 by the introduction of one-second steps to UTC, the «leap second». The Global Positioning System broadcasts a very precise time signal based on UTC time.

The surface of the Earth is split up into a number of time zones. Standard time or civil time in a time zone deviates a fixed, round amount, usually a whole number of hours, from some form of Universal Time, usually UTC. Most time zones are exactly one hour apart, and by convention compute their local time as an offset from UTC. For example, time zones at sea are based on UTC. In many locations (but not at sea) these offsets vary twice yearly due to daylight saving time transitions.

Some other time standards are used mainly for scientific work. Terrestrial Time is a theoretical ideal scale realized by TAI. Geocentric Coordinate Time and Barycentric Coordinate Time are scales defined as coordinate times in the context of the general theory of relativity. Barycentric Dynamical Time is an older relativistic scale that is still in use.

Philosophy

Religion

Linear and cyclical

Ancient cultures such as Incan, Mayan, Hopi, and other Native American Tribes – plus the Babylonians, ancient Greeks, Hinduism, Buddhism, Jainism, and others – have a concept of a wheel of time: they regard time as cyclical and quantic,[clarification needed] consisting of repeating ages that happen to every being of the Universe between birth and extinction.[36]

In general, the Islamic and Judeo-Christian world-view regards time as linear[37]
and directional,[38]
beginning with the act of creation by God. The traditional Christian view sees time ending, teleologically,[39]
with the eschatological end of the present order of things, the «end time».

In the Old Testament book Ecclesiastes, traditionally ascribed to Solomon (970–928 BC), time (as the Hebrew word עידן, זמן iddan (age, as in «Ice age») zĕman(time) is often translated) was traditionally regarded[by whom?] as a medium for the passage of predestined events.[citation needed] (Another word, زمان» זמן» zamān, meant time fit for an event, and is used as the modern Arabic, Persian, and Hebrew equivalent to the English word «time».)

Time in Greek mythology

The Greek language denotes two distinct principles, Chronos and Kairos. The former refers to numeric, or chronological, time. The latter, literally «the right or opportune moment», relates specifically to metaphysical or Divine time. In theology, Kairos is qualitative, as opposed to quantitative.[40]

In Greek mythology, Chronos (ancient Greek: Χρόνος) is identified as the Personification of Time. His name in Greek means «time» and is alternatively spelled Chronus (Latin spelling) or Khronos. Chronos is usually portrayed as an old, wise man with a long, gray beard, such as «Father Time». Some English words whose etymological root is khronos/chronos include chronology, chronometer, chronic, anachronism, synchronise, and chronicle.

Time in Kabbalah

According to Kabbalists, «time» is a paradox[41] and an illusion.[42] Both the future and the past are recognised to be combined and simultaneously present.[clarification needed]

In Western philosophy

Two contrasting viewpoints on time divide prominent philosophers. One view is that time is part of the fundamental structure of the universe – a dimension independent of events, in which events occur in sequence. Isaac Newton subscribed to this realist view, and hence it is sometimes referred to as Newtonian time.[43][44]
The opposing view is that time does not refer to any kind of «container» that events and objects «move through», nor to any entity that «flows», but that it is instead part of a fundamental intellectual structure (together with space and number) within which humans sequence and compare events. This second view, in the tradition of Gottfried Leibniz[13] and Immanuel Kant,[45][46] holds that time is neither an event nor a thing, and thus is not itself measurable nor can it be travelled.

Furthermore, it may be that there is a subjective component to time, but whether or not time itself is «felt», as a sensation, or is a judgment, is a matter of debate.[2][6][7][47][48]

In Philosophy, time was questioned throughout the centuries; what time is and if it is real or not. Ancient Greek philosophers asked if time was linear or cyclical and if time was endless or finite.[49] These philosophers had different ways of explaining time; for instance, ancient Indian philosophers had something called the Wheel of Time. It is believed that there was repeating ages over the lifespan of the universe.[50] This led to beliefs like cycles of rebirth and reincarnation.[50] The Greek philosophers believe that the universe was infinite, and was an illusion to humans.[50] Plato believed that time was made by the Creator at the same instant as the heavens.[50] He also says that time is a period of motion of the heavenly bodies.[50] Aristotle believed that time correlated to movement, that time did not exist on its own but was relative to motion of objects.[50] he also believed that time was related to the motion of celestial bodies; the reason that humans can tell time was because of orbital periods and therefore there was a duration on time.[51]

The Vedas, the earliest texts on Indian philosophy and Hindu philosophy dating back to the late 2nd millennium BC, describe ancient Hindu cosmology, in which the universe goes through repeated cycles of creation, destruction and rebirth, with each cycle lasting 4,320 million years.[52]
Ancient Greek philosophers, including Parmenides and Heraclitus, wrote essays on the nature of time.[53]
Plato, in the Timaeus, identified time with the period of motion of the heavenly bodies. Aristotle, in Book IV of his Physica defined time as ‘number of movement in respect of the before and after’.[54]

In Book 11 of his Confessions, St. Augustine of Hippo ruminates on the nature of time, asking, «What then is time? If no one asks me, I know: if I wish to explain it to one that asketh, I know not.» He begins to define time by what it is not rather than what it is,[55]
an approach similar to that taken in other negative definitions. However, Augustine ends up calling time a «distention» of the mind (Confessions 11.26) by which we simultaneously grasp the past in memory, the present by attention, and the future by expectation.

Isaac Newton believed in absolute space and absolute time; Leibniz believed that time and space are relational.[56]
The differences between Leibniz’s and Newton’s interpretations came to a head in the famous Leibniz–Clarke correspondence.

Philosophers in the 17th and 18th century questioned if time was real and absolute, or if it was an intellectual concept that humans use to understand and sequence events.[49] These questions lead to realism vs anti-realism; the realists believed that time is a fundamental part of the universe, and be perceived by events happening in a sequence, in a dimension.[57] Isaac Newton said that we are merely occupying time, he also says that humans can only understand relative time.[57] Relative time is a measurement of objects in motion.[57] The anti-realists believed that time is merely a convenient intellectual concept for humans to understand events.[57] This means that time was useless unless there were objects that it could interact with, this was called relational time.[57] René Descartes, John Locke, and David Hume said that one’s mind needs to acknowledge time, in order to understand what time is.[51] Immanuel Kant believed that we can not know what something is unless we experience it first hand.[58]

Time is not an empirical concept. For neither co-existence nor succession would be perceived by us, if the representation of time did not exist as a foundation a priori. Without this presupposition, we could not represent to ourselves that things exist together at one and the same time, or at different times, that is, contemporaneously, or in succession.

Immanuel Kant, Critique of Pure Reason (1781), trans. Vasilis Politis (London: Dent., 1991), p.54.

Immanuel Kant, in the Critique of Pure Reason, described time as an a priori intuition that allows us (together with the other a priori intuition, space) to comprehend sense experience.[59]
With Kant, neither space nor time are conceived as substances, but rather both are elements of a systematic mental framework that necessarily structures the experiences of any rational agent, or observing subject. Kant thought of time as a fundamental part of an abstract conceptual framework, together with space and number, within which we sequence events, quantify their duration, and compare the motions of objects. In this view, time does not refer to any kind of entity that «flows,» that objects «move through,» or that is a «container» for events. Spatial measurements are used to quantify the extent of and distances between objects, and temporal measurements are used to quantify the durations of and between events. Time was designated by Kant as the purest possible schema of a pure concept or category.

Henri Bergson believed that time was neither a real homogeneous medium nor a mental construct, but possesses what he referred to as Duration. Duration, in Bergson’s view, was creativity and memory as an essential component of reality.[60]

According to Martin Heidegger we do not exist inside time, we are time. Hence, the relationship to the past is a present awareness of having been, which allows the past to exist in the present. The relationship to the future is the state of anticipating a potential possibility, task, or engagement. It is related to the human propensity for caring and being concerned, which causes «being ahead of oneself» when thinking of a pending occurrence. Therefore, this concern for a potential occurrence also allows the future to exist in the present. The present becomes an experience, which is qualitative instead of quantitative. Heidegger seems to think this is the way that a linear relationship with time, or temporal existence, is broken or transcended.[61]
We are not stuck in sequential time. We are able to remember the past and project into the future – we have a kind of random access to our representation of temporal existence; we can, in our thoughts, step out of (ecstasis) sequential time.[62]

Modern era philosophers asked: is time real or unreal, is time happening all at once or a duration, is time tensed or tenseless, and is there a future to be?[49] There is a theory called the tenseless or B-theory; this theory says that any tensed terminology can be replaced with tenseless terminology.[63] For example, «we will win the game» can be replaced with «we do win the game», taking out the future tense. On the other hand, there is a theory called the tense or A-theory; this theory says that our language has tense verbs for a reason and that the future can not be determined.[63] There is also something called imaginary time, this was from Stephen Hawking, he says that space and imaginary time are finite but have no boundaries.[63] Imaginary time is not real or unreal, it is something that is hard to visualize.[63] Philosophers can agree that physical time exists outside of the human mind and is objective, and psychological time is mind-dependent and subjective.[51]

Unreality

In 5th century BC Greece, Antiphon the Sophist, in a fragment preserved from his chief work On Truth, held that: «Time is not a reality (hypostasis), but a concept (noêma) or a measure (metron).» Parmenides went further, maintaining that time, motion, and change were illusions, leading to the paradoxes of his follower Zeno.[64] Time as an illusion is also a common theme in Buddhist thought.[65][66]

J. M. E. McTaggart’s 1908 The Unreality of Time argues that, since every event has the characteristic of being both present and not present (i.e., future or past), that time is a self-contradictory idea (see also The flow of time).

These arguments often center on what it means for something to be unreal. Modern physicists generally believe that time is as real as space – though others, such as Julian Barbour in his book The End of Time, argue that quantum equations of the universe take their true form when expressed in the timeless realm containing every possible now or momentary configuration of the universe, called «platonia» by Barbour.[67]

A modern philosophical theory called presentism views the past and the future as human-mind interpretations of movement instead of real parts of time (or «dimensions») which coexist with the present. This theory rejects the existence of all direct interaction with the past or the future, holding only the present as tangible. This is one of the philosophical arguments against time travel. This contrasts with eternalism (all time: present, past and future, is real) and the growing block theory (the present and the past are real, but the future is not).

Physical definition

Until Einstein’s reinterpretation of the physical concepts associated with time and space in 1907, time was considered to be the same everywhere in the universe, with all observers measuring the same time interval for any event.[68]
Non-relativistic classical mechanics is based on this Newtonian idea of time.

Einstein, in his special theory of relativity,[69]
postulated the constancy and finiteness of the speed of light for all observers. He showed that this postulate, together with a reasonable definition for what it means for two events to be simultaneous, requires that distances appear compressed and time intervals appear lengthened for events associated with objects in motion relative to an inertial observer.

The theory of special relativity finds a convenient formulation in Minkowski spacetime, a mathematical structure that combines three dimensions of space with a single dimension of time. In this formalism, distances in space can be measured by how long light takes to travel that distance, e.g., a light-year is a measure of distance, and a meter is now defined in terms of how far light travels in a certain amount of time. Two events in Minkowski spacetime are separated by an invariant interval, which can be either space-like, light-like, or time-like. Events that have a time-like separation cannot be simultaneous in any frame of reference, there must be a temporal component (and possibly a spatial one) to their separation. Events that have a space-like separation will be simultaneous in some frame of reference, and there is no frame of reference in which they do not have a spatial separation. Different observers may calculate different distances and different time intervals between two events, but the invariant interval between the events is independent of the observer (and his or her velocity).

Classical mechanics

In non-relativistic classical mechanics, Newton’s concept of «relative, apparent, and common time» can be used in the formulation of a prescription for the synchronization of clocks. Events seen by two different observers in motion relative to each other produce a mathematical concept of time that works sufficiently well for describing the everyday phenomena of most people’s experience. In the late nineteenth century, physicists encountered problems with the classical understanding of time, in connection with the behavior of electricity and magnetism. Einstein resolved these problems by invoking a method of synchronizing clocks using the constant, finite speed of light as the maximum signal velocity. This led directly to the conclusion that observers in motion relative to one another measure different elapsed times for the same event.

Two-dimensional space depicted in three-dimensional spacetime. The past and future light cones are absolute, the «present» is a relative concept different for observers in relative motion.

Spacetime

Time has historically been closely related with space, the two together merging into spacetime in Einstein’s special relativity and general relativity. According to these theories, the concept of time depends on the spatial reference frame of the observer, and the human perception, as well as the measurement by instruments such as clocks, are different for observers in relative motion. For example, if a spaceship carrying a clock flies through space at (very nearly) the speed of light, its crew does not notice a change in the speed of time on board their vessel because everything traveling at the same speed slows down at the same rate (including the clock, the crew’s thought processes, and the functions of their bodies). However, to a stationary observer watching the spaceship fly by, the spaceship appears flattened in the direction it is traveling and the clock on board the spaceship appears to move very slowly.

On the other hand, the crew on board the spaceship also perceives the observer as slowed down and flattened along the spaceship’s direction of travel, because both are moving at very nearly the speed of light relative to each other. Because the outside universe appears flattened to the spaceship, the crew perceives themselves as quickly traveling between regions of space that (to the stationary observer) are many light years apart. This is reconciled by the fact that the crew’s perception of time is different from the stationary observer’s; what seems like seconds to the crew might be hundreds of years to the stationary observer. In either case, however, causality remains unchanged: the past is the set of events that can send light signals to an entity and the future is the set of events to which an entity can send light signals.[70][71]

Dilation

Relativity of simultaneity: Event B is simultaneous with A in the green reference frame, but it occurred before in the blue frame, and occurs later in the red frame.

Einstein showed in his thought experiments that people travelling at different speeds, while agreeing on cause and effect, measure different time separations between events, and can even observe different chronological orderings between non-causally related events. Though these effects are typically minute in the human experience, the effect becomes much more pronounced for objects moving at speeds approaching the speed of light. Subatomic particles exist for a well-known average fraction of a second in a lab relatively at rest, but when travelling close to the speed of light they are measured to travel farther and exist for much longer than when at rest. According to the special theory of relativity, in the high-speed particle’s frame of reference, it exists, on the average, for a standard amount of time known as its mean lifetime, and the distance it travels in that time is zero, because its velocity is zero. Relative to a frame of reference at rest, time seems to «slow down» for the particle. Relative to the high-speed particle, distances seem to shorten. Einstein showed how both temporal and spatial dimensions can be altered (or «warped») by high-speed motion.

Einstein (The Meaning of Relativity): «Two events taking place at the points A and B of a system K are simultaneous if they appear at the same instant when observed from the middle point, M, of the interval AB. Time is then defined as the ensemble of the indications of similar clocks, at rest relative to K, which register the same simultaneously.»

Einstein wrote in his book, Relativity, that simultaneity is also relative, i.e., two events that appear simultaneous to an observer in a particular inertial reference frame need not be judged as simultaneous by a second observer in a different inertial frame of reference.

Relativistic versus Newtonian

Views of spacetime along the world line of a rapidly accelerating observer in a relativistic universe. The events («dots») that pass the two diagonal lines in the bottom half of the image (the past light cone of the observer in the origin) are the events visible to the observer.

The animations visualise the different treatments of time in the Newtonian and the relativistic descriptions. At the heart of these differences are the Galilean and Lorentz transformations applicable in the Newtonian and relativistic theories, respectively.

In the figures, the vertical direction indicates time. The horizontal direction indicates distance (only one spatial dimension is taken into account), and the thick dashed curve is the spacetime trajectory («world line») of the observer. The small dots indicate specific (past and future) events in spacetime.

The slope of the world line (deviation from being vertical) gives the relative velocity to the observer. Note how in both pictures the view of spacetime changes when the observer accelerates.

In the Newtonian description these changes are such that time is absolute:[72] the movements of the observer do not influence whether an event occurs in the ‘now’ (i.e., whether an event passes the horizontal line through the observer).

However, in the relativistic description the observability of events is absolute: the movements of the observer do not influence whether an event passes the «light cone» of the observer. Notice that with the change from a Newtonian to a relativistic description, the concept of absolute time is no longer applicable: events move up and down in the figure depending on the acceleration of the observer.

Arrow

Time appears to have a direction – the past lies behind, fixed and immutable, while the future lies ahead and is not necessarily fixed. Yet for the most part, the laws of physics do not specify an arrow of time, and allow any process to proceed both forward and in reverse. This is generally a consequence of time being modelled by a parameter in the system being analysed, where there is no «proper time»: the direction of the arrow of time is sometimes arbitrary. Examples of this include the cosmological arrow of time, which points away from the Big Bang, CPT symmetry, and the radiative arrow of time, caused by light only travelling forwards in time (see light cone). In particle physics, the violation of CP symmetry implies that there should be a small counterbalancing time asymmetry to preserve CPT symmetry as stated above. The standard description of measurement in quantum mechanics is also time asymmetric (see Measurement in quantum mechanics). The second law of thermodynamics states that entropy must increase over time (see Entropy). This can be in either direction – Brian Greene theorizes that, according to the equations, the change in entropy occurs symmetrically whether going forward or backward in time. So entropy tends to increase in either direction, and our current low-entropy universe is a statistical aberration, in a similar manner as tossing a coin often enough that eventually heads will result ten times in a row. However, this theory is not supported empirically in local experiment.[73]

Quantization

Time quantization is a hypothetical concept. In the modern established physical theories (the Standard Model of Particles and Interactions and General Relativity) time is not quantized.

Planck time (~ 5.4 × 10−44 seconds) is the unit of time in the system of natural units known as Planck units. Current established physical theories are believed to fail at this time scale, and many physicists expect that the Planck time might be the smallest unit of time that could ever be measured, even in principle. Tentative physical theories that describe this time scale exist; see for instance loop quantum gravity.

Travel

Time travel is the concept of moving backwards or forwards to different points in time, in a manner analogous to moving through space, and different from the normal «flow» of time to an earthbound observer. In this view, all points in time (including future times) «persist» in some way. Time travel has been a plot device in fiction since the 19th century. Travelling backwards or forwards in time has never been verified as a process, and doing so presents many theoretical problems and contradictive logic which to date have not been overcome. Any technological device, whether fictional or hypothetical, that is used to achieve time travel is known as a time machine.

A central problem with time travel to the past is the violation of causality; should an effect precede its cause, it would give rise to the possibility of a temporal paradox. Some interpretations of time travel resolve this by accepting the possibility of travel between branch points, parallel realities, or universes.

Another solution to the problem of causality-based temporal paradoxes is that such paradoxes cannot arise simply because they have not arisen. As illustrated in numerous works of fiction, free will either ceases to exist in the past or the outcomes of such decisions are predetermined. As such, it would not be possible to enact the grandfather paradox because it is a historical fact that one’s grandfather was not killed before his child (one’s parent) was conceived. This view does not simply hold that history is an unchangeable constant, but that any change made by a hypothetical future time traveller would already have happened in his or her past, resulting in the reality that the traveller moves from. More elaboration on this view can be found in the Novikov self-consistency principle.

Perception

The specious present refers to the time duration wherein one’s perceptions are considered to be in the present. The experienced present is said to be ‘specious’ in that, unlike the objective present, it is an interval and not a durationless instant. The term specious present was first introduced by the psychologist E.R. Clay, and later developed by William James.[74]

Biopsychology

The brain’s judgment of time is known to be a highly distributed system, including at least the cerebral cortex, cerebellum and basal ganglia as its components. One particular component, the suprachiasmatic nuclei, is responsible for the circadian (or daily) rhythm, while other cell clusters appear capable of shorter-range (ultradian) timekeeping.

Psychoactive drugs can impair the judgment of time. Stimulants can lead both humans and rats to overestimate time intervals,[75][76] while depressants can have the opposite effect.[77] The level of activity in the brain of neurotransmitters such as dopamine and norepinephrine may be the reason for this.[78] Such chemicals will either excite or inhibit the firing of neurons in the brain, with a greater firing rate allowing the brain to register the occurrence of more events within a given interval (speed up time) and a decreased firing rate reducing the brain’s capacity to distinguish events occurring within a given interval (slow down time).[79]

Mental chronometry is the use of response time in perceptual-motor tasks to infer the content, duration, and temporal sequencing of cognitive operations.

Early childhood education

Children’s expanding cognitive abilities allow them to understand time more clearly. Two- and three-year-olds’ understanding of time is mainly limited to «now and not now». Five- and six-year-olds can grasp the ideas of past, present, and future. Seven- to ten-year-olds can use clocks and calendars.[80]

Alterations

In addition to psychoactive drugs, judgments of time can be altered by temporal illusions (like the kappa effect),[81] age,[82] and hypnosis.[83] The sense of time is impaired in some people with neurological diseases such as Parkinson’s disease and attention deficit disorder.

Psychologists assert that time seems to go faster with age, but the literature on this age-related perception of time remains controversial.[84] Those who support this notion argue that young people, having more excitatory neurotransmitters, are able to cope with faster external events.[79]

Spatial conceptualization

Although time is regarded as an abstract concept, there is increasing evidence that time is conceptualized in the mind in terms of space.[85] That is, instead of thinking about time in a general, abstract way, humans think about time in a spatial way and mentally organize it as such. Using space to think about time allows humans to mentally organize temporal events in a specific way.

This spatial representation of time is often represented in the mind as a Mental Time Line (MTL).[86] Using space to think about time allows humans to mentally organize temporal order. These origins are shaped by many environmental factors[85]––for example, literacy appears to play a large role in the different types of MTLs, as reading/writing direction provides an everyday temporal orientation that differs from culture to culture.[86] In western cultures, the MTL may unfold rightward (with the past on the left and the future on the right) since people read and write from left to right.[86] Western calendars also continue this trend by placing the past on the left with the future progressing toward the right. Conversely, Arabic, Farsi, Urdu and Israeli-Hebrew speakers read from right to left, and their MTLs unfold leftward (past on the right with future on the left), and evidence suggests these speakers organize time events in their minds like this as well.[86]

This linguistic evidence that abstract concepts are based in spatial concepts also reveals that the way humans mentally organize time events varies across cultures––that is, a certain specific mental organization system is not universal. So, although Western cultures typically associate past events with the left and future events with the right according to a certain MTL, this kind of horizontal, egocentric MTL is not the spatial organization of all cultures. Although most developed nations use an egocentric spatial system, there is recent evidence that some cultures use an allocentric spatialization, often based on environmental features.[85]

A recent study of the indigenous Yupno people of Papua New Guinea focused on the directional gestures used when individuals used time-related words.[85] When speaking of the past (such as «last year» or «past times»), individuals gestured downhill, where the river of the valley flowed into the ocean. When speaking of the future, they gestured uphill, toward the source of the river. This was common regardless of which direction the person faced, revealing that the Yupno people may use an allocentric MTL, in which time flows uphill.[85]

A similar study of the Pormpuraawans, an aboriginal group in Australia, revealed a similar distinction in which when asked to organize photos of a man aging «in order,» individuals consistently placed the youngest photos to the east and the oldest photos to the west, regardless of which direction they faced.[87] This directly clashed with an American group that consistently organized the photos from left to right. Therefore, this group also appears to have an allocentric MTL, but based on the cardinal directions instead of geographical features.[87]

The wide array of distinctions in the way different groups think about time leads to the broader question that different groups may also think about other abstract concepts in different ways as well, such as causality and number.[85]

Use

In sociology and anthropology, time discipline is the general name given to social and economic rules, conventions, customs, and expectations governing the measurement of time, the social currency and awareness of time measurements, and people’s expectations concerning the observance of these customs by others. Arlie Russell Hochschild[88][89] and Norbert Elias[90] have written on the use of time from a sociological perspective.

The use of time is an important issue in understanding human behavior, education, and travel behavior. Time-use research is a developing field of study. The question concerns how time is allocated across a number of activities (such as time spent at home, at work, shopping, etc.). Time use changes with technology, as the television or the Internet created new opportunities to use time in different ways. However, some aspects of time use are relatively stable over long periods of time, such as the amount of time spent traveling to work, which despite major changes in transport, has been observed to be about 20–30 minutes one-way for a large number of cities over a long period.

Time management is the organization of tasks or events by first estimating how much time a task requires and when it must be completed, and adjusting events that would interfere with its completion so it is done in the appropriate amount of time. Calendars and day planners are common examples of time management tools.

Sequence of events

A sequence of events, or series of events, is a sequence of items, facts, events, actions, changes, or procedural steps, arranged in time order (chronological order), often with causality relationships among the items.[91][92][93]
Because of causality, cause precedes effect, or cause and effect may appear together in a single item, but effect never precedes cause. A sequence of events can be presented in text, tables, charts, or timelines. The description of the items or events may include a timestamp. A sequence of events that includes the time along with place or location information to describe a sequential path may be referred to as a world line.

Uses of a sequence of events include stories,[94]
historical events (chronology), directions and steps in procedures,[95]
and timetables for scheduling activities. A sequence of events may also be used to help describe processes in science, technology, and medicine. A sequence of events may be focused on past events (e.g., stories, history, chronology), on future events that must be in a predetermined order (e.g., plans, schedules, procedures, timetables), or focused on the observation of past events with the expectation that the events will occur in the future (e.g., processes, projections). The use of a sequence of events occurs in fields as diverse as machines (cam timer), documentaries (Seconds From Disaster), law (choice of law), finance (directional-change intrinsic time), computer simulation (discrete event simulation), and electric power transmission[96]
(sequence of events recorder). A specific example of a sequence of events is the timeline of the Fukushima Daiichi nuclear disaster.

See also

  • List of UTC timing centers
  • Time metrology

Organizations

  • Antiquarian Horological Society – AHS (United Kingdom)
  • Chronometrophilia (Switzerland)
  • Deutsche Gesellschaft für Chronometrie – DGC (Germany)
  • National Association of Watch and Clock Collectors – NAWCC (United States)

References

  1. ^
    «Oxford Dictionaries:Time». Oxford University Press. 2011. Archived from the original on 4 July 2012. Retrieved 18 May 2017. The indefinite continued progress of existence and events in the past, present, and future regarded as a whole
  2. ^ a b * «Webster’s New World College Dictionary». 2010. Archived from the original on 5 August 2011. Retrieved 9 April 2011. 1.indefinite, unlimited duration in which things are considered as happening in the past, present, or future; every moment there has ever been or ever will be… a system of measuring duration 2.the period between two events or during which something exists, happens, or acts; measured or measurable interval
    • «The American Heritage Stedman’s Medical Dictionary». 2002. Archived from the original on 5 March 2012. Retrieved 9 April 2011. A duration or relation of events expressed in terms of past, present, and future, and measured in units such as minutes, hours, days, months, or years.
    • «Collins Language.com». HarperCollins. 2011. Archived from the original on 2 October 2011. Retrieved 18 December 2011. 1. The continuous passage of existence in which events pass from a state of potentiality in the future, through the present, to a state of finality in the past. 2. physics a quantity measuring duration, usually with reference to a periodic process such as the rotation of the earth or the frequency of electromagnetic radiation emitted from certain atoms. In classical mechanics, time is absolute in the sense that the time of an event is independent of the observer. According to the theory of relativity it depends on the observer’s frame of reference. Time is considered as a fourth coordinate required, along with three spatial coordinates, to specify an event.
    • «The American Heritage Science Dictionary @dictionary.com». 2002. Archived from the original on 5 March 2012. Retrieved 9 April 2011. 1. A continuous, measurable quantity in which events occur in a sequence proceeding from the past through the present to the future. 2a. An interval separating two points of this quantity; a duration. 2b. A system or reference frame in which such intervals are measured or such quantities are calculated.
    • «Eric Weisstein’s World of Science». 2007. Archived from the original on 29 November 2017. Retrieved 9 April 2011. A quantity used to specify the order in which events occurred and measure the amount by which one event preceded or followed another. In special relativity, ct (where c is the speed of light and t is time), plays the role of a fourth dimension.

  3. ^
    «Time». The American Heritage Dictionary of the English Language (Fourth ed.). 2011. Archived from the original on 19 July 2012. A nonspatial continuum in which events occur in apparently irreversible succession from the past through the present to the future.
  4. ^
    Merriam-Webster Dictionary Archived 8 May 2012 at the Wayback Machine the measured or measurable period during which an action, process, or condition exists or continues : duration; a nonspatial continuum which is measured in terms of events that succeed one another from past through present to future
  5. ^
    Compact Oxford English Dictionary A limited stretch or space of continued existence, as the interval between two successive events or acts, or the period through which an action, condition, or state continues. (1971).
  6. ^ a b c * «Internet Encyclopedia of Philosophy». 2010. Archived from the original on 11 April 2011. Retrieved 9 April 2011. Time is what clocks measure. We use time to place events in sequence one after the other, and we use time to compare how long events last… Among philosophers of physics, the most popular short answer to the question «What is physical time?» is that it is not a substance or object but rather a special system of relations among instantaneous events. This working definition is offered by Adolf Grünbaum who applies the contemporary mathematical theory of continuity to physical processes, and he says time is a linear continuum of instants and is a distinguished one-dimensional sub-space of four-dimensional spacetime.
    • «Dictionary.com Unabridged, based on Random House Dictionary». 2010. Archived from the original on 5 March 2012. Retrieved 9 April 2011. 1. the system of those sequential relations that any event has to any other, as past, present, or future; indefinite and continuous duration regarded as that in which events succeed one another…. 3. (sometimes initial capital letter) a system or method of measuring or reckoning the passage of time: mean time; apparent time; Greenwich Time. 4. a limited period or interval, as between two successive events: a long time…. 14. a particular or definite point in time, as indicated by a clock: What time is it? … 18. an indefinite, frequently prolonged period or duration in the future: Time will tell if what we have done here today was right.
    • Ivey, Donald G.; Hume, J.N.P. (1974). Physics. Vol. 1. Ronald Press. p. 65. Archived from the original on 14 April 2021. Retrieved 7 May 2020. Our operational definition of time is that time is what clocks measure.

  7. ^ a b c Le Poidevin, Robin (Winter 2004). «The Experience and Perception of Time». In Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy. Archived from the original on 22 October 2013. Retrieved 9 April 2011.
  8. ^ «Newton did for time what the Greek geometers did for space, idealized it into an exactly measurable dimension.» About Time: Einstein’s Unfinished Revolution, Paul Davies, p. 31, Simon & Schuster, 1996, ISBN 978-0-684-81822-1
  9. ^
    Sean M Carroll (2009). From Eternity to Here: The Quest for the Ultimate Theory of Time. Physics Today. Vol. 63. Dutton. pp. 54–55. Bibcode:2010PhT….63d..54C. doi:10.1063/1.3397046. ISBN 978-0-525-95133-9.
  10. ^
    Official Baseball Rules, 2011 Edition (2011). «Rules 8.03 and 8.04» (Free PDF download). Major League Baseball. Archived (PDF) from the original on 1 July 2017. Retrieved 18 May 2017. Rule 8.03 Such preparatory pitches shall not consume more than one minute of time…Rule 8.04 When the bases are unoccupied, the pitcher shall deliver the ball to the batter within 12 seconds…The 12-second timing starts when the pitcher is in possession of the ball and the batter is in the box, alert to the pitcher. The timing stops when the pitcher releases the ball.
  11. ^
    «Guinness Book of Baseball World Records». Guinness World Records, Ltd. Archived from the original on 6 June 2012. Retrieved 7 July 2012. The record for the fastest time for circling the bases is 13.3 seconds, set by Evar Swanson at Columbus, Ohio in 1932…The greatest reliably recorded speed at which a baseball has been pitched is 100.9 mph by Lynn Nolan Ryan (California Angels) at Anaheim Stadium in California on 20 August 1974.
  12. ^ Zeigler, Kenneth (2008). Getting organized at work : 24 lessons to set goals, establish priorities, and manage your time. McGraw-Hill. ISBN 978-0-07-159138-6. Archived from the original on 18 August 2020. Retrieved 30 July 2019. 108 pages.
  13. ^ a b
    Burnham, Douglas : Staffordshire University (2006). «Gottfried Wilhelm Leibniz (1646–1716) Metaphysics – 7. Space, Time, and Indiscernibles». The Internet Encyclopedia of Philosophy. Archived from the original on 14 May 2011. Retrieved 9 April 2011. First of all, Leibniz finds the idea that space and time might be substances or substance-like absurd (see, for example, «Correspondence with Clarke,» Leibniz’s Fourth Paper, §8ff). In short, an empty space would be a substance with no properties; it will be a substance that even God cannot modify or destroy…. That is, space and time are internal or intrinsic features of the complete concepts of things, not extrinsic…. Leibniz’s view has two major implications. First, there is no absolute location in either space or time; location is always the situation of an object or event relative to other objects and events. Second, space and time are not in themselves real (that is, not substances). Space and time are, rather, ideal. Space and time are just metaphysically illegitimate ways of perceiving certain virtual relations between substances. They are phenomena or, strictly speaking, illusions (although they are illusions that are well-founded upon the internal properties of substances)…. It is sometimes convenient to think of space and time as something «out there,» over and above the entities and their relations to each other, but this convenience must not be confused with reality. Space is nothing but the order of co-existent objects; time nothing but the order of successive events. This is usually called a relational theory of space and time.
  14. ^ Considine, Douglas M.; Considine, Glenn D. (1985). Process instruments and controls handbook (3 ed.). McGraw-Hill. pp. 18–61. Bibcode:1985pich.book…..C. ISBN 978-0-07-012436-3. Archived from the original on 31 December 2013. Retrieved 1 November 2016.
  15. ^ University of Science and Technology of China (2019). «Bridge between quantum mechanics and general relativity still possible». Archived from the original on 27 January 2021.
  16. ^ Duff, Okun, Veneziano, ibid. p. 3. «There is no well established terminology for the fundamental constants of Nature. … The absence of accurately defined terms or the uses (i.e., actually misuses) of ill-defined terms lead to confusion and proliferation of wrong statements.»
  17. ^ Rendall, Alan D. (2008). Partial Differential Equations in General Relativity (illustrated ed.). OUP Oxford. p. 9. ISBN 978-0-19-921540-9. Archived from the original on 14 April 2021. Retrieved 24 November 2020.
  18. ^ Richards, E. G. (1998). Mapping Time: The Calendar and its History. Oxford University Press. pp. 3–5. ISBN 978-0-19-850413-9.
  19. ^ Rudgley, Richard (1999). The Lost Civilizations of the Stone Age. New York: Simon & Schuster. pp. 86–105.
  20. ^ Van Stone, Mark (2011). «The Maya Long Count Calendar: An Introduction». Archaeoastronomy. 24: 8–11.
  21. ^ «French Republican Calendar | Chronology.» Encyclopædia Britannica Online. Encyclopædia Britannica, n.d. Web. 21 February 2016.
  22. ^ «Education». Archived from the original on 1 May 2019. Retrieved 1 July 2018.
  23. ^ Barnett, Jo Ellen Time’s Pendulum: The Quest to Capture Time – from Sundials to Atomic Clocks Plenum, 1998 ISBN 0-306-45787-3 p. 28
  24. ^ Lombardi, Michael A. «Why Is a Minute Divided into 60 Seconds, an Hour into 60 Minutes, Yet There Are Only 24 Hours in a Day?» Scientific American. Springer Nature, 5 March 2007. Web. 21 February 2016.
  25. ^ Barnett, ibid, p. 37.
  26. ^ Bergreen, Laurence. Over the Edge of the World: Magellan’s Terrifying Circumnavigation of the Globe (HarperCollins Publishers, 2003), ISBN 0-06-621173-5[page needed]
  27. ^ North, J. (2004) God’s Clockmaker: Richard of Wallingford and the Invention of Time. Oxbow Books. ISBN 1-85285-451-0
  28. ^ Watson, E (1979) «The St Albans Clock of Richard of Wallingford». Antiquarian Horology pp. 372–384.
  29. ^ a b «History of Clocks.» About.com Inventors. About.com, n.d. Web. 21 February 2016.
  30. ^ «NIST Unveils Chip-Scale Atomic Clock». Nist. 27 August 2004. Archived from the original on 22 May 2011. Retrieved 9 June 2011.
  31. ^ «New atomic clock can keep time for 200 million years: Super-precise instruments vital to deep space navigation». Vancouver Sun. 16 February 2008. Archived from the original on 11 February 2012. Retrieved 9 April 2011.
  32. ^ «NIST-F1 Cesium Fountain Clock». Archived from the original on 25 March 2020. Retrieved 24 July 2015.
  33. ^ «Byrhtferth of Ramsey». Encyclopædia Britannica. 2008. Archived from the original on 14 June 2020. Retrieved 15 September 2008.
  34. ^ «atom», Oxford English Dictionary, Draft Revision September 2008 (contains relevant citations from Byrhtferth’s Enchiridion)
  35. ^ «12 attoseconds is the world record for shortest controllable time». 12 May 2010. Archived from the original on 5 August 2011. Retrieved 19 April 2012.
  36. ^ Sargsyan, Nelli (9 April 2020). «Academia-dot-edu sends me gifts, i mean, notifications!». Feminist Anthropology. 1 (2): 149–151. doi:10.1002/fea2.12004. ISSN 2643-7961.
  37. ^ Rust, Eric Charles (1981). Religion, Revelation and Reason. Mercer University Press. p. 60. ISBN 978-0-86554-058-3. Archived from the original on 3 April 2017. Retrieved 20 August 2015. Profane time, as Eliade points out, is linear. As man dwelt increasingly in the profane and a sense of history developed, the desire to escape into the sacred began to drop in the background. The myths, tied up with cyclic time, were not so easily operative. […] So secular man became content with his linear time. He could not return to cyclic time and re-enter sacred space though its myths. […] Just here, as Eliade sees it, a new religious structure became available. In the Judaeo-Christian religions – Judaism, Christianity, Islam – history is taken seriously, and linear time is accepted. The cyclic time of the primordial mythical consciousness has been transformed into the time of profane man, but the mythical consciousness remains. It has been historicized. The Christian mythos and its accompanying ritual are bound up, for example, with history and center in authentic history, especially the Christ-event. Sacred space, the Transcendent Presence, is thus opened up to secular man because it meets him where he is, in the linear flow of secular time. The Christian myth gives such time a beginning in creation, a center in the Christ-event, and an end in the final consummation.
  38. ^ Betz, Hans Dieter, ed. (2008). Religion Past & Present: Encyclopedia of Theology and Religion. Vol. 4: Dev-Ezr (4 ed.). Brill. p. 101. ISBN 978-90-04-14688-4. Archived from the original on 24 September 2015. Retrieved 20 August 2015. […] God produces a creation with a directional time structure […].
  39. ^ Lundin, Roger; Thiselton, Anthony C.; Walhout, Clarence (1999). The Promise of Hermeneutics. Wm. B. Eerdmans Publishing. p. 121. ISBN 978-0-8028-4635-8. Archived from the original on 19 September 2015. Retrieved 20 August 2015. We need to note the close ties between teleology, eschatology, and utopia. In Christian theology, the understanding of the teleology of particular actions is ultimately related to the teleology of history in general, which is the concern of eschatology.
  40. ^ «(Dictionary Entry)». Henry George Liddell, Robert Scott, A Greek-English Lexicon. Archived from the original on 7 May 2022. Retrieved 13 July 2015.
  41. ^ Hus, Boʿaz; Pasi, Marco; Stuckrad, Kocku von (2011). Kabbalah and Modernity: Interpretations, Transformations, Adaptations. BRILL. ISBN 978-90-04-18284-4. Archived from the original on 13 May 2016. Retrieved 27 February 2016.
  42. ^ Wolfson, Elliot R. (2006). Alef, Mem, Tau: Kabbalistic Musings on Time, Truth, and Death. University of California Press. p. 111. ISBN 978-0-520-93231-9. Archived from the original on 19 August 2020. Retrieved 7 May 2020. Extract of page 111 Archived 11 May 2022 at the Wayback Machine
  43. ^
    Rynasiewicz, Robert : Johns Hopkins University (12 August 2004). «Newton’s Views on Space, Time, and Motion». Stanford Encyclopedia of Philosophy. Stanford University. Archived from the original on 11 December 2015. Retrieved 5 February 2012. Newton did not regard space and time as genuine substances (as are, paradigmatically, bodies and minds), but rather as real entities with their own manner of existence as necessitated by God’s existence … To paraphrase: Absolute, true, and mathematical time, from its own nature, passes equably without relation to anything external, and thus without reference to any change or way of measuring of time (e.g., the hour, day, month, or year).
  44. ^ Markosian, Ned. «Time». In Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy (Winter 2002 Edition). Archived from the original on 14 September 2006. Retrieved 23 September 2011. The opposing view, normally referred to either as «Platonism with Respect to Time» or as «Absolutism with Respect to Time», has been defended by Plato, Newton, and others. On this view, time is like an empty container into which events may be placed; but it is a container that exists independently of whether or not anything is placed in it.
  45. ^
    Mattey, G.J. (22 January 1997). «Critique of Pure Reason, Lecture notes: Philosophy 175 UC Davis». Archived from the original on 14 March 2005. Retrieved 9 April 2011. What is correct in the Leibnizian view was its anti-metaphysical stance. Space and time do not exist in and of themselves, but in some sense are the product of the way we represent things. The[y] are ideal, though not in the sense in which Leibniz thought they are ideal (figments of the imagination). The ideality of space is its mind-dependence: it is only a condition of sensibility…. Kant concluded … «absolute space is not an object of outer sensation; it is rather a fundamental concept which first of all makes possible all such outer sensation.»…Much of the argumentation pertaining to space is applicable, mutatis mutandis, to time, so I will not rehearse the arguments. As space is the form of outer intuition, so time is the form of inner intuition…. Kant claimed that time is real, it is «the real form of inner intuition.»
  46. ^
    McCormick, Matt : California State University, Sacramento (2006). «Immanuel Kant (1724–1804) Metaphysics: 4. Kant’s Transcendental Idealism». The Internet Encyclopedia of Philosophy. Archived from the original on 26 April 2011. Retrieved 9 April 2011. Time, Kant argues, is also necessary as a form or condition of our intuitions of objects. The idea of time itself cannot be gathered from experience because succession and simultaneity of objects, the phenomena that would indicate the passage of time, would be impossible to represent if we did not already possess the capacity to represent objects in time…. Another way to put the point is to say that the fact that the mind of the knower makes the a priori contribution does not mean that space and time or the categories are mere figments of the imagination. Kant is an empirical realist about the world we experience; we can know objects as they appear to us. He gives a robust defense of science and the study of the natural world from his argument about the mind’s role in making nature. All discursive, rational beings must conceive of the physical world as spatially and temporally unified, he argues.
  47. ^
    Carrol, Sean, Chapter One, Section Two, Plume, 2010 (2010). From Eternity to Here: The Quest for the Ultimate Theory of Time. ISBN 978-0-452-29654-1. As human beings we ‘feel’ the passage of time.
  48. ^
    Lehar, Steve. (2000). The Function of Conscious Experience: An Analogical Paradigm of Perception and Behavior Archived 21 October 2015 at the Wayback Machine, Consciousness and Cognition.
  49. ^ a b c «Philosophy of Time – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  50. ^ a b c d e f «Ancient Philosophy – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  51. ^ a b c Bunnag, Anawat (August 2017). «The concept of time in philosophy: A comparative study between Theravada Buddhist and Henri Bergson’s concept of time from Thai philosophers’ perspectives». Kasetsart Journal of Social Sciences. doi:10.1016/j.kjss.2017.07.007. Archived from the original on 2 April 2019. Retrieved 11 April 2019.
  52. ^ Layton, Robert (1994). Who needs the past?: indigenous values and archaeology (2nd ed.). Routledge. p. 7. ISBN 978-0-415-09558-7. Archived from the original on 24 December 2011. Retrieved 9 April 2011., Introduction, p. 7 Archived 4 April 2017 at the Wayback Machine
  53. ^ Dagobert Runes, Dictionary of Philosophy, p. 318
  54. ^ Hardie, R.P.; Gaye, R.K. «Physics by Aristotle». MIT. Archived from the original on 26 June 2014. Retrieved 4 May 2014.«Time then is a kind of number. (Number, we must note, is used in two senses – both of what is counted or the countable and also of that with which we count. Time obviously is what is counted, not that with which we count: there are different kinds of thing.) […] It is clear, then, that time is ‘number of movement in respect of the before and after’, and is continuous since it is an attribute of what is continuous. «
  55. ^
    Augustine of Hippo. Confessions. Archived from the original on 19 January 2012. Retrieved 9 April 2011. Book 11, Chapter 14.
  56. ^ Gottfried Martin, Kant’s Metaphysics and Theory of Science
  57. ^ a b c d e «Early Modern Philosophy – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  58. ^ Jankowiak, Tim. «Immanuel Kant». Archived from the original on 23 May 2021. Retrieved 2 April 2019.
  59. ^
    Kant, Immanuel (1787). The Critique of Pure Reason, 2nd edition. Archived from the original on 13 April 2011. Retrieved 9 April 2011. translated by J.M.D. Meiklejohn, eBooks@Adelaide, 2004
  60. ^ Bergson, Henri (1907) Creative Evolution. trans. by Arthur Mitchell. Mineola: Dover, 1998.
  61. ^ Balslev, Anindita N.; Jitendranath Mohanty (November 1992). Religion and Time. Studies in the History of Religions, 54. The Netherlands: Brill Academic Publishers. pp. 53–59. ISBN 978-90-04-09583-0. Archived from the original on 20 August 2020. Retrieved 30 July 2019.
  62. ^ Martin Heidegger (1962). «V». Being and Time. p. 425. ISBN 978-0-631-19770-6. Archived from the original on 19 August 2020. Retrieved 30 July 2019.
  63. ^ a b c d «Modern Philosophy – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  64. ^ Harry Foundalis. «You are about to disappear». Archived from the original on 12 May 2011. Retrieved 9 April 2011.
  65. ^ Huston, Tom. «Buddhism and the illusion of time». Archived from the original on 8 July 2011. Retrieved 9 April 2011.
  66. ^ Garfield, Jay L. (1995). The fundamental wisdom of the middle way: Nāgārjuna’s Mūlamadhyamakakārikā. New York: Oxford University Press. ISBN 978-0-19-509336-0. Archived from the original on 19 August 2020. Retrieved 19 May 2018.
  67. ^ «Time is an illusion?». 24 March 2007. Archived from the original on 8 July 2011. Retrieved 9 April 2011.
  68. ^ Herman M. Schwartz, Introduction to Special Relativity, McGraw-Hill Book Company, 1968, hardcover 442 pages, see ISBN 0-88275-478-5 (1977 edition), pp. 10–13
  69. ^ A. Einstein, H. A. Lorentz, H. Weyl, H. Minkowski, The Principle of Relativity, Dover Publications, Inc, 2000, softcover 216 pages, ISBN 0-486-60081-5, See pp. 37–65 for an English translation of Einstein’s original 1905 paper.
  70. ^ «Albert Einstein’s Theory of Relativity». YouTube. 30 November 2011. Archived from the original on 17 October 2013. Retrieved 24 September 2013.
  71. ^ «Time Travel: Einstein’s big idea (Theory of Relativity)». YouTube. 9 January 2007. Archived from the original on 17 October 2013. Retrieved 24 September 2013.
  72. ^ Knudsen, Jens M.; Hjorth, Poul (2012). Elements of Newtonian Mechanics (illustrated ed.). Springer Science & Business Media. p. 30. ISBN 978-3-642-97599-8. Extract of p. 30
  73. ^ Greene, Brian (2005). «Chapter 6: Chance and the Arrow». The Fabric of the Cosmos. London. ISBN 978-0-14-195995-5. Archived from the original on 20 August 2020. Retrieved 16 September 2017.
  74. ^ Andersen, Holly; Rick Grush (2009). «A brief history of time-consciousness: historical precursors to James and Husserl» (PDF). Journal of the History of Philosophy. 47 (2): 277–307. doi:10.1353/hph.0.0118. S2CID 16379171. Archived from the original (PDF) on 16 February 2008. Retrieved 9 April 2011.
  75. ^ Wittmann, M.; Leland D.S.; Churan J.; Paulus M.P. (8 October 2007). «Impaired time perception and motor timing in stimulant-dependent subjects». Drug Alcohol Depend. 90 (2–3): 183–192. doi:10.1016/j.drugalcdep.2007.03.005. PMC 1997301. PMID 17434690.
  76. ^
    Cheng, Ruey-Kuang; Macdonald, Christopher J.; Meck, Warren H. (2006). «Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing» (online abstract). Pharmacology Biochemistry and Behavior. 85 (1): 114–122. doi:10.1016/j.pbb.2006.07.019. PMID 16920182. S2CID 42295255. Archived from the original on 10 August 2011. Retrieved 9 April 2011.
  77. ^ Tinklenberg, Jared R.; Walton T. Roth1; Bert S. Kopell (January 1976). «Marijuana and ethanol: Differential effects on time perception, heart rate, and subjective response». Psychopharmacology. 49 (3): 275–279. doi:10.1007/BF00426830. PMID 826945. S2CID 25928542.
  78. ^ Arzy, Shahar; Istvan Molnar-Szakacs; Olaf Blanke (18 June 2008). «Self in Time: Imagined Self-Location Influences Neural Activity Related to Mental Time Travel». The Journal of Neuroscience. 28 (25): 6502–6507. doi:10.1523/JNEUROSCI.5712-07.2008. PMC 6670885. PMID 18562621.
  79. ^ a b Carter, Rita (2009). The Human Brain Book. Dorling Kindersley Publishing. pp. 186–187. ISBN 978-0-7566-5441-2. Archived from the original on 13 May 2016. Retrieved 27 February 2016.
  80. ^ Kennedy-Moore, Eileen (28 March 2014). «Time Management for Kids». Psychology Today. Archived from the original on 30 July 2022. Retrieved 26 April 2014.
  81. ^ Wada Y, Masuda T, Noguchi K, 2005, «Temporal illusion called ‘kappa effect’ in event perception» Perception 34 ECVP Abstract Supplement
  82. ^ Adler, Robert. «Look how time flies». Archived from the original on 14 June 2011. Retrieved 9 April 2011.
  83. ^ Bowers, Kenneth; Brenneman, Heather A. (January 1979). «Hypnosis and the perception of time». International Journal of Clinical and Experimental Hypnosis. 27 (1): 29–41. doi:10.1080/00207147908407540. PMID 541126.
  84. ^ Gruber, Ronald P.; Wagner, Lawrence F.; Block, Richard A. (2000). «Subjective Time Versus Proper (Clock) Time». In Buccheri, R.; Di Gesù, V.; Saniga, Metod (eds.). Studies on the structure of time: from physics to psycho(patho)logy. Springer. p. 54. ISBN 978-0-306-46439-3. Archived from the original on 21 July 2011. Retrieved 9 April 2011. Extract of page 54 Archived 13 May 2016 at the Wayback Machine
  85. ^ a b c d e f Núñez, Rafael; Cooperrider, Kensy; Doan, D; Wassmann, Jürg (1 July 2012). «Contours of time: Topographic construals of past, present, and future in the Yupno valley of Papua New Guinea». Cognition. 124 (1): 25–35. doi:10.1016/j.cognition.2012.03.007. PMID 22542697. S2CID 17215084.
  86. ^ a b c d Bottini, Roberto; Crepaldi, Davide; Casasanto, Daniel; Crollen, Virgine; Collignon, Olivier (1 August 2015). «Space and time in the sighted and blind». Cognition. 141: 67–72. doi:10.1016/j.cognition.2015.04.004. hdl:2078.1/199842. PMID 25935747. S2CID 14646964.
  87. ^ a b Boroditsky, Lera; Gaby, Alice (2010). «Remembrances of Times East». Psychological Science. 21 (11): 1635–9. doi:10.1177/0956797610386621. PMID 20959511. S2CID 22097776.
  88. ^ Russell Hochschild, Arlie (1997). The time bind: when work becomes home and home becomes work. New York: Metropolitan Books. ISBN 978-0-8050-4471-3
  89. ^ Russell Hochschild, Arlie (20 April 1997). «There’s no place like work». New York Times Magazine. Archived from the original on 23 March 2017. Retrieved 20 February 2017.
  90. ^ Elias, Norbert (1992). Time: an essay. Oxford, UK Cambridge, US: Blackwell. ISBN 978-0-631-15798-4.
  91. ^ «Sequence – Order of Important Events» (PDF). Austin Independent School District. 2009. Archived from the original (PDF) on 27 September 2011.
  92. ^
    «Sequence of Events Worksheets». Reference.com. Archived from the original on 13 October 2010.
  93. ^
    Compiled by David Luckham & Roy Schulte (23 August 2011). «Event Processing Glossary – Version 2.0». Complex Event Processing. Archived from the original on 15 October 2011.
  94. ^ Richard Nordquist. «narrative». About.com. Archived from the original on 4 September 2011.
  95. ^ David J. Piasecki. «Inventory Accuracy Glossary». AccuracyBook.com (OPS Publishing). Archived from the original on 3 September 2011.
  96. ^ «Utility Communications Architecture (UCA) glossary». NettedAutomation. Archived from the original on 10 December 2011.

Further reading

  • Barbour, Julian (1999). The End of Time: The Next Revolution in Our Understanding of the Universe. Oxford University Press. ISBN 978-0-19-514592-2.
  • Craig Callendar, Introducing Time, Icon Books, 2010, ISBN 978-1-84831-120-6
  • Das, Tushar Kanti (1990). The Time Dimension: An Interdisciplinary Guide. New York: Praeger. ISBN 978-0-275-92681-6. – Research bibliography
  • Davies, Paul (1996). About Time: Einstein’s Unfinished Revolution. New York: Simon & Schuster Paperbacks. ISBN 978-0-684-81822-1.
  • Feynman, Richard (1994) [1965]. The Character of Physical Law. Cambridge (Mass): The MIT Press. pp. 108–126. ISBN 978-0-262-56003-0.
  • Galison, Peter (1992). Einstein’s Clocks and Poincaré’s Maps: Empires of Time. New York: W.W. Norton. ISBN 978-0-393-02001-4.
  • Benjamin Gal-Or, Cosmology, Physics and Philosophy, Springer Verlag, 1981, 1983, 1987, ISBN 0-387-90581-2, 0-387-96526-2.
  • Charlie Gere, (2005) Art, Time and Technology: Histories of the Disappearing Body, Berg
  • Highfield, Roger (1992). Arrow of Time: A Voyage through Science to Solve Time’s Greatest Mystery. Random House. ISBN 978-0-449-90723-8.
  • Landes, David (2000). Revolution in Time. Harvard University Press. ISBN 978-0-674-00282-1.
  • Lebowitz, Joel L. (2008). «Time’s arrow and Boltzmann’s entropy». Scholarpedia. 3 (4): 3448. Bibcode:2008SchpJ…3.3448L. doi:10.4249/scholarpedia.3448.
  • Mermin, N. David (2005). It’s About Time: Understanding Einstein’s Relativity. Princeton University Press. ISBN 978-0-691-12201-4.
  • Morris, Richard (1985). Time’s Arrows: Scientific Attitudes Toward Time. New York: Simon and Schuster. ISBN 978-0-671-61766-0.
  • Penrose, Roger (1999) [1989]. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. New York: Oxford University Press. pp. 391–417. ISBN 978-0-19-286198-6. Archived from the original on 26 December 2010. Retrieved 9 April 2011.
  • Price, Huw (1996). Time’s Arrow and Archimedes’ Point. Oxford University Press. ISBN 978-0-19-511798-1. Retrieved 9 April 2011.
  • Reichenbach, Hans (1999) [1956]. The Direction of Time. New York: Dover. ISBN 978-0-486-40926-9.
  • Rovelli, Carlo (2006). What is time? What is space?. Rome: Di Renzo Editore. ISBN 978-88-8323-146-9. Archived from the original on 27 January 2007.
  • Rovelli, Carlo (2018). The Order of Time. New York: Riverhead. ISBN 978-0735216105.
  • Stiegler, Bernard, Technics and Time, 1: The Fault of Epimetheus
  • Roberto Mangabeira Unger and Lee Smolin, The Singular Universe and the Reality of Time, Cambridge University Press, 2014, ISBN 978-1-107-07406-4.
  • Whitrow, Gerald J. (1973). The Nature of Time. Holt, Rinehart and Wilson (New York).
  • Whitrow, Gerald J. (1980). The Natural Philosophy of Time. Clarendon Press (Oxford).
  • Whitrow, Gerald J. (1988). Time in History. The evolution of our general awareness of time and temporal perspective. Oxford University Press. ISBN 978-0-19-285211-3.

External links

  • Different systems of measuring time
  • Time on In Our Time at the BBC
  • Time in the Internet Encyclopedia of Philosophy, by Bradley Dowden.
  • Le Poidevin, Robin (Winter 2004). «The Experience and Perception of Time». In Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy. Retrieved 9 April 2011.

Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future.[1][2][3] It is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience.[4][5][6][7] Time is often referred to as a fourth dimension, along with three spatial dimensions.[8]

Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars.[7][9]
Nevertheless, diverse fields such as business, industry, sports, the sciences, and the performing arts all incorporate some notion of time into their respective measuring systems.[10][11][12]

Time in physics is operationally defined as «what a clock reads».[6][13][14]

The physical nature of time is addressed by general relativity with respect to events in spacetime. Examples of events are the collision of two particles, the explosion of a supernova, or the arrival of a rocket ship. Every event can be assigned four numbers representing its time and position (the event’s coordinates). However, the numerical values are different for different observers. In general relativity, the question of what time it is now only has meaning relative to a particular observer. Distance and time are intimately related, and the time required for light to travel a specific distance is the same for all observers, as first publicly demonstrated by Michelson and Morley. General relativity does not address the nature of time for extremely small intervals where quantum mechanics holds. At this time, there is no generally accepted theory of quantum general relativity.[15]

Time is one of the seven fundamental physical quantities in both the International System of Units (SI) and International System of Quantities. The SI base unit of time is the second, which is defined by measuring the electronic transition frequency of caesium atoms. Time is used to define other quantities, such as velocity, so defining time in terms of such quantities would result in circularity of definition.[16] An operational definition of time, wherein one says that observing a certain number of repetitions of one or another standard cyclical event (such as the passage of a free-swinging pendulum) constitutes one standard unit such as the second, is highly useful in the conduct of both advanced experiments and everyday affairs of life. To describe observations of an event, a location (position in space) and time are typically noted.

The operational definition of time does not address what the fundamental nature of time is. It does not address why events can happen forward and backward in space, whereas events only happen in the forward progress of time. Investigations into the relationship between space and time led physicists to define the spacetime continuum. General relativity is the primary framework for understanding how spacetime works.[17] Through advances in both theoretical and experimental investigations of spacetime, it has been shown that time can be distorted and dilated, particularly at the edges of black holes.

Temporal measurement has occupied scientists and technologists and was a prime motivation in navigation and astronomy. Periodic events and periodic motion have long served as standards for units of time. Examples include the apparent motion of the sun across the sky, the phases of the moon, and the swing of a pendulum. Time is also of significant social importance, having economic value («time is money») as well as personal value, due to an awareness of the limited time in each day and in human life spans.

There are many systems for determining what time it is, including the Global Positioning System, other satellite systems, Coordinated Universal Time and mean solar time. In general, the numbers obtained from different time systems differ from one another.

Measurement

The flow of sand in an hourglass can be used to measure the passage of time. It also concretely represents the present as being between the past and the future.

Generally speaking, methods of temporal measurement, or chronometry, take two distinct forms: the calendar, a mathematical tool for organising intervals of time,[18]
and the clock, a physical mechanism that counts the passage of time. In day-to-day life, the clock is consulted for periods less than a day, whereas the calendar is consulted for periods longer than a day. Increasingly, personal electronic devices display both calendars and clocks simultaneously. The number (as on a clock dial or calendar) that marks the occurrence of a specified event as to hour or date is obtained by counting from a fiducial epoch – a central reference point.

History of the calendar

Artifacts from the Paleolithic suggest that the moon was used to reckon time as early as 6,000 years ago.[19] Lunar calendars were among the first to appear, with years of either 12 or 13 lunar months (either 354 or 384 days). Without intercalation to add days or months to some years, seasons quickly drift in a calendar based solely on twelve lunar months. Lunisolar calendars have a thirteenth month added to some years to make up for the difference between a full year (now known to be about 365.24 days) and a year of just twelve lunar months. The numbers twelve and thirteen came to feature prominently in many cultures, at least partly due to this relationship of months to years. Other early forms of calendars originated in Mesoamerica, particularly in ancient Mayan civilization. These calendars were religiously and astronomically based, with 18 months in a year and 20 days in a month, plus five epagomenal days at the end of the year.[20]

The reforms of Julius Caesar in 45 BC put the Roman world on a solar calendar. This Julian calendar was faulty in that its intercalation still allowed the astronomical solstices and equinoxes to advance against it by about 11 minutes per year. Pope Gregory XIII introduced a correction in 1582; the Gregorian calendar was only slowly adopted by different nations over a period of centuries, but it is now by far the most commonly used calendar around the world.

During the French Revolution, a new clock and calendar were invented in an attempt to de-Christianize time and create a more rational system in order to replace the Gregorian calendar. The French Republican Calendar’s days consisted of ten hours of a hundred minutes of a hundred seconds, which marked a deviation from the base 12 (duodecimal) system used in many other devices by many cultures. The system was abolished in 1806.[21]

History of other devices

A large variety of devices have been invented to measure time. The study of these devices is called horology.[22]

An Egyptian device that dates to c. 1500 BC, similar in shape to a bent T-square, measured the passage of time from the shadow cast by its crossbar on a nonlinear rule. The T was oriented eastward in the mornings. At noon, the device was turned around so that it could cast its shadow in the evening direction.[23]

A sundial uses a gnomon to cast a shadow on a set of markings calibrated to the hour. The position of the shadow marks the hour in local time. The idea to separate the day into smaller parts is credited to Egyptians because of their sundials, which operated on a duodecimal system. The importance of the number 12 is due to the number of lunar cycles in a year and the number of stars used to count the passage of night.[24]

The most precise timekeeping device of the ancient world was the water clock, or clepsydra, one of which was found in the tomb of Egyptian pharaoh Amenhotep I. They could be used to measure the hours even at night but required manual upkeep to replenish the flow of water. The ancient Greeks and the people from Chaldea (southeastern Mesopotamia) regularly maintained timekeeping records as an essential part of their astronomical observations. Arab inventors and engineers, in particular, made improvements on the use of water clocks up to the Middle Ages.[25] In the 11th century, Chinese inventors and engineers invented the first mechanical clocks driven by an escapement mechanism.

The hourglass uses the flow of sand to measure the flow of time. They were used in navigation. Ferdinand Magellan used 18 glasses on each ship for his circumnavigation of the globe (1522).[26]

Incense sticks and candles were, and are, commonly used to measure time in temples and churches across the globe. Waterclocks, and later, mechanical clocks, were used to mark the events of the abbeys and monasteries of the Middle Ages. Richard of Wallingford (1292–1336), abbot of St. Alban’s abbey, famously built a mechanical clock as an astronomical orrery about 1330.[27][28]

Great advances in accurate time-keeping were made by Galileo Galilei and especially Christiaan Huygens with the invention of pendulum-driven clocks along with the invention of the minute hand by Jost Burgi.[29]

The English word clock probably comes from the Middle Dutch word klocke which, in turn, derives from the medieval Latin word clocca, which ultimately derives from Celtic and is cognate with French, Latin, and German words that mean bell. The passage of the hours at sea was marked by bells and denoted the time (see ship’s bell). The hours were marked by bells in abbeys as well as at sea.

Chip-scale atomic clocks, such as this one unveiled in 2004, are expected to greatly improve GPS location.[30]

Clocks can range from watches to more exotic varieties such as the Clock of the Long Now. They can be driven by a variety of means, including gravity, springs, and various forms of electrical power, and regulated by a variety of means such as a pendulum.

Alarm clocks first appeared in ancient Greece around 250 BC with a water clock that would set off a whistle. This idea was later mechanized by Levi Hutchins and Seth E. Thomas.[29]

A chronometer is a portable timekeeper that meets certain precision standards. Initially, the term was used to refer to the marine chronometer, a timepiece used to determine longitude by means of celestial navigation, a precision firstly achieved by John Harrison. More recently, the term has also been applied to the chronometer watch, a watch that meets precision standards set by the Swiss agency COSC.

The most accurate timekeeping devices are atomic clocks, which are accurate to seconds in many millions of years,[31] and are used to calibrate other clocks and timekeeping instruments.

Atomic clocks use the frequency of electronic transitions in certain atoms to measure the second. One of the atoms used is caesium, most modern atomic clocks probe caesium with microwaves to determine the frequency of these electron vibrations.[32] Since 1967, the International System of Measurements bases its unit of time, the second, on the properties of caesium atoms. SI defines the second as 9,192,631,770 cycles of the radiation that corresponds to the transition between two electron spin energy levels of the ground state of the 133Cs atom.

Today, the Global Positioning System in coordination with the Network Time Protocol can be used to synchronize timekeeping systems across the globe.

In medieval philosophical writings, the atom was a unit of time referred to as the smallest possible division of time. The earliest known occurrence in English is in Byrhtferth’s Enchiridion (a science text) of 1010–1012,[33] where it was defined as 1/564 of a momentum (112 minutes),[34] and thus equal to 15/94 of a second. It was used in the computus, the process of calculating the date of Easter.

As of May 2010, the smallest time interval uncertainty in direct measurements is on the order of 12 attoseconds (1.2 × 10−17 seconds), about 3.7 × 1026 Planck times.[35]

Units

The second (s) is the SI base unit. A minute (min) is 60 seconds in length, and an hour is 60 minutes or 3600 seconds in length. A day is usually 24 hours or 86,400 seconds in length; however, the duration of a calendar day can vary due to Daylight saving time and Leap seconds.

Definitions and standards

A time standard is a specification for measuring time: assigning a number or calendar date to an instant (point in time), quantifying the duration of a time interval, and establishing a chronology (ordering of events). In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. The invention in 1955 of the caesium atomic clock has led to the replacement of older and purely astronomical time standards such as sidereal time and ephemeris time, for most practical purposes, by newer time standards based wholly or partly on atomic time using the SI second.

International Atomic Time (TAI) is the primary international time standard from which other time standards are calculated. Universal Time (UT1) is mean solar time at 0° longitude, computed from astronomical observations. It varies from TAI because of the irregularities in Earth’s rotation. Coordinated Universal Time (UTC) is an atomic time scale designed to approximate Universal Time. UTC differs from TAI by an integral number of seconds. UTC is kept within 0.9 second of UT1 by the introduction of one-second steps to UTC, the «leap second». The Global Positioning System broadcasts a very precise time signal based on UTC time.

The surface of the Earth is split up into a number of time zones. Standard time or civil time in a time zone deviates a fixed, round amount, usually a whole number of hours, from some form of Universal Time, usually UTC. Most time zones are exactly one hour apart, and by convention compute their local time as an offset from UTC. For example, time zones at sea are based on UTC. In many locations (but not at sea) these offsets vary twice yearly due to daylight saving time transitions.

Some other time standards are used mainly for scientific work. Terrestrial Time is a theoretical ideal scale realized by TAI. Geocentric Coordinate Time and Barycentric Coordinate Time are scales defined as coordinate times in the context of the general theory of relativity. Barycentric Dynamical Time is an older relativistic scale that is still in use.

Philosophy

Religion

Linear and cyclical

Ancient cultures such as Incan, Mayan, Hopi, and other Native American Tribes – plus the Babylonians, ancient Greeks, Hinduism, Buddhism, Jainism, and others – have a concept of a wheel of time: they regard time as cyclical and quantic,[clarification needed] consisting of repeating ages that happen to every being of the Universe between birth and extinction.[36]

In general, the Islamic and Judeo-Christian world-view regards time as linear[37]
and directional,[38]
beginning with the act of creation by God. The traditional Christian view sees time ending, teleologically,[39]
with the eschatological end of the present order of things, the «end time».

In the Old Testament book Ecclesiastes, traditionally ascribed to Solomon (970–928 BC), time (as the Hebrew word עידן, זמן iddan (age, as in «Ice age») zĕman(time) is often translated) was traditionally regarded[by whom?] as a medium for the passage of predestined events.[citation needed] (Another word, زمان» זמן» zamān, meant time fit for an event, and is used as the modern Arabic, Persian, and Hebrew equivalent to the English word «time».)

Time in Greek mythology

The Greek language denotes two distinct principles, Chronos and Kairos. The former refers to numeric, or chronological, time. The latter, literally «the right or opportune moment», relates specifically to metaphysical or Divine time. In theology, Kairos is qualitative, as opposed to quantitative.[40]

In Greek mythology, Chronos (ancient Greek: Χρόνος) is identified as the Personification of Time. His name in Greek means «time» and is alternatively spelled Chronus (Latin spelling) or Khronos. Chronos is usually portrayed as an old, wise man with a long, gray beard, such as «Father Time». Some English words whose etymological root is khronos/chronos include chronology, chronometer, chronic, anachronism, synchronise, and chronicle.

Time in Kabbalah

According to Kabbalists, «time» is a paradox[41] and an illusion.[42] Both the future and the past are recognised to be combined and simultaneously present.[clarification needed]

In Western philosophy

Two contrasting viewpoints on time divide prominent philosophers. One view is that time is part of the fundamental structure of the universe – a dimension independent of events, in which events occur in sequence. Isaac Newton subscribed to this realist view, and hence it is sometimes referred to as Newtonian time.[43][44]
The opposing view is that time does not refer to any kind of «container» that events and objects «move through», nor to any entity that «flows», but that it is instead part of a fundamental intellectual structure (together with space and number) within which humans sequence and compare events. This second view, in the tradition of Gottfried Leibniz[13] and Immanuel Kant,[45][46] holds that time is neither an event nor a thing, and thus is not itself measurable nor can it be travelled.

Furthermore, it may be that there is a subjective component to time, but whether or not time itself is «felt», as a sensation, or is a judgment, is a matter of debate.[2][6][7][47][48]

In Philosophy, time was questioned throughout the centuries; what time is and if it is real or not. Ancient Greek philosophers asked if time was linear or cyclical and if time was endless or finite.[49] These philosophers had different ways of explaining time; for instance, ancient Indian philosophers had something called the Wheel of Time. It is believed that there was repeating ages over the lifespan of the universe.[50] This led to beliefs like cycles of rebirth and reincarnation.[50] The Greek philosophers believe that the universe was infinite, and was an illusion to humans.[50] Plato believed that time was made by the Creator at the same instant as the heavens.[50] He also says that time is a period of motion of the heavenly bodies.[50] Aristotle believed that time correlated to movement, that time did not exist on its own but was relative to motion of objects.[50] he also believed that time was related to the motion of celestial bodies; the reason that humans can tell time was because of orbital periods and therefore there was a duration on time.[51]

The Vedas, the earliest texts on Indian philosophy and Hindu philosophy dating back to the late 2nd millennium BC, describe ancient Hindu cosmology, in which the universe goes through repeated cycles of creation, destruction and rebirth, with each cycle lasting 4,320 million years.[52]
Ancient Greek philosophers, including Parmenides and Heraclitus, wrote essays on the nature of time.[53]
Plato, in the Timaeus, identified time with the period of motion of the heavenly bodies. Aristotle, in Book IV of his Physica defined time as ‘number of movement in respect of the before and after’.[54]

In Book 11 of his Confessions, St. Augustine of Hippo ruminates on the nature of time, asking, «What then is time? If no one asks me, I know: if I wish to explain it to one that asketh, I know not.» He begins to define time by what it is not rather than what it is,[55]
an approach similar to that taken in other negative definitions. However, Augustine ends up calling time a «distention» of the mind (Confessions 11.26) by which we simultaneously grasp the past in memory, the present by attention, and the future by expectation.

Isaac Newton believed in absolute space and absolute time; Leibniz believed that time and space are relational.[56]
The differences between Leibniz’s and Newton’s interpretations came to a head in the famous Leibniz–Clarke correspondence.

Philosophers in the 17th and 18th century questioned if time was real and absolute, or if it was an intellectual concept that humans use to understand and sequence events.[49] These questions lead to realism vs anti-realism; the realists believed that time is a fundamental part of the universe, and be perceived by events happening in a sequence, in a dimension.[57] Isaac Newton said that we are merely occupying time, he also says that humans can only understand relative time.[57] Relative time is a measurement of objects in motion.[57] The anti-realists believed that time is merely a convenient intellectual concept for humans to understand events.[57] This means that time was useless unless there were objects that it could interact with, this was called relational time.[57] René Descartes, John Locke, and David Hume said that one’s mind needs to acknowledge time, in order to understand what time is.[51] Immanuel Kant believed that we can not know what something is unless we experience it first hand.[58]

Time is not an empirical concept. For neither co-existence nor succession would be perceived by us, if the representation of time did not exist as a foundation a priori. Without this presupposition, we could not represent to ourselves that things exist together at one and the same time, or at different times, that is, contemporaneously, or in succession.

Immanuel Kant, Critique of Pure Reason (1781), trans. Vasilis Politis (London: Dent., 1991), p.54.

Immanuel Kant, in the Critique of Pure Reason, described time as an a priori intuition that allows us (together with the other a priori intuition, space) to comprehend sense experience.[59]
With Kant, neither space nor time are conceived as substances, but rather both are elements of a systematic mental framework that necessarily structures the experiences of any rational agent, or observing subject. Kant thought of time as a fundamental part of an abstract conceptual framework, together with space and number, within which we sequence events, quantify their duration, and compare the motions of objects. In this view, time does not refer to any kind of entity that «flows,» that objects «move through,» or that is a «container» for events. Spatial measurements are used to quantify the extent of and distances between objects, and temporal measurements are used to quantify the durations of and between events. Time was designated by Kant as the purest possible schema of a pure concept or category.

Henri Bergson believed that time was neither a real homogeneous medium nor a mental construct, but possesses what he referred to as Duration. Duration, in Bergson’s view, was creativity and memory as an essential component of reality.[60]

According to Martin Heidegger we do not exist inside time, we are time. Hence, the relationship to the past is a present awareness of having been, which allows the past to exist in the present. The relationship to the future is the state of anticipating a potential possibility, task, or engagement. It is related to the human propensity for caring and being concerned, which causes «being ahead of oneself» when thinking of a pending occurrence. Therefore, this concern for a potential occurrence also allows the future to exist in the present. The present becomes an experience, which is qualitative instead of quantitative. Heidegger seems to think this is the way that a linear relationship with time, or temporal existence, is broken or transcended.[61]
We are not stuck in sequential time. We are able to remember the past and project into the future – we have a kind of random access to our representation of temporal existence; we can, in our thoughts, step out of (ecstasis) sequential time.[62]

Modern era philosophers asked: is time real or unreal, is time happening all at once or a duration, is time tensed or tenseless, and is there a future to be?[49] There is a theory called the tenseless or B-theory; this theory says that any tensed terminology can be replaced with tenseless terminology.[63] For example, «we will win the game» can be replaced with «we do win the game», taking out the future tense. On the other hand, there is a theory called the tense or A-theory; this theory says that our language has tense verbs for a reason and that the future can not be determined.[63] There is also something called imaginary time, this was from Stephen Hawking, he says that space and imaginary time are finite but have no boundaries.[63] Imaginary time is not real or unreal, it is something that is hard to visualize.[63] Philosophers can agree that physical time exists outside of the human mind and is objective, and psychological time is mind-dependent and subjective.[51]

Unreality

In 5th century BC Greece, Antiphon the Sophist, in a fragment preserved from his chief work On Truth, held that: «Time is not a reality (hypostasis), but a concept (noêma) or a measure (metron).» Parmenides went further, maintaining that time, motion, and change were illusions, leading to the paradoxes of his follower Zeno.[64] Time as an illusion is also a common theme in Buddhist thought.[65][66]

J. M. E. McTaggart’s 1908 The Unreality of Time argues that, since every event has the characteristic of being both present and not present (i.e., future or past), that time is a self-contradictory idea (see also The flow of time).

These arguments often center on what it means for something to be unreal. Modern physicists generally believe that time is as real as space – though others, such as Julian Barbour in his book The End of Time, argue that quantum equations of the universe take their true form when expressed in the timeless realm containing every possible now or momentary configuration of the universe, called «platonia» by Barbour.[67]

A modern philosophical theory called presentism views the past and the future as human-mind interpretations of movement instead of real parts of time (or «dimensions») which coexist with the present. This theory rejects the existence of all direct interaction with the past or the future, holding only the present as tangible. This is one of the philosophical arguments against time travel. This contrasts with eternalism (all time: present, past and future, is real) and the growing block theory (the present and the past are real, but the future is not).

Physical definition

Until Einstein’s reinterpretation of the physical concepts associated with time and space in 1907, time was considered to be the same everywhere in the universe, with all observers measuring the same time interval for any event.[68]
Non-relativistic classical mechanics is based on this Newtonian idea of time.

Einstein, in his special theory of relativity,[69]
postulated the constancy and finiteness of the speed of light for all observers. He showed that this postulate, together with a reasonable definition for what it means for two events to be simultaneous, requires that distances appear compressed and time intervals appear lengthened for events associated with objects in motion relative to an inertial observer.

The theory of special relativity finds a convenient formulation in Minkowski spacetime, a mathematical structure that combines three dimensions of space with a single dimension of time. In this formalism, distances in space can be measured by how long light takes to travel that distance, e.g., a light-year is a measure of distance, and a meter is now defined in terms of how far light travels in a certain amount of time. Two events in Minkowski spacetime are separated by an invariant interval, which can be either space-like, light-like, or time-like. Events that have a time-like separation cannot be simultaneous in any frame of reference, there must be a temporal component (and possibly a spatial one) to their separation. Events that have a space-like separation will be simultaneous in some frame of reference, and there is no frame of reference in which they do not have a spatial separation. Different observers may calculate different distances and different time intervals between two events, but the invariant interval between the events is independent of the observer (and his or her velocity).

Classical mechanics

In non-relativistic classical mechanics, Newton’s concept of «relative, apparent, and common time» can be used in the formulation of a prescription for the synchronization of clocks. Events seen by two different observers in motion relative to each other produce a mathematical concept of time that works sufficiently well for describing the everyday phenomena of most people’s experience. In the late nineteenth century, physicists encountered problems with the classical understanding of time, in connection with the behavior of electricity and magnetism. Einstein resolved these problems by invoking a method of synchronizing clocks using the constant, finite speed of light as the maximum signal velocity. This led directly to the conclusion that observers in motion relative to one another measure different elapsed times for the same event.

Two-dimensional space depicted in three-dimensional spacetime. The past and future light cones are absolute, the «present» is a relative concept different for observers in relative motion.

Spacetime

Time has historically been closely related with space, the two together merging into spacetime in Einstein’s special relativity and general relativity. According to these theories, the concept of time depends on the spatial reference frame of the observer, and the human perception, as well as the measurement by instruments such as clocks, are different for observers in relative motion. For example, if a spaceship carrying a clock flies through space at (very nearly) the speed of light, its crew does not notice a change in the speed of time on board their vessel because everything traveling at the same speed slows down at the same rate (including the clock, the crew’s thought processes, and the functions of their bodies). However, to a stationary observer watching the spaceship fly by, the spaceship appears flattened in the direction it is traveling and the clock on board the spaceship appears to move very slowly.

On the other hand, the crew on board the spaceship also perceives the observer as slowed down and flattened along the spaceship’s direction of travel, because both are moving at very nearly the speed of light relative to each other. Because the outside universe appears flattened to the spaceship, the crew perceives themselves as quickly traveling between regions of space that (to the stationary observer) are many light years apart. This is reconciled by the fact that the crew’s perception of time is different from the stationary observer’s; what seems like seconds to the crew might be hundreds of years to the stationary observer. In either case, however, causality remains unchanged: the past is the set of events that can send light signals to an entity and the future is the set of events to which an entity can send light signals.[70][71]

Dilation

Relativity of simultaneity: Event B is simultaneous with A in the green reference frame, but it occurred before in the blue frame, and occurs later in the red frame.

Einstein showed in his thought experiments that people travelling at different speeds, while agreeing on cause and effect, measure different time separations between events, and can even observe different chronological orderings between non-causally related events. Though these effects are typically minute in the human experience, the effect becomes much more pronounced for objects moving at speeds approaching the speed of light. Subatomic particles exist for a well-known average fraction of a second in a lab relatively at rest, but when travelling close to the speed of light they are measured to travel farther and exist for much longer than when at rest. According to the special theory of relativity, in the high-speed particle’s frame of reference, it exists, on the average, for a standard amount of time known as its mean lifetime, and the distance it travels in that time is zero, because its velocity is zero. Relative to a frame of reference at rest, time seems to «slow down» for the particle. Relative to the high-speed particle, distances seem to shorten. Einstein showed how both temporal and spatial dimensions can be altered (or «warped») by high-speed motion.

Einstein (The Meaning of Relativity): «Two events taking place at the points A and B of a system K are simultaneous if they appear at the same instant when observed from the middle point, M, of the interval AB. Time is then defined as the ensemble of the indications of similar clocks, at rest relative to K, which register the same simultaneously.»

Einstein wrote in his book, Relativity, that simultaneity is also relative, i.e., two events that appear simultaneous to an observer in a particular inertial reference frame need not be judged as simultaneous by a second observer in a different inertial frame of reference.

Relativistic versus Newtonian

Views of spacetime along the world line of a rapidly accelerating observer in a relativistic universe. The events («dots») that pass the two diagonal lines in the bottom half of the image (the past light cone of the observer in the origin) are the events visible to the observer.

The animations visualise the different treatments of time in the Newtonian and the relativistic descriptions. At the heart of these differences are the Galilean and Lorentz transformations applicable in the Newtonian and relativistic theories, respectively.

In the figures, the vertical direction indicates time. The horizontal direction indicates distance (only one spatial dimension is taken into account), and the thick dashed curve is the spacetime trajectory («world line») of the observer. The small dots indicate specific (past and future) events in spacetime.

The slope of the world line (deviation from being vertical) gives the relative velocity to the observer. Note how in both pictures the view of spacetime changes when the observer accelerates.

In the Newtonian description these changes are such that time is absolute:[72] the movements of the observer do not influence whether an event occurs in the ‘now’ (i.e., whether an event passes the horizontal line through the observer).

However, in the relativistic description the observability of events is absolute: the movements of the observer do not influence whether an event passes the «light cone» of the observer. Notice that with the change from a Newtonian to a relativistic description, the concept of absolute time is no longer applicable: events move up and down in the figure depending on the acceleration of the observer.

Arrow

Time appears to have a direction – the past lies behind, fixed and immutable, while the future lies ahead and is not necessarily fixed. Yet for the most part, the laws of physics do not specify an arrow of time, and allow any process to proceed both forward and in reverse. This is generally a consequence of time being modelled by a parameter in the system being analysed, where there is no «proper time»: the direction of the arrow of time is sometimes arbitrary. Examples of this include the cosmological arrow of time, which points away from the Big Bang, CPT symmetry, and the radiative arrow of time, caused by light only travelling forwards in time (see light cone). In particle physics, the violation of CP symmetry implies that there should be a small counterbalancing time asymmetry to preserve CPT symmetry as stated above. The standard description of measurement in quantum mechanics is also time asymmetric (see Measurement in quantum mechanics). The second law of thermodynamics states that entropy must increase over time (see Entropy). This can be in either direction – Brian Greene theorizes that, according to the equations, the change in entropy occurs symmetrically whether going forward or backward in time. So entropy tends to increase in either direction, and our current low-entropy universe is a statistical aberration, in a similar manner as tossing a coin often enough that eventually heads will result ten times in a row. However, this theory is not supported empirically in local experiment.[73]

Quantization

Time quantization is a hypothetical concept. In the modern established physical theories (the Standard Model of Particles and Interactions and General Relativity) time is not quantized.

Planck time (~ 5.4 × 10−44 seconds) is the unit of time in the system of natural units known as Planck units. Current established physical theories are believed to fail at this time scale, and many physicists expect that the Planck time might be the smallest unit of time that could ever be measured, even in principle. Tentative physical theories that describe this time scale exist; see for instance loop quantum gravity.

Travel

Time travel is the concept of moving backwards or forwards to different points in time, in a manner analogous to moving through space, and different from the normal «flow» of time to an earthbound observer. In this view, all points in time (including future times) «persist» in some way. Time travel has been a plot device in fiction since the 19th century. Travelling backwards or forwards in time has never been verified as a process, and doing so presents many theoretical problems and contradictive logic which to date have not been overcome. Any technological device, whether fictional or hypothetical, that is used to achieve time travel is known as a time machine.

A central problem with time travel to the past is the violation of causality; should an effect precede its cause, it would give rise to the possibility of a temporal paradox. Some interpretations of time travel resolve this by accepting the possibility of travel between branch points, parallel realities, or universes.

Another solution to the problem of causality-based temporal paradoxes is that such paradoxes cannot arise simply because they have not arisen. As illustrated in numerous works of fiction, free will either ceases to exist in the past or the outcomes of such decisions are predetermined. As such, it would not be possible to enact the grandfather paradox because it is a historical fact that one’s grandfather was not killed before his child (one’s parent) was conceived. This view does not simply hold that history is an unchangeable constant, but that any change made by a hypothetical future time traveller would already have happened in his or her past, resulting in the reality that the traveller moves from. More elaboration on this view can be found in the Novikov self-consistency principle.

Perception

The specious present refers to the time duration wherein one’s perceptions are considered to be in the present. The experienced present is said to be ‘specious’ in that, unlike the objective present, it is an interval and not a durationless instant. The term specious present was first introduced by the psychologist E.R. Clay, and later developed by William James.[74]

Biopsychology

The brain’s judgment of time is known to be a highly distributed system, including at least the cerebral cortex, cerebellum and basal ganglia as its components. One particular component, the suprachiasmatic nuclei, is responsible for the circadian (or daily) rhythm, while other cell clusters appear capable of shorter-range (ultradian) timekeeping.

Psychoactive drugs can impair the judgment of time. Stimulants can lead both humans and rats to overestimate time intervals,[75][76] while depressants can have the opposite effect.[77] The level of activity in the brain of neurotransmitters such as dopamine and norepinephrine may be the reason for this.[78] Such chemicals will either excite or inhibit the firing of neurons in the brain, with a greater firing rate allowing the brain to register the occurrence of more events within a given interval (speed up time) and a decreased firing rate reducing the brain’s capacity to distinguish events occurring within a given interval (slow down time).[79]

Mental chronometry is the use of response time in perceptual-motor tasks to infer the content, duration, and temporal sequencing of cognitive operations.

Early childhood education

Children’s expanding cognitive abilities allow them to understand time more clearly. Two- and three-year-olds’ understanding of time is mainly limited to «now and not now». Five- and six-year-olds can grasp the ideas of past, present, and future. Seven- to ten-year-olds can use clocks and calendars.[80]

Alterations

In addition to psychoactive drugs, judgments of time can be altered by temporal illusions (like the kappa effect),[81] age,[82] and hypnosis.[83] The sense of time is impaired in some people with neurological diseases such as Parkinson’s disease and attention deficit disorder.

Psychologists assert that time seems to go faster with age, but the literature on this age-related perception of time remains controversial.[84] Those who support this notion argue that young people, having more excitatory neurotransmitters, are able to cope with faster external events.[79]

Spatial conceptualization

Although time is regarded as an abstract concept, there is increasing evidence that time is conceptualized in the mind in terms of space.[85] That is, instead of thinking about time in a general, abstract way, humans think about time in a spatial way and mentally organize it as such. Using space to think about time allows humans to mentally organize temporal events in a specific way.

This spatial representation of time is often represented in the mind as a Mental Time Line (MTL).[86] Using space to think about time allows humans to mentally organize temporal order. These origins are shaped by many environmental factors[85]––for example, literacy appears to play a large role in the different types of MTLs, as reading/writing direction provides an everyday temporal orientation that differs from culture to culture.[86] In western cultures, the MTL may unfold rightward (with the past on the left and the future on the right) since people read and write from left to right.[86] Western calendars also continue this trend by placing the past on the left with the future progressing toward the right. Conversely, Arabic, Farsi, Urdu and Israeli-Hebrew speakers read from right to left, and their MTLs unfold leftward (past on the right with future on the left), and evidence suggests these speakers organize time events in their minds like this as well.[86]

This linguistic evidence that abstract concepts are based in spatial concepts also reveals that the way humans mentally organize time events varies across cultures––that is, a certain specific mental organization system is not universal. So, although Western cultures typically associate past events with the left and future events with the right according to a certain MTL, this kind of horizontal, egocentric MTL is not the spatial organization of all cultures. Although most developed nations use an egocentric spatial system, there is recent evidence that some cultures use an allocentric spatialization, often based on environmental features.[85]

A recent study of the indigenous Yupno people of Papua New Guinea focused on the directional gestures used when individuals used time-related words.[85] When speaking of the past (such as «last year» or «past times»), individuals gestured downhill, where the river of the valley flowed into the ocean. When speaking of the future, they gestured uphill, toward the source of the river. This was common regardless of which direction the person faced, revealing that the Yupno people may use an allocentric MTL, in which time flows uphill.[85]

A similar study of the Pormpuraawans, an aboriginal group in Australia, revealed a similar distinction in which when asked to organize photos of a man aging «in order,» individuals consistently placed the youngest photos to the east and the oldest photos to the west, regardless of which direction they faced.[87] This directly clashed with an American group that consistently organized the photos from left to right. Therefore, this group also appears to have an allocentric MTL, but based on the cardinal directions instead of geographical features.[87]

The wide array of distinctions in the way different groups think about time leads to the broader question that different groups may also think about other abstract concepts in different ways as well, such as causality and number.[85]

Use

In sociology and anthropology, time discipline is the general name given to social and economic rules, conventions, customs, and expectations governing the measurement of time, the social currency and awareness of time measurements, and people’s expectations concerning the observance of these customs by others. Arlie Russell Hochschild[88][89] and Norbert Elias[90] have written on the use of time from a sociological perspective.

The use of time is an important issue in understanding human behavior, education, and travel behavior. Time-use research is a developing field of study. The question concerns how time is allocated across a number of activities (such as time spent at home, at work, shopping, etc.). Time use changes with technology, as the television or the Internet created new opportunities to use time in different ways. However, some aspects of time use are relatively stable over long periods of time, such as the amount of time spent traveling to work, which despite major changes in transport, has been observed to be about 20–30 minutes one-way for a large number of cities over a long period.

Time management is the organization of tasks or events by first estimating how much time a task requires and when it must be completed, and adjusting events that would interfere with its completion so it is done in the appropriate amount of time. Calendars and day planners are common examples of time management tools.

Sequence of events

A sequence of events, or series of events, is a sequence of items, facts, events, actions, changes, or procedural steps, arranged in time order (chronological order), often with causality relationships among the items.[91][92][93]
Because of causality, cause precedes effect, or cause and effect may appear together in a single item, but effect never precedes cause. A sequence of events can be presented in text, tables, charts, or timelines. The description of the items or events may include a timestamp. A sequence of events that includes the time along with place or location information to describe a sequential path may be referred to as a world line.

Uses of a sequence of events include stories,[94]
historical events (chronology), directions and steps in procedures,[95]
and timetables for scheduling activities. A sequence of events may also be used to help describe processes in science, technology, and medicine. A sequence of events may be focused on past events (e.g., stories, history, chronology), on future events that must be in a predetermined order (e.g., plans, schedules, procedures, timetables), or focused on the observation of past events with the expectation that the events will occur in the future (e.g., processes, projections). The use of a sequence of events occurs in fields as diverse as machines (cam timer), documentaries (Seconds From Disaster), law (choice of law), finance (directional-change intrinsic time), computer simulation (discrete event simulation), and electric power transmission[96]
(sequence of events recorder). A specific example of a sequence of events is the timeline of the Fukushima Daiichi nuclear disaster.

See also

  • List of UTC timing centers
  • Time metrology

Organizations

  • Antiquarian Horological Society – AHS (United Kingdom)
  • Chronometrophilia (Switzerland)
  • Deutsche Gesellschaft für Chronometrie – DGC (Germany)
  • National Association of Watch and Clock Collectors – NAWCC (United States)

References

  1. ^
    «Oxford Dictionaries:Time». Oxford University Press. 2011. Archived from the original on 4 July 2012. Retrieved 18 May 2017. The indefinite continued progress of existence and events in the past, present, and future regarded as a whole
  2. ^ a b * «Webster’s New World College Dictionary». 2010. Archived from the original on 5 August 2011. Retrieved 9 April 2011. 1.indefinite, unlimited duration in which things are considered as happening in the past, present, or future; every moment there has ever been or ever will be… a system of measuring duration 2.the period between two events or during which something exists, happens, or acts; measured or measurable interval
    • «The American Heritage Stedman’s Medical Dictionary». 2002. Archived from the original on 5 March 2012. Retrieved 9 April 2011. A duration or relation of events expressed in terms of past, present, and future, and measured in units such as minutes, hours, days, months, or years.
    • «Collins Language.com». HarperCollins. 2011. Archived from the original on 2 October 2011. Retrieved 18 December 2011. 1. The continuous passage of existence in which events pass from a state of potentiality in the future, through the present, to a state of finality in the past. 2. physics a quantity measuring duration, usually with reference to a periodic process such as the rotation of the earth or the frequency of electromagnetic radiation emitted from certain atoms. In classical mechanics, time is absolute in the sense that the time of an event is independent of the observer. According to the theory of relativity it depends on the observer’s frame of reference. Time is considered as a fourth coordinate required, along with three spatial coordinates, to specify an event.
    • «The American Heritage Science Dictionary @dictionary.com». 2002. Archived from the original on 5 March 2012. Retrieved 9 April 2011. 1. A continuous, measurable quantity in which events occur in a sequence proceeding from the past through the present to the future. 2a. An interval separating two points of this quantity; a duration. 2b. A system or reference frame in which such intervals are measured or such quantities are calculated.
    • «Eric Weisstein’s World of Science». 2007. Archived from the original on 29 November 2017. Retrieved 9 April 2011. A quantity used to specify the order in which events occurred and measure the amount by which one event preceded or followed another. In special relativity, ct (where c is the speed of light and t is time), plays the role of a fourth dimension.

  3. ^
    «Time». The American Heritage Dictionary of the English Language (Fourth ed.). 2011. Archived from the original on 19 July 2012. A nonspatial continuum in which events occur in apparently irreversible succession from the past through the present to the future.
  4. ^
    Merriam-Webster Dictionary Archived 8 May 2012 at the Wayback Machine the measured or measurable period during which an action, process, or condition exists or continues : duration; a nonspatial continuum which is measured in terms of events that succeed one another from past through present to future
  5. ^
    Compact Oxford English Dictionary A limited stretch or space of continued existence, as the interval between two successive events or acts, or the period through which an action, condition, or state continues. (1971).
  6. ^ a b c * «Internet Encyclopedia of Philosophy». 2010. Archived from the original on 11 April 2011. Retrieved 9 April 2011. Time is what clocks measure. We use time to place events in sequence one after the other, and we use time to compare how long events last… Among philosophers of physics, the most popular short answer to the question «What is physical time?» is that it is not a substance or object but rather a special system of relations among instantaneous events. This working definition is offered by Adolf Grünbaum who applies the contemporary mathematical theory of continuity to physical processes, and he says time is a linear continuum of instants and is a distinguished one-dimensional sub-space of four-dimensional spacetime.
    • «Dictionary.com Unabridged, based on Random House Dictionary». 2010. Archived from the original on 5 March 2012. Retrieved 9 April 2011. 1. the system of those sequential relations that any event has to any other, as past, present, or future; indefinite and continuous duration regarded as that in which events succeed one another…. 3. (sometimes initial capital letter) a system or method of measuring or reckoning the passage of time: mean time; apparent time; Greenwich Time. 4. a limited period or interval, as between two successive events: a long time…. 14. a particular or definite point in time, as indicated by a clock: What time is it? … 18. an indefinite, frequently prolonged period or duration in the future: Time will tell if what we have done here today was right.
    • Ivey, Donald G.; Hume, J.N.P. (1974). Physics. Vol. 1. Ronald Press. p. 65. Archived from the original on 14 April 2021. Retrieved 7 May 2020. Our operational definition of time is that time is what clocks measure.

  7. ^ a b c Le Poidevin, Robin (Winter 2004). «The Experience and Perception of Time». In Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy. Archived from the original on 22 October 2013. Retrieved 9 April 2011.
  8. ^ «Newton did for time what the Greek geometers did for space, idealized it into an exactly measurable dimension.» About Time: Einstein’s Unfinished Revolution, Paul Davies, p. 31, Simon & Schuster, 1996, ISBN 978-0-684-81822-1
  9. ^
    Sean M Carroll (2009). From Eternity to Here: The Quest for the Ultimate Theory of Time. Physics Today. Vol. 63. Dutton. pp. 54–55. Bibcode:2010PhT….63d..54C. doi:10.1063/1.3397046. ISBN 978-0-525-95133-9.
  10. ^
    Official Baseball Rules, 2011 Edition (2011). «Rules 8.03 and 8.04» (Free PDF download). Major League Baseball. Archived (PDF) from the original on 1 July 2017. Retrieved 18 May 2017. Rule 8.03 Such preparatory pitches shall not consume more than one minute of time…Rule 8.04 When the bases are unoccupied, the pitcher shall deliver the ball to the batter within 12 seconds…The 12-second timing starts when the pitcher is in possession of the ball and the batter is in the box, alert to the pitcher. The timing stops when the pitcher releases the ball.
  11. ^
    «Guinness Book of Baseball World Records». Guinness World Records, Ltd. Archived from the original on 6 June 2012. Retrieved 7 July 2012. The record for the fastest time for circling the bases is 13.3 seconds, set by Evar Swanson at Columbus, Ohio in 1932…The greatest reliably recorded speed at which a baseball has been pitched is 100.9 mph by Lynn Nolan Ryan (California Angels) at Anaheim Stadium in California on 20 August 1974.
  12. ^ Zeigler, Kenneth (2008). Getting organized at work : 24 lessons to set goals, establish priorities, and manage your time. McGraw-Hill. ISBN 978-0-07-159138-6. Archived from the original on 18 August 2020. Retrieved 30 July 2019. 108 pages.
  13. ^ a b
    Burnham, Douglas : Staffordshire University (2006). «Gottfried Wilhelm Leibniz (1646–1716) Metaphysics – 7. Space, Time, and Indiscernibles». The Internet Encyclopedia of Philosophy. Archived from the original on 14 May 2011. Retrieved 9 April 2011. First of all, Leibniz finds the idea that space and time might be substances or substance-like absurd (see, for example, «Correspondence with Clarke,» Leibniz’s Fourth Paper, §8ff). In short, an empty space would be a substance with no properties; it will be a substance that even God cannot modify or destroy…. That is, space and time are internal or intrinsic features of the complete concepts of things, not extrinsic…. Leibniz’s view has two major implications. First, there is no absolute location in either space or time; location is always the situation of an object or event relative to other objects and events. Second, space and time are not in themselves real (that is, not substances). Space and time are, rather, ideal. Space and time are just metaphysically illegitimate ways of perceiving certain virtual relations between substances. They are phenomena or, strictly speaking, illusions (although they are illusions that are well-founded upon the internal properties of substances)…. It is sometimes convenient to think of space and time as something «out there,» over and above the entities and their relations to each other, but this convenience must not be confused with reality. Space is nothing but the order of co-existent objects; time nothing but the order of successive events. This is usually called a relational theory of space and time.
  14. ^ Considine, Douglas M.; Considine, Glenn D. (1985). Process instruments and controls handbook (3 ed.). McGraw-Hill. pp. 18–61. Bibcode:1985pich.book…..C. ISBN 978-0-07-012436-3. Archived from the original on 31 December 2013. Retrieved 1 November 2016.
  15. ^ University of Science and Technology of China (2019). «Bridge between quantum mechanics and general relativity still possible». Archived from the original on 27 January 2021.
  16. ^ Duff, Okun, Veneziano, ibid. p. 3. «There is no well established terminology for the fundamental constants of Nature. … The absence of accurately defined terms or the uses (i.e., actually misuses) of ill-defined terms lead to confusion and proliferation of wrong statements.»
  17. ^ Rendall, Alan D. (2008). Partial Differential Equations in General Relativity (illustrated ed.). OUP Oxford. p. 9. ISBN 978-0-19-921540-9. Archived from the original on 14 April 2021. Retrieved 24 November 2020.
  18. ^ Richards, E. G. (1998). Mapping Time: The Calendar and its History. Oxford University Press. pp. 3–5. ISBN 978-0-19-850413-9.
  19. ^ Rudgley, Richard (1999). The Lost Civilizations of the Stone Age. New York: Simon & Schuster. pp. 86–105.
  20. ^ Van Stone, Mark (2011). «The Maya Long Count Calendar: An Introduction». Archaeoastronomy. 24: 8–11.
  21. ^ «French Republican Calendar | Chronology.» Encyclopædia Britannica Online. Encyclopædia Britannica, n.d. Web. 21 February 2016.
  22. ^ «Education». Archived from the original on 1 May 2019. Retrieved 1 July 2018.
  23. ^ Barnett, Jo Ellen Time’s Pendulum: The Quest to Capture Time – from Sundials to Atomic Clocks Plenum, 1998 ISBN 0-306-45787-3 p. 28
  24. ^ Lombardi, Michael A. «Why Is a Minute Divided into 60 Seconds, an Hour into 60 Minutes, Yet There Are Only 24 Hours in a Day?» Scientific American. Springer Nature, 5 March 2007. Web. 21 February 2016.
  25. ^ Barnett, ibid, p. 37.
  26. ^ Bergreen, Laurence. Over the Edge of the World: Magellan’s Terrifying Circumnavigation of the Globe (HarperCollins Publishers, 2003), ISBN 0-06-621173-5[page needed]
  27. ^ North, J. (2004) God’s Clockmaker: Richard of Wallingford and the Invention of Time. Oxbow Books. ISBN 1-85285-451-0
  28. ^ Watson, E (1979) «The St Albans Clock of Richard of Wallingford». Antiquarian Horology pp. 372–384.
  29. ^ a b «History of Clocks.» About.com Inventors. About.com, n.d. Web. 21 February 2016.
  30. ^ «NIST Unveils Chip-Scale Atomic Clock». Nist. 27 August 2004. Archived from the original on 22 May 2011. Retrieved 9 June 2011.
  31. ^ «New atomic clock can keep time for 200 million years: Super-precise instruments vital to deep space navigation». Vancouver Sun. 16 February 2008. Archived from the original on 11 February 2012. Retrieved 9 April 2011.
  32. ^ «NIST-F1 Cesium Fountain Clock». Archived from the original on 25 March 2020. Retrieved 24 July 2015.
  33. ^ «Byrhtferth of Ramsey». Encyclopædia Britannica. 2008. Archived from the original on 14 June 2020. Retrieved 15 September 2008.
  34. ^ «atom», Oxford English Dictionary, Draft Revision September 2008 (contains relevant citations from Byrhtferth’s Enchiridion)
  35. ^ «12 attoseconds is the world record for shortest controllable time». 12 May 2010. Archived from the original on 5 August 2011. Retrieved 19 April 2012.
  36. ^ Sargsyan, Nelli (9 April 2020). «Academia-dot-edu sends me gifts, i mean, notifications!». Feminist Anthropology. 1 (2): 149–151. doi:10.1002/fea2.12004. ISSN 2643-7961.
  37. ^ Rust, Eric Charles (1981). Religion, Revelation and Reason. Mercer University Press. p. 60. ISBN 978-0-86554-058-3. Archived from the original on 3 April 2017. Retrieved 20 August 2015. Profane time, as Eliade points out, is linear. As man dwelt increasingly in the profane and a sense of history developed, the desire to escape into the sacred began to drop in the background. The myths, tied up with cyclic time, were not so easily operative. […] So secular man became content with his linear time. He could not return to cyclic time and re-enter sacred space though its myths. […] Just here, as Eliade sees it, a new religious structure became available. In the Judaeo-Christian religions – Judaism, Christianity, Islam – history is taken seriously, and linear time is accepted. The cyclic time of the primordial mythical consciousness has been transformed into the time of profane man, but the mythical consciousness remains. It has been historicized. The Christian mythos and its accompanying ritual are bound up, for example, with history and center in authentic history, especially the Christ-event. Sacred space, the Transcendent Presence, is thus opened up to secular man because it meets him where he is, in the linear flow of secular time. The Christian myth gives such time a beginning in creation, a center in the Christ-event, and an end in the final consummation.
  38. ^ Betz, Hans Dieter, ed. (2008). Religion Past & Present: Encyclopedia of Theology and Religion. Vol. 4: Dev-Ezr (4 ed.). Brill. p. 101. ISBN 978-90-04-14688-4. Archived from the original on 24 September 2015. Retrieved 20 August 2015. […] God produces a creation with a directional time structure […].
  39. ^ Lundin, Roger; Thiselton, Anthony C.; Walhout, Clarence (1999). The Promise of Hermeneutics. Wm. B. Eerdmans Publishing. p. 121. ISBN 978-0-8028-4635-8. Archived from the original on 19 September 2015. Retrieved 20 August 2015. We need to note the close ties between teleology, eschatology, and utopia. In Christian theology, the understanding of the teleology of particular actions is ultimately related to the teleology of history in general, which is the concern of eschatology.
  40. ^ «(Dictionary Entry)». Henry George Liddell, Robert Scott, A Greek-English Lexicon. Archived from the original on 7 May 2022. Retrieved 13 July 2015.
  41. ^ Hus, Boʿaz; Pasi, Marco; Stuckrad, Kocku von (2011). Kabbalah and Modernity: Interpretations, Transformations, Adaptations. BRILL. ISBN 978-90-04-18284-4. Archived from the original on 13 May 2016. Retrieved 27 February 2016.
  42. ^ Wolfson, Elliot R. (2006). Alef, Mem, Tau: Kabbalistic Musings on Time, Truth, and Death. University of California Press. p. 111. ISBN 978-0-520-93231-9. Archived from the original on 19 August 2020. Retrieved 7 May 2020. Extract of page 111 Archived 11 May 2022 at the Wayback Machine
  43. ^
    Rynasiewicz, Robert : Johns Hopkins University (12 August 2004). «Newton’s Views on Space, Time, and Motion». Stanford Encyclopedia of Philosophy. Stanford University. Archived from the original on 11 December 2015. Retrieved 5 February 2012. Newton did not regard space and time as genuine substances (as are, paradigmatically, bodies and minds), but rather as real entities with their own manner of existence as necessitated by God’s existence … To paraphrase: Absolute, true, and mathematical time, from its own nature, passes equably without relation to anything external, and thus without reference to any change or way of measuring of time (e.g., the hour, day, month, or year).
  44. ^ Markosian, Ned. «Time». In Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy (Winter 2002 Edition). Archived from the original on 14 September 2006. Retrieved 23 September 2011. The opposing view, normally referred to either as «Platonism with Respect to Time» or as «Absolutism with Respect to Time», has been defended by Plato, Newton, and others. On this view, time is like an empty container into which events may be placed; but it is a container that exists independently of whether or not anything is placed in it.
  45. ^
    Mattey, G.J. (22 January 1997). «Critique of Pure Reason, Lecture notes: Philosophy 175 UC Davis». Archived from the original on 14 March 2005. Retrieved 9 April 2011. What is correct in the Leibnizian view was its anti-metaphysical stance. Space and time do not exist in and of themselves, but in some sense are the product of the way we represent things. The[y] are ideal, though not in the sense in which Leibniz thought they are ideal (figments of the imagination). The ideality of space is its mind-dependence: it is only a condition of sensibility…. Kant concluded … «absolute space is not an object of outer sensation; it is rather a fundamental concept which first of all makes possible all such outer sensation.»…Much of the argumentation pertaining to space is applicable, mutatis mutandis, to time, so I will not rehearse the arguments. As space is the form of outer intuition, so time is the form of inner intuition…. Kant claimed that time is real, it is «the real form of inner intuition.»
  46. ^
    McCormick, Matt : California State University, Sacramento (2006). «Immanuel Kant (1724–1804) Metaphysics: 4. Kant’s Transcendental Idealism». The Internet Encyclopedia of Philosophy. Archived from the original on 26 April 2011. Retrieved 9 April 2011. Time, Kant argues, is also necessary as a form or condition of our intuitions of objects. The idea of time itself cannot be gathered from experience because succession and simultaneity of objects, the phenomena that would indicate the passage of time, would be impossible to represent if we did not already possess the capacity to represent objects in time…. Another way to put the point is to say that the fact that the mind of the knower makes the a priori contribution does not mean that space and time or the categories are mere figments of the imagination. Kant is an empirical realist about the world we experience; we can know objects as they appear to us. He gives a robust defense of science and the study of the natural world from his argument about the mind’s role in making nature. All discursive, rational beings must conceive of the physical world as spatially and temporally unified, he argues.
  47. ^
    Carrol, Sean, Chapter One, Section Two, Plume, 2010 (2010). From Eternity to Here: The Quest for the Ultimate Theory of Time. ISBN 978-0-452-29654-1. As human beings we ‘feel’ the passage of time.
  48. ^
    Lehar, Steve. (2000). The Function of Conscious Experience: An Analogical Paradigm of Perception and Behavior Archived 21 October 2015 at the Wayback Machine, Consciousness and Cognition.
  49. ^ a b c «Philosophy of Time – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  50. ^ a b c d e f «Ancient Philosophy – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  51. ^ a b c Bunnag, Anawat (August 2017). «The concept of time in philosophy: A comparative study between Theravada Buddhist and Henri Bergson’s concept of time from Thai philosophers’ perspectives». Kasetsart Journal of Social Sciences. doi:10.1016/j.kjss.2017.07.007. Archived from the original on 2 April 2019. Retrieved 11 April 2019.
  52. ^ Layton, Robert (1994). Who needs the past?: indigenous values and archaeology (2nd ed.). Routledge. p. 7. ISBN 978-0-415-09558-7. Archived from the original on 24 December 2011. Retrieved 9 April 2011., Introduction, p. 7 Archived 4 April 2017 at the Wayback Machine
  53. ^ Dagobert Runes, Dictionary of Philosophy, p. 318
  54. ^ Hardie, R.P.; Gaye, R.K. «Physics by Aristotle». MIT. Archived from the original on 26 June 2014. Retrieved 4 May 2014.«Time then is a kind of number. (Number, we must note, is used in two senses – both of what is counted or the countable and also of that with which we count. Time obviously is what is counted, not that with which we count: there are different kinds of thing.) […] It is clear, then, that time is ‘number of movement in respect of the before and after’, and is continuous since it is an attribute of what is continuous. «
  55. ^
    Augustine of Hippo. Confessions. Archived from the original on 19 January 2012. Retrieved 9 April 2011. Book 11, Chapter 14.
  56. ^ Gottfried Martin, Kant’s Metaphysics and Theory of Science
  57. ^ a b c d e «Early Modern Philosophy – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  58. ^ Jankowiak, Tim. «Immanuel Kant». Archived from the original on 23 May 2021. Retrieved 2 April 2019.
  59. ^
    Kant, Immanuel (1787). The Critique of Pure Reason, 2nd edition. Archived from the original on 13 April 2011. Retrieved 9 April 2011. translated by J.M.D. Meiklejohn, eBooks@Adelaide, 2004
  60. ^ Bergson, Henri (1907) Creative Evolution. trans. by Arthur Mitchell. Mineola: Dover, 1998.
  61. ^ Balslev, Anindita N.; Jitendranath Mohanty (November 1992). Religion and Time. Studies in the History of Religions, 54. The Netherlands: Brill Academic Publishers. pp. 53–59. ISBN 978-90-04-09583-0. Archived from the original on 20 August 2020. Retrieved 30 July 2019.
  62. ^ Martin Heidegger (1962). «V». Being and Time. p. 425. ISBN 978-0-631-19770-6. Archived from the original on 19 August 2020. Retrieved 30 July 2019.
  63. ^ a b c d «Modern Philosophy – Exactly What Is Time?». Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  64. ^ Harry Foundalis. «You are about to disappear». Archived from the original on 12 May 2011. Retrieved 9 April 2011.
  65. ^ Huston, Tom. «Buddhism and the illusion of time». Archived from the original on 8 July 2011. Retrieved 9 April 2011.
  66. ^ Garfield, Jay L. (1995). The fundamental wisdom of the middle way: Nāgārjuna’s Mūlamadhyamakakārikā. New York: Oxford University Press. ISBN 978-0-19-509336-0. Archived from the original on 19 August 2020. Retrieved 19 May 2018.
  67. ^ «Time is an illusion?». 24 March 2007. Archived from the original on 8 July 2011. Retrieved 9 April 2011.
  68. ^ Herman M. Schwartz, Introduction to Special Relativity, McGraw-Hill Book Company, 1968, hardcover 442 pages, see ISBN 0-88275-478-5 (1977 edition), pp. 10–13
  69. ^ A. Einstein, H. A. Lorentz, H. Weyl, H. Minkowski, The Principle of Relativity, Dover Publications, Inc, 2000, softcover 216 pages, ISBN 0-486-60081-5, See pp. 37–65 for an English translation of Einstein’s original 1905 paper.
  70. ^ «Albert Einstein’s Theory of Relativity». YouTube. 30 November 2011. Archived from the original on 17 October 2013. Retrieved 24 September 2013.
  71. ^ «Time Travel: Einstein’s big idea (Theory of Relativity)». YouTube. 9 January 2007. Archived from the original on 17 October 2013. Retrieved 24 September 2013.
  72. ^ Knudsen, Jens M.; Hjorth, Poul (2012). Elements of Newtonian Mechanics (illustrated ed.). Springer Science & Business Media. p. 30. ISBN 978-3-642-97599-8. Extract of p. 30
  73. ^ Greene, Brian (2005). «Chapter 6: Chance and the Arrow». The Fabric of the Cosmos. London. ISBN 978-0-14-195995-5. Archived from the original on 20 August 2020. Retrieved 16 September 2017.
  74. ^ Andersen, Holly; Rick Grush (2009). «A brief history of time-consciousness: historical precursors to James and Husserl» (PDF). Journal of the History of Philosophy. 47 (2): 277–307. doi:10.1353/hph.0.0118. S2CID 16379171. Archived from the original (PDF) on 16 February 2008. Retrieved 9 April 2011.
  75. ^ Wittmann, M.; Leland D.S.; Churan J.; Paulus M.P. (8 October 2007). «Impaired time perception and motor timing in stimulant-dependent subjects». Drug Alcohol Depend. 90 (2–3): 183–192. doi:10.1016/j.drugalcdep.2007.03.005. PMC 1997301. PMID 17434690.
  76. ^
    Cheng, Ruey-Kuang; Macdonald, Christopher J.; Meck, Warren H. (2006). «Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing» (online abstract). Pharmacology Biochemistry and Behavior. 85 (1): 114–122. doi:10.1016/j.pbb.2006.07.019. PMID 16920182. S2CID 42295255. Archived from the original on 10 August 2011. Retrieved 9 April 2011.
  77. ^ Tinklenberg, Jared R.; Walton T. Roth1; Bert S. Kopell (January 1976). «Marijuana and ethanol: Differential effects on time perception, heart rate, and subjective response». Psychopharmacology. 49 (3): 275–279. doi:10.1007/BF00426830. PMID 826945. S2CID 25928542.
  78. ^ Arzy, Shahar; Istvan Molnar-Szakacs; Olaf Blanke (18 June 2008). «Self in Time: Imagined Self-Location Influences Neural Activity Related to Mental Time Travel». The Journal of Neuroscience. 28 (25): 6502–6507. doi:10.1523/JNEUROSCI.5712-07.2008. PMC 6670885. PMID 18562621.
  79. ^ a b Carter, Rita (2009). The Human Brain Book. Dorling Kindersley Publishing. pp. 186–187. ISBN 978-0-7566-5441-2. Archived from the original on 13 May 2016. Retrieved 27 February 2016.
  80. ^ Kennedy-Moore, Eileen (28 March 2014). «Time Management for Kids». Psychology Today. Archived from the original on 30 July 2022. Retrieved 26 April 2014.
  81. ^ Wada Y, Masuda T, Noguchi K, 2005, «Temporal illusion called ‘kappa effect’ in event perception» Perception 34 ECVP Abstract Supplement
  82. ^ Adler, Robert. «Look how time flies». Archived from the original on 14 June 2011. Retrieved 9 April 2011.
  83. ^ Bowers, Kenneth; Brenneman, Heather A. (January 1979). «Hypnosis and the perception of time». International Journal of Clinical and Experimental Hypnosis. 27 (1): 29–41. doi:10.1080/00207147908407540. PMID 541126.
  84. ^ Gruber, Ronald P.; Wagner, Lawrence F.; Block, Richard A. (2000). «Subjective Time Versus Proper (Clock) Time». In Buccheri, R.; Di Gesù, V.; Saniga, Metod (eds.). Studies on the structure of time: from physics to psycho(patho)logy. Springer. p. 54. ISBN 978-0-306-46439-3. Archived from the original on 21 July 2011. Retrieved 9 April 2011. Extract of page 54 Archived 13 May 2016 at the Wayback Machine
  85. ^ a b c d e f Núñez, Rafael; Cooperrider, Kensy; Doan, D; Wassmann, Jürg (1 July 2012). «Contours of time: Topographic construals of past, present, and future in the Yupno valley of Papua New Guinea». Cognition. 124 (1): 25–35. doi:10.1016/j.cognition.2012.03.007. PMID 22542697. S2CID 17215084.
  86. ^ a b c d Bottini, Roberto; Crepaldi, Davide; Casasanto, Daniel; Crollen, Virgine; Collignon, Olivier (1 August 2015). «Space and time in the sighted and blind». Cognition. 141: 67–72. doi:10.1016/j.cognition.2015.04.004. hdl:2078.1/199842. PMID 25935747. S2CID 14646964.
  87. ^ a b Boroditsky, Lera; Gaby, Alice (2010). «Remembrances of Times East». Psychological Science. 21 (11): 1635–9. doi:10.1177/0956797610386621. PMID 20959511. S2CID 22097776.
  88. ^ Russell Hochschild, Arlie (1997). The time bind: when work becomes home and home becomes work. New York: Metropolitan Books. ISBN 978-0-8050-4471-3
  89. ^ Russell Hochschild, Arlie (20 April 1997). «There’s no place like work». New York Times Magazine. Archived from the original on 23 March 2017. Retrieved 20 February 2017.
  90. ^ Elias, Norbert (1992). Time: an essay. Oxford, UK Cambridge, US: Blackwell. ISBN 978-0-631-15798-4.
  91. ^ «Sequence – Order of Important Events» (PDF). Austin Independent School District. 2009. Archived from the original (PDF) on 27 September 2011.
  92. ^
    «Sequence of Events Worksheets». Reference.com. Archived from the original on 13 October 2010.
  93. ^
    Compiled by David Luckham & Roy Schulte (23 August 2011). «Event Processing Glossary – Version 2.0». Complex Event Processing. Archived from the original on 15 October 2011.
  94. ^ Richard Nordquist. «narrative». About.com. Archived from the original on 4 September 2011.
  95. ^ David J. Piasecki. «Inventory Accuracy Glossary». AccuracyBook.com (OPS Publishing). Archived from the original on 3 September 2011.
  96. ^ «Utility Communications Architecture (UCA) glossary». NettedAutomation. Archived from the original on 10 December 2011.

Further reading

  • Barbour, Julian (1999). The End of Time: The Next Revolution in Our Understanding of the Universe. Oxford University Press. ISBN 978-0-19-514592-2.
  • Craig Callendar, Introducing Time, Icon Books, 2010, ISBN 978-1-84831-120-6
  • Das, Tushar Kanti (1990). The Time Dimension: An Interdisciplinary Guide. New York: Praeger. ISBN 978-0-275-92681-6. – Research bibliography
  • Davies, Paul (1996). About Time: Einstein’s Unfinished Revolution. New York: Simon & Schuster Paperbacks. ISBN 978-0-684-81822-1.
  • Feynman, Richard (1994) [1965]. The Character of Physical Law. Cambridge (Mass): The MIT Press. pp. 108–126. ISBN 978-0-262-56003-0.
  • Galison, Peter (1992). Einstein’s Clocks and Poincaré’s Maps: Empires of Time. New York: W.W. Norton. ISBN 978-0-393-02001-4.
  • Benjamin Gal-Or, Cosmology, Physics and Philosophy, Springer Verlag, 1981, 1983, 1987, ISBN 0-387-90581-2, 0-387-96526-2.
  • Charlie Gere, (2005) Art, Time and Technology: Histories of the Disappearing Body, Berg
  • Highfield, Roger (1992). Arrow of Time: A Voyage through Science to Solve Time’s Greatest Mystery. Random House. ISBN 978-0-449-90723-8.
  • Landes, David (2000). Revolution in Time. Harvard University Press. ISBN 978-0-674-00282-1.
  • Lebowitz, Joel L. (2008). «Time’s arrow and Boltzmann’s entropy». Scholarpedia. 3 (4): 3448. Bibcode:2008SchpJ…3.3448L. doi:10.4249/scholarpedia.3448.
  • Mermin, N. David (2005). It’s About Time: Understanding Einstein’s Relativity. Princeton University Press. ISBN 978-0-691-12201-4.
  • Morris, Richard (1985). Time’s Arrows: Scientific Attitudes Toward Time. New York: Simon and Schuster. ISBN 978-0-671-61766-0.
  • Penrose, Roger (1999) [1989]. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. New York: Oxford University Press. pp. 391–417. ISBN 978-0-19-286198-6. Archived from the original on 26 December 2010. Retrieved 9 April 2011.
  • Price, Huw (1996). Time’s Arrow and Archimedes’ Point. Oxford University Press. ISBN 978-0-19-511798-1. Retrieved 9 April 2011.
  • Reichenbach, Hans (1999) [1956]. The Direction of Time. New York: Dover. ISBN 978-0-486-40926-9.
  • Rovelli, Carlo (2006). What is time? What is space?. Rome: Di Renzo Editore. ISBN 978-88-8323-146-9. Archived from the original on 27 January 2007.
  • Rovelli, Carlo (2018). The Order of Time. New York: Riverhead. ISBN 978-0735216105.
  • Stiegler, Bernard, Technics and Time, 1: The Fault of Epimetheus
  • Roberto Mangabeira Unger and Lee Smolin, The Singular Universe and the Reality of Time, Cambridge University Press, 2014, ISBN 978-1-107-07406-4.
  • Whitrow, Gerald J. (1973). The Nature of Time. Holt, Rinehart and Wilson (New York).
  • Whitrow, Gerald J. (1980). The Natural Philosophy of Time. Clarendon Press (Oxford).
  • Whitrow, Gerald J. (1988). Time in History. The evolution of our general awareness of time and temporal perspective. Oxford University Press. ISBN 978-0-19-285211-3.

External links

  • Different systems of measuring time
  • Time on In Our Time at the BBC
  • Time in the Internet Encyclopedia of Philosophy, by Bradley Dowden.
  • Le Poidevin, Robin (Winter 2004). «The Experience and Perception of Time». In Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy. Retrieved 9 April 2011.

Среди прочих обозначений наиболее часто школьников интересует вопрос о том, как в математике обозначается скорость, время, расстояние. Связано это с тем, что обозначения этих величин (особенно — скорости) в учебниках по математике и физике можно увидеть различные: с чертой над буквой v (читается: [вэ]), со стрелкой над буквой v, а также буквы v, выделенные курсивом или жирным шрифтом.

Скорость в математике обозначается буквой v, но её написание принято различным для рукописного и печатного текста.

В рукописном тексте скорость движения обычно обозначается строчной (т.е. маленькой) прописной (т.е. не печатной, как в тексте из газеты, а написанной от руки так, как если бы писали письмо) буквой v. В учебниках по математике (т.е. в печатном тексте) обычно скорость движения обозначается печатной буквой v, прямой или выделенной курсивом. Такое обозначение принимается практически во всех задачах по математике, исключение составляют лишь задачи, иллюстрирующие тему «Векторы» (в этом случае обозначение принимается таким же, как и в физике).

В физике (а точнее – в её разделе «механика») обозначение скорости зависит от того, нужно ли в данной задаче учитывать тот факт, что скорость – величина векторная. Там, где учитывать это не нужно, скорость обозначается строчной буквой v (печатной или прописной, так же, как и в математике). Если же необходимо учитывать то, что скорость характеризуется не только модулем (т.е. величиной), но и направлением, скорость изображается либо прописной буквой v с направленной слева направо стрелкой над этой буквой, либо той же прописной буквой v с горизонтальной чертой над этой буквой. В печатном тексте в этом случае обычно скорость обозначают либо печатной строчной буквой v со стрелкой или чертой над буквой, либо печатной буквой v, выделенной жирным шрифтом (т.е. так: v).

Буквой v обозначают скорость движения тел. Для обозначения скорости света и скорости звука принята другая, отличная от обозначения скорости движения тел, буква. Скорость света обозначается буквой «с» (скорость света в вакууме составляет с = 2,9979х108 м/с = 2,9979х105 км/с). Скорость звука так же обозначается буквой с (читается: [цэ]).

Ускорение обозначается буквой а (исключение составляет лишь ускорение свободного падения, эта величина обозначается буквой g (читается [жэ]), g = 9,81 м/с2). Если необходимо подчеркнуть, что эта величина – векторная (например, это часто требуется в физике), то над буквой «а» изображается либо горизонтальная черта, либо горизонтальная стрелка (так же, как и при обозначении скорости). В печатном тексте для обозначения ускорения как векторной величины может использоваться и буква «а», выделенная жирным шрифтом.

Если при решении задачи по физике или математике необходимо обозначить время, то это пишется буквой так: t (читается: [тэ]), а если расстояниепишется буквой так: s (читается: [эс]). Для обозначения пути обычно используется строчная (маленькая) буква [эль], т.е. l, реже — заглавная (большая) буква [эль], т.е. L. Чтобы обозначение пути «l» не было похоже на «единицу», эту букву пишут курсивом, т.е. с наклоном.

Вообще, вопросы «как в математике пишется скорость», «как в математике пишется время», «как в математике пишется расстояние» некорректны. Лучше формулировать такой вопрос, употребляя не слово «пишется», а слово «обозначается».

Источники: 

  • Яворский Б.М., Детлаф А.А., Лебедев А.К. Справочник по физике для инженеров и студентов вузов 
  • Справочник по элементарной математике. Геометрия, тригонометрия, векторная алгебра/ Под ред. П.Ф. Фильчакова 
  • Каплан И.А. Практические занятия по высшей математике

Дополнительная информация:

  • ru.wikipedia.org – Список обозначений в физике
  • azbyka.kz — Урок математики «Скорость, время, расстояние»

маятник Фуко в Пантеоне в Париж может измерять время, а также демонстрировать вращение Земли.

Время в физике определяет его измерением : время — это то, что читают часы. В классической нерелятивистской физике это скалярная величина (часто обозначаемая символом t { displaystyle t}t) и, как length, масса и заряд обычно описываются как основная величина. Время можно математически использовать с другими физическими величинами от до , чтобы получить другие понятия, такие как движение, кинетическая энергия и зависящие от времени поля. Хронометраж представляет собой комплекс технологических и научных вопросов и является частью основы ведения учета.

Содержание

  • 1 Маркеры времени
  • 2 Единица измерения времени: секунда
    • 2.1 Состояние дел в хронометрии
  • 3 Представления о времени
    • 3.1 Закономерности в природе
      • 3.1.1 Механические часы
    • 3.2 Галилей: течение времени
    • 3.3 Физика Ньютона: линейное время
    • 3.4 Термодинамика и парадокс необратимости
    • 3.5 Электромагнетизм и скорость света
    • 3.6 Физика Эйнштейна: пространство-время
    • 3.7 Время в квантовой механике
  • 4 Динамические системы
  • 5 Сигнализация
  • 6 Технология для стандартов хронометража
  • 7 Время в космологии
  • 8 Reprise
  • 9 См. Также
  • 10 Ссылки
  • 11 Дополнительная литература
  • 12 Внешние ссылки

Маркеры времени

До появления часов время измерялось теми физическими процессами, которые были понятны каждой эпохе цивилизации:

  • первое появление (см.: гелиакальный восход ) Сириус, чтобы отметить разлив Нила каждый год
  • периодическая последовательность ночи и дня, по-видимому вечно
  • положение на горизонте первого появления солнца на рассвете
  • положение солнца на небе
  • отметка момента полдень днем
  • длина тени, отбрасываемой гномоном

В конце концов, стало возможным использовать течение времени с помощью приборов, используя рабочие определения. Одновременно наша концепция времени эволюционировала, как показано ниже.

Единица измерения времени: секунда

В Международной системе (СИ), единицей времени секунда (символ: s { displaystyle mathrm {s}}mathrm {s} ). Это базовая единица СИ, и с 1967 года она определяет как «продолжительность 9,192,631,770 [циклов] излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133 ». Это определение основано на работе цезиевых атомных часов. Эти часы стали в качестве основных эталонов примерно после 1955 года и используются с тех пор.

Современное состояние хронометража

Предпосылки
  • Измерение
  • Научная нотация
  • Натуральные единицы

UTC отметка времени в использовании во всем мире — это атомный стандарт времени. Относительная точность такого стандарта времени составляет порядок 10 (что соответствует 1 секунде примерно через 30 миллионов лет). Наименьший временной шаг, который считается теоретически наблюдаемым, планковским временем, составляет 5,391 × 10 секунд — на много порядков ниже разрешающей способности текущих стандартов времени.

атомные часы цезия стали после 1950 года, когда достижения в области электроники позволили надежно измерить генерируемые ими микроволновые частоты. По мере дальнейшего развития исследование атомных часов продвигалось к все более высоким частотам, которые обеспечивали более высокую высокую точность. Разработаны часы, основанные на этих методах, но еще не используются в качестве основных эталонов.

Представления о времени

Галактика Андромеды (M31 ) находится на расстоянии двух миллионов световых лет от нас. Таким образом, мы наблюдаем свет M31, появившийся два миллиона лет назад, время до того, как люди существовали на Земле.

Галилей, Ньютон и большинство людей вплоть до 20-го века. думал, что время везде одинаково для всех. Это основа для шкалы времени, где время — это параметр . Современное понимание времени основано на теории относительности Эйнштейна , в которой скорость времени изменяется по-разному в зависимости от относительного движения, а пространство и время — это слились с пространством -временем, где мы живем на мировой линии, а не на временной шкале. В этом представлении время — это координата . Согласно преобладающей космологической модели теории Большого взрыва, само время началось как часть всей Вселенной около 13,8 миллиарда лет назад..

Закономерности в природе

Для измерения времени можно записать количество появлений (событий) определенного периодического явления. Регулярная повторяемость сезонов, движения солнца, луны и звезд были отмечены и занесены в таблицу за тысячелетия, прежде чем были сформулированы законы физики. Солнце было вершиной течения времени, но время было известно только часу в течение тысячелетий, следовательно, использование гномона был известен в большей части мира, особенно в Евразии, и, по крайней мере, на юге, до джунглей Юго-Восточной Азии.

В частности, астрономические обсерватории, предназначенные для религиозных целей, стали точными достаточно, чтобы установить регулярные движения звезд и даже некоторых планет.

Сначала хронометраж выполнялся священниками вручную, а затем в коммерческих целях, когда сторожа в своих обязанностях отмечали время. Табулирование равноденствия, песочных часов и водяных часов становилось все более и более точным и, наконец, надежным. На кораблях в море мальчики поворачивали песочные часы и называли часы.

Механические часы

Ричард Уоллингфордский (1292–1336), аббат аббатства Святого Олбана, знаменито построил механические часы как астрономические оррери около 1330 г.

Ко времени Ричарда Уоллингфорда использование трещоток и шестерен предоставлено городам Европы создать механизмы для отображения времени на своих соответствующих городских часах; времени научной революции стали достаточно миниатюрными, чтобы можно было пользоваться личными часами или, возможно, карманными часами. Поначалу их могли себе позволить только короли. Маятниковые часы широко использовались в 18-19 веках. В основном они были заменены на кварцевые и цифровые часы. Атомные часы теоретически могут быть сокращены время миллионы лет. Они подходят для стандартов и используются в научных целях.

Галилей: течение времени

В 1583 году Галилео Галилей (1564–1642) обнаружил, что гармоническое движение маятника имеет постоянный период., который он узнал, рассчитав движение качающейся лампы в гармоническом движении при массе в соборе Пизы, с его импульсным.

В своей работе Две новые науки (1638) Галилей использовал водяные часы для измерения времени, за которое бронзовый шар катился на известное расстояние вниз по <369.>наклонная плоскость ; эти часы были

«большим сосудом с водой, помещенным на возвышении; дающей тонкую струю воды, которую мыли в небольшой стакан во время каждого сеанса. Различия и соотношения этих весов дали нам различия и соотношения раз, и это с таким точностью, что, хотя операция повторялась много-много раз, в результатах не было заметных расхождений. «

Экспериментальная установка Галилея для измерения буквального потока времени, чтобы для описания движения времени, предшествовавшего высказыванию Исаака Ньютона в его Principia :

, я не определяю время, пространство, поместите и движение, как хорошо всем известно.

Галилеевы преобразования предполагают, что время — это с Пример для всех систем отсчета.

Физика Ньютона: линейное время

Примерно в 1665 году, когда Исаак Ньютон (1643–1727) определил движение объектов, подпадающих под гравитация, первая ясная формулировка для математической физики трактовки времени началась: линейное время, задуманное как универсальные часы.

Абсолютное, истинное и математическое время само по себе и из своей собственной природы одинаково, безотносительно к чему-либо внешнему, и под другим именем длительностью: относительное, кажущееся и обычное время, есть некоторое разумное и внешнее конкретное или неоднозначное) измерение продолжительности с помощью движения, которое обычно используется вместо истинного времени; например, час, день, месяц, год.

Механизм водяных часов, описанный Галилео, разработан для обеспечения ламинарного потока воды во время экспериментов, таким образом обеспечение потока воды на время экспериментов и воплощение того, что Ньютон называл продолжительностью.

В этом разделе перечисленные ниже отношения рассматривают время как параметр, который служит показанным поведением рассматриваемой физической системы. флюэнты Ньютона рассматривают линейный поток времени (то, что он назвал математическим временем), время можно рассматривать как линейнояющийся параметр, абстракцию хода часов на циферблате часов. Затем календари и судовые журналы можно было сопоставить с маршем часов, дней, месяцев, лет и столетий.

Предпосылки
  • дифференциальные уравнения
  • уравнения в частных производных

Термодинамика и парадокс необратимости

К 1798 году Бенджамин Томпсон (1753–1814) открыл эту работу можно преобразовать в тепло без ограничений — предшественник сохранения или

  • 1-й закон термодинамики

В 1824 г. Сади Карно (1796–1832) провел научный анализ паровой двигатель с его циклом Карно, абстрактным двигателем. Рудольф Клаузиус <(1822–1892>) отмечает меру беспорядка, или энтропию, которая влияет на постоянно уменьшающееся количество свободной энергии, доступной для двигателя Карно в:

  • 2-й закон термодинамики

Таким образом, непрерывное движение термодинамической системы от меньшей к большей энтропии при любой заданной температуре определяет стрелу времени. В частности, Стивен Хокинг выделяет три стрелы времени:

  • Психологическая стрела времени — наше восприятие неумолимого потока.
  • Термодинамическая стрела времени — отличается расширением энтропия.
  • Космологическая стрела времени — отличается расширением Вселенной.

Энтропия максимальна в изолированной термодинамической системе и системе увеличивается. Напротив, Эрвин Шредингер (1887–1961) указал, что жизнь зависит от «потока отрицательной энтропии». Илья Пригожин (1917–2003), заявил что другие термодинамические системы, которые, как и жизнь, также далеки от равновесия, также могут демонстрировать стабильные пространственно-временные структуры. Вскоре после этого появились сообщения о реакции Белоусова — Жаботинского, которые демонстрируют колеблющиеся цвета в химическом растворе. Эти неравновесные термодинамические ветви достигают точки бифуркации, которая является нестабильной, и вместо нее устойчивой становится другая термодинамическая ветвь.

Электромагнетизм и скорость света

В 1864 г. Джеймс Клерк Максвелл (1831–1879) представил комбинированную теорию электричества и магнетизма. Он использовал все известные законы, относящиеся к двум случаям, в четыре уравнения. Эти уравнения исчисления, в которых используется оператор дель (∇ { displaystyle nabla}nabla ), известные как уравнения Максвелла для электромагнетизма.

В свободном пространстве (то есть в пространстве, не содержащем электрические зарядов ) уравнения принимают форму (с использованием СИ ):

Предки
  • изображения обозначения
  • уравнения в частных производных
∇ × E = — ∂ B ∂ t { displaystyle nabla times mathbf {E} = — { frac { partial mathbf {B}} { partial t}} }nabla times mathbf {E} =-{frac {partial mathbf {B} }{partial t}}
∇ × B знак равно μ 0 ε 0 ∂ E ∂ T знак равно 1 с 2 ∂ E ∂ t { displaystyle nabla times mathbf {B} = mu _ {0} varepsilon _ {0 } { frac { partial mathbf {E}} { partial t}} = { frac {1} {c ^ {2}}} { frac { partial mathbf {E}} { partial t }}}nabla times mathbf {B} =mu _{0}varepsilon _{0}{frac {partial mathbf {E} }{partial t}}={frac {1}{c^{2}}}{frac {partial mathbf {E} }{partial t}}
∇ ⋅ E = 0 { displaystyle nabla cdot mathbf {E} = 0}nabla cdot mathbf {E} =0
∇ ⋅ B = 0 { displaystyle nabla cdot mathbf {B} = 0}nabla cdot mathbf {B} =0

где

ε0и μ 0 — элект рическая проницаемость и магнитная проницаемость свободного пространства ;
c = 1 / ϵ 0 μ 0 { displaystyle 1 / { sqrt { eps ilon _ {0} mu _ {0}} }}1/{sqrt {epsilon _{0}mu _{0}}}— скорость в свободном пространстве, 299 792 458 m /s ;
E- электрическое поле;
B- магнитное поле.

Эти уравнения допускают решения в виде электромагнитных волн. Волнаана электрического полем и магнитным полем, которые колеблются вместе, перпендикулярно друг и другом представлении. Эти волны всегда распространяются со скоростью света c, независимо от скорости электрического заряда, создаваемого их.

Тот факт, что свет всегда движется со скоростью c, был бы несовместим с теорией относительности Галилея, если бы уравнения Максвелла выполнялись в любой инерциальной системе отсчета (системе отсчета с постоянной скоростью), потому что преобразования Галилея предсказывают уменьшение (или увеличение) скорости в системе отсчета наблюдателя, прогрессирующего (или антипараллельно) свету.

Ожидалось, что существует одна абсолютная система отсчета, система светоносного эфира, в уравнениях Максвелла остается неизменными в определенной форме.

Эксперимент Майкельсона-Морли не смог построить никакой разницы в относительной скорости света из-за движения Земли относительно светоносного эфира, предполагая, что уравнения Максвелла на самом деле действительно держать во всех кадрах. В 1875 году Хендрик Лоренц (1853–1928) открыл преобразования Лоренца, которые позволяют добиться отрицательный результательсона и Морли. Анри Пуанкаре (1854–1912) отметила впечатление Лоренца и популяризировал его. В частности, описание вагона можно найти в Наука и гипотезы, который был опубликован до статей Эйнштейна 1905 года.

Преобразование Лоренца предсказало сокращение пространства и замедление времени ; до 1905года первое интерпретировалось как физическое сжатие объектов, движущихся относительно эфира, из-за модификации межмолекулярных сил (электрической природы), в то время как последнее считалось просто математическим условием.

Физика Эйнштейна: пространство-время

Специальная теория относительности Альберта Эйнштейна 1905 г. бросила вызов понятию абсолютного времени и смогла определить определение определения синхронизации только для часов, которые отмечают линейный поток времени:

Если в точке A пространства есть часы, наблюдатель в A может определить значения времени событий в непосредственном сближения от A, найдя положения стрелок, совпадающих с этими Событиями. Если в точке B пространства есть другие часы, во всех отношениях похожие на часы в A, наблюдатель в B может определить временные значения событий в непосредственной близости от B.

Но он Невозможно без предположений сравнить во времени событие в точке A с событием в точке B. До сих пор мы определили только «время A» и «время B».

Мы не определили общее «время» для A и B, поскольку последнее не может быть определено вообще, если «время», необходимое свету для путешествия от A до B, равно «время », Необходим для путешествия из B в A. Пусть луч света начинается в« A time »t A от A до B, пусть он в« B time »t B отразится в B в направлении A и снова достигнет A в «время A» t ′ A.

В соответствии с определением два часа синхронизируются, если

t B — t A = t A ′ — т Б. { displaystyle t _ { text {B}} — t _ { text {A}} = t ‘_ { text {A}} — t _ { text {B}} { text {.}} , !}t_{text{B}}-t_{text{A}}=t'_{text{A}}-t_{text{B}}{text{.}},!

Мы предполагаем, что это определение синхронизма от противоречий и возможно для любого количества точек; и следующие соотношения являются универсально действительными: —

  1. Если часы в B синхронизируются с часами в A, часы в A синхронизируются с часами в B.
  2. Если часы в A синхронизируются с часами в часы в B, а также часы в C, часы в B и C также синхронизируются друг с другом.

— Альберт Эйнштейн, «Об электродинамике движущихся тел»

Эйнштейн показал, что если скорость света не переключена между системами отсчета, пространство и время должно быть таким, чтобы движущийся наблюдатель измерял ту же скорость света, что и неподвижный, потому что что скорость определяется пространством и временем:

v = drdt, { displaystyle mathbf {v} = {d mathbf {r} over dt} { text {,}}}mathbf {v} ={dmathbf {r} over dt}{text{,}}где r — позиция, а t — время.

Действительно, преобразование Лоренца (для двух систем отсчета в относительном движении, ось которых направлена ​​в направлении относительной скорости)

Предпосылки
  • алгебра
  • тригонометрия
{t ′ = γ (t — vx / c 2) где γ = 1 / 1 — v 2 / c 2 x ′ = γ (x — vt) y ′ = yz ′ = z { displaystyle { begin {cases} t ‘= gamma (t -vx / c ^ {2}) { text {where}} gamma = 1 / { sqrt {1-v ^ {2} / c ^ {2}}} \ x ‘= gamma (x -vt) \ y’ = y \ z ‘= z end {ases}}}{begin{cases}t'=gamma (t-vx/c^{2}){text{ where }}gamma =1/{sqrt {1-v^{2}/c^{2}}}\x'=gamma (x-vt)\y'=y\z'=zend{cases}}

можно сказать, что он «смешивает» пространство и время аналогично тому, как евклидово вращение вокруг оси z смешивает координаты x и y. Последствия этого включают относительность одновременности.

Событие B одновременно с A в зеленой рамке отсчета, но оно произошло раньше в синей рамке и произойдет позже в красной рамке.

Более конкретно, Преобразование Лоренца — это гиперболическое вращение (ct ′ x ′) = (cosh ⁡ ϕ — sh ⁡ ϕ — sinh ⁡ ϕ ch ⁡ ϕ) (ctx), где ϕ = artanh vc, { displaystyle { begin {pmatrix} ct ‘\ x’ end {pmatrix}} = { begin {pmatrix} cosh phi — sinh phi \ — sinh phi cosh phi end {pmatrix}} { begin {pmatrix} ct \ x end {pmatrix}} { text {where}} phi = operatorname {artanh} , { frac {v} {c}} { text {,}}}{begin{pmatrix}ct'\x'end{pmatrix}}={begin{pmatrix}cosh phi -sinh phi \-sinh phi cosh phi end{pmatrix}}{begin{pmatrix}ct\xend{pmatrix}}{text{ where }}phi =operatorname {artanh} ,{frac {v}{c}}{text{,}}, который представляет собой изменение координат в четырехмерном пространстве Минковского, размерность которого равна ct. (В евклидовом пространстве обычное вращение (x ′ y ′) = (cos ⁡ θ — sin ⁡ θ sin ⁡ θ cos ⁡ θ) (xy) { displaystyle { begin {pmatrix} x ‘\ y’ end {pmatrix}} = { begin {pmatrix} cos theta — sin theta \ sin theta cos theta end {pmatrix}} { begin { pmatrix} x \ y end {pmatrix}}}{begin{pmatrix}x'\y'end{pmatrix}}={begin{pmatrix}cos theta -sin theta \sin theta cos theta end{pmatrix}}{begin{pmatrix}x\yend{pmatrix}}— соответствующее изменение координат.) Скорость света c можно рассматривать как просто необходимый коэффициент преобразования, потому что мы измеряем размеры пространства-времени в различных единицы; Поскольку метр в настоящее время определяется в секундах, он имеет точное значение 299 792 458 м / с. Нам понадобится аналогичный коэффициент в евклидовом пространстве, если, например, мы будем измерять ширину в морских милях и глубину в футах. В физике для упрощения уравнений иногда используются единицы измерения, в которых c = 1.

Показано, что время в «движущейся» системе отсчета идет медленнее, чем в «стационарной», с помощью следующего соотношения (которое можно получить с помощью преобразования Лоренца, положив ∆x ′ = 0, ∆τ = ∆t ′)

Сейчас — 9 июня 2009, 02:30 (UTC)

Время — одно из основных понятий физики и философии, одна из координат пространства-времени, вдоль которой протянуты мировые линии физических тел, а также сознание.

В диалектическом материализме время — это объективно реальная форма существования движущейся материи, характеризующая последовательность развёртывания материальных процессов, отделённость друг от друга разных стадий этих процессов, их длительность, их развитие.

В количественном (метрологическом) смысле понятие время имеет два аспекта:

  • координаты события на временной оси (текущий момент времени). На практике это текущее время: календарное, определяемое правилами календаря и время суток, определяемое какой-либо системой счисления (шкалой) времени (примеры: местное время, универсальное координированное время);
  • относительное время, временной интервал между двумя событиями

Содержание

  • 1 Свойства времени
  • 2 Отсчёт времени
  • 3 Зависимость от времени
  • 4 Направленность времени
  • 5 Единицы измерения времени
  • 6 Хронологически обособленные временные отрезки
    • 6.1 В геологии
    • 6.2 В истории
  • 7 Метрология
    • 7.1 Средства отсчёта текущего времени (автономные)
    • 7.2 Централизованные способы определения текущего времени
    • 7.3 Средства измерения временных интервалов
    • 7.4 Средства воспроизведения временных интервалов
    • 7.5 Эталоны
  • 8 См. также
  • 9 Примечания
  • 10 Внешние ссылки
  • 11 Литература

Свойства времени

В классической физике, время — непрерывная величина, априорная характеристика мира, ничем не определяемая. В качестве основы измерения просто берётся некая последовательность событий, про которую считается несомненно верным, что она происходит через равные промежутки времени, то есть периодична. Именно на этом принципе и основаны часы. Такая же роль времени и в квантовой механике: несмотря на квантование почти всех величин, время осталось внешним, неквантованным параметром. В обоих случаях «скорость течения времени» не может ни от чего зависеть, а потому тавтологически равна константе.

В релятивистской физике ситуация кардинально меняется. Время рассматривается как часть единого пространства-времени, и, значит, может меняться при его преобразованиях. Можно сказать, что время становится четвёртой координатой, правда, в отличие от пространственных координат, она обладает противоположной сигнатурой. «Скорость течения времени» становится понятием «субъективным», зависящим от системы отсчёта. Ситуация усложняется в общей теории относительности, где «скорость течения времени» зависит также и от близости к гравитирующим телам.

Физическая интерпретация вышеназванных теорий требует нового определения времени, как числа процессов в системе отсчёта, произошедших одновременно с данным процессом. Система отсчёта времени может быть неравномерная (как процесс вращения Земли вокруг Солнца) или равномерная. Эталон секунды — период излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

В этом контексте в некоторых гипотезах выделяют такое элементарное «мгновение» — хронон[1], соответствующее понятию планковское время и являющееся согласно этим гипотезам квантом времени, то есть его мельчайшей неделимой частицей, и составляющее примерно 5,3×10-44 с.

Отсчёт времени

Как в классической, так и в релятивистской физике для отсчёта времени используется временна́я координата пространства-времени, причём (традиционно) принято использовать знак «+» для будущего, а знак «-» — для прошлого. Однако смысл временно́й координаты в классическом и релятивистском случае различен (см. Ось времени).

См. также:

  • Единицы измерения времени
  • Собственное время

Зависимость от времени

Поскольку состояния всего нашего мира зависят от времени, то и состояние какой-либо системы тоже может зависеть от времени, как обычно и происходит. Однако в некоторых исключительных случаях зависимость какой-либо величины от времени может оказаться пренебрежимо слабой, так что с высокой точностью можно считать эту характеристику независящей от времени. Если такие величины описывают динамику какой-либо системы, то они называются сохраняющимися величинами, или интегралами движения. Например, в классической механике полная энергия, полный импульс и полный момент импульса изолированной системы являются интегралами движения.

Различные физические явления можно разделить на три группы

  • стационарные — явления, основные характеристики которых не меняются со временем. Фазовый портрет стационарного явления описывается неподвижной точкой.
  • нестационарные — явления, для которых зависимость от времени принципиально важна. Фазовый портрет нестационарного явления описывается движущейся по некоторой траектории точкой. Они, в свою очередь, делятся на
    • периодические — если в явлении наблюдается чёткая периодичность (фазовый портрет — замкнутая кривая)
    • квазипериодические — если они не являются в строгом смысле периодическими, но в малом масштабе выглядят как периодические (фазовый портрет — почти замкнутая кривая)
    • хаотические — апериодические явления (фазовый портрет — незамкнутая кривая, заметающая некоторую площадь более или менее равномерно, аттрактор).
  • квазистационарные — явления, которые, строго говоря, нестационарны, но характерный масштаб их эволюции много больше тех времён, которые интересуют в задаче.

Направленность времени

Большинство современных учёных полагают, что различие между прошлым и будущим является принципиальным. Согласно современному уровню развития науки, информация переносится из прошлого в будущее, но не наоборот. Второе начало термодинамики указывает также на накопление в будущем энтропии.

Впрочем, некоторые ученые думают немного иначе. Стивен Хокинг в своей книге «Краткая история времени: от Большого взрыва до чёрных дыр» оспаривает утверждение, что для физических законов существует различие между направлением «вперёд» и «назад» во времени. Хокинг обосновывает это тем, что передача информации возможна только в том же направлении во времени, в котором возрастает общая энтропия Вселенной. Таким образом, Второй закон термодинамики является тривиальным, так как энтропия растет со временем, потому что мы измеряем время в том направлении, в котором растет энтропия[2].

Единственность прошлого считается весьма правдоподобной. Мнения учёных касательно наличия или отсутствия различных «альтернативных» будущих различны[3].

Единицы измерения времени

  • Тысячелетие
  • Столетие
  • Год
  • Месяц
  • Неделя
  • Сутки
  • Час
  • Минута
  • Секунда
  • Терция — устар., в настоящее время не используется
  • Миллисекунда, микросекунда, наносекунда

Хронологически обособленные временные отрезки

В геологии

  • Эон
  • Эра
  • Эпоха
  • Период
  • Век (геологический) — не путать со столетием
  • Фаза

В истории

  • Эпоха (Эпоха Возрождения, Эпоха застоя)
  • Эра
  • Период
  • Век — не путать со столетием (каменный век, бронзовый век)

Метрология

Средства отсчёта текущего времени (автономные)

  • Календарь (печатное издание) — только дискретный счёт
  • Часы
  • Стандарт частоты

Централизованные способы определения текущего времени

  • По телефону с помощью службы точного времени
  • По телевизору или бытовому радиоприёмнику, используя аудио- или визуальные сигналы точного времени, передаваемые вещательными службами
  • По приёмнику сигналов точного времени, используя особые сигналы, передаваемые специальными радиостанциями
  • По компьютеру с помощью специальных сетевых сервисов в Интернете и локальных сетях (например, таких как

Определение времени в физике, философии, психологии и литературе

В статье рассказывается про определение времени в различных областях науки, о том, что это такое и как оно может быть относительным.

Начало

Принято считать, что наши древние предки походили на нас лишь внешним видом, да и то весьма отдаленно. И что все привычные для нас человеческие качества, суждения и психологию они приобрели лишь с появлением вида Homo sapiens. Но с таким рассуждением можно поспорить. К примеру, ученые находили могилы наших человекоподобных предков возрастом в несколько миллионов лет, и было установлено, что к местам погребения приносили даже цветы!

При всей невероятности факта — это правда. У могил были обнаружены следы скоплений пыльцы растений, которые произрастали совсем в других местах. А значит, у наших предков уже тогда сложились какие-то представления о загробном мире. Возможно, именно абстрактное мышление и воображение являются той гранью между животным и человеком.

Виды

Определение времени можно отнести к целому ряду вещей и дисциплин, таких как физика, психология, философия, литература и искусство. В классическом же понимании это величина, определяемая сроком какого-то процесса: будь то распад радиоактивного элемента в атомных часах или движение планеты вокруг своей оси — смена суток. В статье мы подробно разберем каждое из них. Начнем с самого простого.

Метрологическое

В метрологии определение времени производится по трем параметрам. По координатной оси, когда определение происходит по какой-то шкале или берет свой отсчет в зависимости от тех или иных данных. К примеру, всем известные календари, часы, хронометры, местное и всемирное время.

Второй тип — относительный. В этом случае измерение происходит между моментами каких-либо двух событий. К примеру, между утренним пробуждением и отходом ко сну.

Ну и третий и последний параметр — субъективный. Он измеряется по нескольким разночастотным процессам. Если говорить проще, это именно тот случай, когда в зависимости от ситуации время для человека длится с разной скоростью, субъективно для него.

Именно это самые распространенные примеры такого сложного понятия. Но можно ли дать определение времени? Ведь это одно из универсальных свойств материи наряду с пространством.

Толковые словари

Если прибегать к помощи словарей, то можно увидеть, что каждый автор и составитель применяет хоть и близкое другим, но свое объяснение того, что такое время. К примеру, Ожегов дал этому следующее определение: «Промежуток той или иной длительности, в который совершается что-нибудь, последовательная смена часов, дней, лет». Именно в этом заключается литературное определение слова «время».

Философия

В этой науке все несколько сложнее, и на вопрос о том, что такое время, каждый философ отвечает по-своему. Но к счастью, существует и общепринятое определение. Согласно энциклопедии, время в философии — это необратимое течение событий, которое движется из прошлого через настоящее и стремится в будущее.

Этой проблемой задавались еще античные деятели науки, и споры не утихают и по сей день, спустя несколько тысяч лет. И одним из первых, кто задумался над этим, был всем известный Платон.

Согласно его трудам и представлениям, время в философии — это (определение было дано им так) «движущееся подобие вечности». А несколько позже его идеи развил и дополнил не менее мудрый Аристотель, назвав время «мерой движения».

Психология

В психологии все несколько проще. И течение времени или иные его проявления измеряются исключительно наблюдателем. Проще говоря, как уже было сказано, для всех время идет по-разному. Когда мы раздражены, утомлены или занимаемся монотонной нелюбимой работой, оно тянется гораздо медленнее, чем обычно, будто специально. И наоборот – когда настроение отличное и ничто не тревожит, с удивлением замечаешь, как незаметно оно летит.

Так что поговорке «влюбленные часов не наблюдают», есть весьма научное обоснование – при таком состоянии концентрация эндорфина (гормона счастья) в крови значительно повышается, и время идет быстрее.

Что такое время в физике? Определение

Если брать за основу законы классической физики, то это непрерывная величина, которая ничем не определяется. А для удобства в жизни в качестве основы для его измерения берется определенная последовательность событий, к примеру, периоды вращения Земли вокруг своей оси, Солнца или работа часового механизма.

Но самое интересное начинается, если подробнее рассмотреть релятивистскую физику. Согласно ей, время имеет свойство замедляться или ускоряться, и это не фантастика: с подобными явлениями мы сталкиваемся каждый день в повседневной жизни, но они столь мизерны, что мы не замечаем.

Проще говоря, время может замедляться и ускоряться под влиянием сил гравитации. К примеру, на первом этаже небоскреба и на последнем часы будут идти с разной скоростью, но в обычных условиях этого никак не заметить, настолько маленькой будет разница. Но если их поднести к черной дыре, то ход их по сравнению с оставленными на Земле будет все медленнее.

Время. Литературное определение

Если брать за основу произведение, то это предпосылка сюжетного развертывания. Как и в реальности, в художественной литературе оно развивается из прошлого в будущее. Но иногда используются специальные приемы типа вставок из прошлого героя или героев.

fb.ru

ВРЕМЯ это:

ВРЕМЯ
понятие, позволяющее установить, когда произошло то или иное событие по отношению к другим событиям, т.е. определить, на сколько секунд, минут, часов, дней, месяцев, лет или столетий одно из них случилось раньше или позже другого. Измерение времени подразумевает введение временнй шкалы, пользуясь которой можно было бы соотносить эти события. Точное определение времени базируется на дефинициях, принятых в астрономии и отличающихся высокой точностью. Сейчас используются три основные системы измерения времени. В основе каждой из них конкретный периодический процесс: вращение Земли вокруг своей оси — всемирное время UT; обращение Земли вокруг Солнца — эфемеридное время ЕТ; и излучение (или поглощение) электромагнитных волн атомами или молекулами некоторых веществ при определенных условиях — атомное время АТ, определяемое с помощью высокоточных атомных часов. Всемирное время, обычно обозначаемое как «гринвичское среднее время», представляет собой среднее солнечное время на нулевом меридиане (с долготой 0°), который проходит через город Гринвич, входящий в конурбацию Большого Лондона. На основе всемирного времени определяется поясное время, используемое для счета гражданского времени. Эфемеридное время — времення шкала, используемая в небесной механике при исследовании движения небесных тел, где требуется высокая точность расчетов. Атомное время — физическая времення шкала, применяемая в тех случаях, когда требуется чрезвычайно точное измерение «временнх интервалов» для явлений, связанных с физическими процессами.
Поясное время. В повседневной практике на местах используется поясное время, которое отличается от всемирного на целое число часов. Всемирное время используется для счета времени при решении гражданских и военных задач, в астронавигации, для точного определения долготы в геодезии, а также при определении положения искусственных спутников Земли относительно звезд. Поскольку скорость вращения Земли вокруг своей оси не является абсолютно постоянной величиной, всемирное время не является строго равномерным по сравнению с эфемеридным или атомным временем.
Системы счета времени. Единицей используемого в повседневной практике «среднего солнечного времени» являются «средние солнечные сутки», которые, в свою очередь, делятся следующим образом: 1 средние солнечные сутки = 24 средним солнечным часам, 1 средний солнечный час = 60 средним солнечным минутам, 1 средняя солнечная минута = 60 средним солнечным секундам. Одни средние солнечные сутки содержат 86 400 средних солнечных секунд.
Принято, что сутки начинаются в полночь и продолжаются 24 часа. В США для гражданских нужд принято сутки делить на две равные части — до полудня и после полудня, и соответственно в этих рамках вести 12-часовой счет времени. В вооруженных силах США, а также в большинстве стран континентальной Европы время указывается четырехзначными цифрами по 24-часовому циферблату. В этой системе полночь (начало суток) обозначается как 0000, следующий затем полдень — 1200, 3 ч пополудни — 1500, а следующая полночь (окончание суток) — 2400, 1 ч 25 мин после полуночи — 0125 и т.п.
Время и долгота местности. Местное время любой точки на Земле зависит от ее долготы. При движении на запад от начального меридиана местное время отстает от всемирного на 1 ч каждые 15° долготы. Кратность, равная 15°, объясняется просто: Солнце «обходит» Землю, описывая полный круг (360°), за 24 ч, т.е. угловая скорость его движения по небосклону составляет 15° в час. Таким образом, если на Гринвичском меридиане (долгота 0°) 6 ч вечера, то на 75° з.д. местное время будет 1 ч дня, на 120° з.д. — 10 ч утра, а на 45° в.д. — 9 ч вечера. Значение долготы для пункта, расположенного к западу от Гринвича, можно вычислить, если вычесть значение местного солнечного времени, определенное астрономическими наблюдениями, из значения всемирного времени, полученного по радиосигналам точного времени.
Часовые пояса. Чтобы не вводить местное время для каждого градуса (или каждой минуты) широты, поверхность Земли была условно поделена на 24 часовых пояса. При переходе из одного часового пояса в другой значения минут и секунд (времени) сохраняются, изменяется лишь значение часов. Существуют некоторые районы, в которых местное время отличается от всемирного не только на целое количество часов, но еще дополнительно на 30, 40 или 45 мин. Правда, такие временные зоны не являются стандартными часовыми поясами. На Северном и Южном полюсах меридианы сходятся в одной точке, и поэтому там понятие часовых поясов теряет смысл. По сложившейся традиции считается, что время на полюсах соответствует всемирному. Теоретически все часовые пояса земного шара должны ограничиваться прямыми линиями, проходящими на 7,5° восточнее и западнее среднего меридиана каждого пояса, однако в реальности для сохранения единого времени внутри одной и той же административной или природной единицы их границы часто смещены относительно общепринятой. Летнее время было введено в период Первой мировой войны с целью экономии электроэнергии. С введением летнего времени часы переводятся на час вперед, таким образом, на конец рабочего дня приходится больше светлого времени. Во время Второй мировой войны в США часы оставались переведенными на час вперед как летом, так и зимой. В Англии использовалось «удвоенное летнее время» — часы устанавливались на два часа вперед летом и на час зимой.
Линия перемены даты. При пересечении границы часового пояса мы переводим часы на 1 ч. На Земле также существует условная граница, при пересечении которой календарная дата меняется на одни сутки. Эта граница называется Линией перемены даты и проходит в Тихом океане по 180-му меридиану. Чтобы понять, зачем нужна такая линия, рассмотрим следующий пример. Пусть на Гринвичском меридиане в данный момент будет 0300, 10 июня. Тогда на 165° в.д. по местному времени будет на 11 ч позже (165° = 11*15°), т.е. 1400, 10 июня. На 165° з.д. местное время будет отставать на 11 ч по сравнению с гринвичским, и, следовательно, там будет еще только 1600 предыдущего дня, т.е. 9 июня. На 180-м меридиане будет 1500 — 10 июня или 9 июня в зависимости от того, как рассматривать этот меридиан — западной или восточной долготы. Чтобы выйти из такого затруднения, для часового пояса со средним меридианом 180° было принято: в той части, которая находится к востоку от Линии перемены даты, календарная дата будет на сутки меньше, чем в той которая расположена к западу от этой линии. В некоторых районах, чтобы избежать изменения даты в пределах одной и той же группы островов, Линия перемены даты проводится не строго по 180-му меридиану. Если человек пересекает эту линию, следуя на запад, например, из Сан-Франциско в Токио, календарная дата изменяется на более позднюю (на сутки позже), и таким образом путешественник как бы теряет день. При пересечении этой линии с запада на восток дата изменяется на более раннюю, и он еще раз проживает предыдущие календарные сутки. На кораблях практикуется изменение календарной даты в полночь, что аналогично пересечению именно в это время Линии перемены даты.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ В ЛЮБОЙ ТОЧКЕ МИРА. Чтобы определить время в каком-либо пункте, отыщите его на картосхеме и букву соответствующего часового пояса. Проведите горизонтальную линию от цифры, обозначающей время часового пояса, в котором вы находитесь, до колонки цифр, соответствующей часовому поясу интересующего вас пункта. Цифра, которая окажется на этой горизонтали, будет обозначать время в этом пункте. Если время в вашем поясе и то, которое вы определили для другого пункта, окажутся в цифровой таблице в областях, закрашенных разными оттенками серого цвета, значит, даты в обоих пунктах различаются на сутки. В некоторых районах мира местное время отличается от поясного. Например на о.Ньюфаундленд, расположенном в часовом поясе I, местное время отличается от поясного на 30 мин. (I+30 мин.).

КОГДА В САН-ФРАНЦИСКО 11 ч вечера, в Нью-Йорке 2 ч ночи следующего дня.
Поправки к всемирному времени. Сигналы точного времени по радио передаются в системе координированного времени (UTC), аналогичного среднему гринвичскому времени. Однако в системе UTC ход времени не вполне равномерен, там возникают отклонения с периодом ок. 1 года. В соответствии с международным соглашением в передаваемые сигналы вводится поправка, учитывающая эти отклонения. На станциях службы времени определяется местное звездное время, по которому вычисляется местное среднее солнечное время. Последнее преобразуется в единое всемирное время (UT0) путем прибавления соответствующего значения, принятого для долготы, на которой расположена станция (к западу от Гринвичского меридиана). Таким образом устанавливается координированное всемирное время. С 1892 известно, что ось земного эллипсоида испытывает колебания по отношению к оси вращения Земли с периодом примерно 14 мес. Расстояние между этими осями, измеренное на любом полюсе, составляет ок. 9 м. Следовательно, долгота и широта любой точки на Земле испытывают периодические вариации. Для получения более однородной шкалы времени в вычисленную для конкретной станции величину UT0 вводится поправка за изменение долготы, которая может достигать 30 мс (в зависимости от положения станции); таким образом получается время UT1. Скорость вращения Земли подвержена сезонным изменениям, вследствие которых время, измеряемое вращением планеты, оказывается то «впереди», то «позади» звездного (эфемеридного) времени, причем отклонения в течение года могут достигать 30 мс. UT1, в которое внесена поправка, учитывающая сезонные изменения, обозначается UT2 (предварительное равномерное, или квазиравномерное, всемирное время). Время UT2 определяется на основе средней скорости вращения Земли, но на нем сказываются долгопериодные изменения этой скорости. Поправки, позволяющие рассчитать время UT1 и UT2 по UТ0, вводятся в унифицированной форме Международным бюро времени, находящимся в Париже.
АСТРОНОМИЧЕСКОЕ ВРЕМЯ
Звездное время и солнечное время. Для определения среднего солнечного времени астрономы используют наблюдения не самого солнечного диска, а звезд. По звездам же определяется т.н. звездное, или сидерическое (от лат. siderius — звезда или созвездие), время. С помощью математических формул по звездному времени рассчитывается среднее солнечное время.

Рис. 1. ТОЧКИ ВЕСЕННЕГО И ОСЕННЕГО РАВНОДЕНСТВИЙ — точки на небесной сфере, в которых траектория видимого движения Солнца (эклиптика) пересекается с небесным экватором.
Если воображаемую линию земной оси продлить в обе стороны, она пересечется с небесной сферой в точках т.н. полюсов мира — Северного и Южного (рис. 1). На угловом расстоянии 90° от этих точек проходит большой круг, называемый небесным экватором, который является продолжением плоскости земного экватора. Видимый путь движения Солнца называется эклиптикой. Плоскости экватора и эклиптики пересекаются под углом ок. 23,5°; точки пересечения носят название точек равноденствия. Ежегодно, примерно 20-21 марта, Солнце пересекает экватор при движении с юга на север в точке весеннего равноденствия. Эта точка почти неподвижна по отношению к звездам и используется в качестве репера для определения положения звезд в системе астрономических координат, а также звездного времени. Последнее измеряется величиной часового угла, т.е. угла между меридианом, на котором находится объект, и точкой равноденствия (отсчет производится на запад от меридиана). В пересчете на время один час соответствует 15 дуговым градусам. По отношению к наблюдателю, находящемуся на определенном меридиане, точка весеннего равноденствия ежедневно описывает на небосводе замкнутую траекторию. Промежуток времени между двумя последовательными пересечениями этого меридиана называется звездными сутками. С точки зрения наблюдателя, находящегося на Земле, Солнце каждый день перемещается по небесной сфере с востока на запад. Угол между направлением на Солнце и небесным меридианом данной местности (измеряемый в западном направлении от меридиана) определяет «местное видимое солнечное время». Именно такое время показывают солнечные часы. Промежуток времени между двумя последовательными пересечениями Солнцем меридиана называется истинными солнечными сутками. За год (примерно 365 дней) Солнце «совершает» полный оборот по эклиптике (360°), а значит за сутки смещается по отношению к звездам и точке весеннего равноденствия почти на 1°. Вследствие этого истинные солнечные сутки длиннее звездных на 3 мин 56 с среднего солнечного времени. Поскольку видимое движение Солнца по отношению к звездам неравномерно, истинные солнечные сутки также имеют неодинаковую продолжительность. Эта неравномерность движения светила происходит вследствие эксцентриситета земной орбиты и наклона экватора к плоскости эклиптики (рис. 2).

Рис. 2. ЧАСОВОЙ УГОЛ (Н) — угол между небесным меридианом и точкой равноденствия Р, по которому определяется звездное время. С и Ю — Северный и Южный полюсы мира.

Среднее солнечное время. Появление в 17 в. механических часов привело к необходимости введения среднего солнечного времени. «Среднее (или среднее эклиптическое) солнце» — это фиктивная точка, равномерно движущаяся по небесному экватору со скоростью, равной средней за год скорости движения истинного Солнца по эклиптике. Среднее солнечное время (т.е. время, протекшее от нижней кульминации среднего солнца) в любой момент на данном меридиане численно равно часовому углу среднего солнца (выраженному в часовой мере) минус 12 ч. Разность между истинным и средним солнечным временем, которая может достигать 16 мин, называется уравнением времени (хотя фактически уравнением не является). Как отмечалось выше, среднее солнечное время устанавливается с помощью наблюдений за звездами, а не за Солнцем. Среднее солнечное время строго определяется угловым положением Земли относительно ее оси, вне зависимости от того, постоянна или переменна скорость ее вращения. Но именно потому, что среднее солнечное время является мерой вращения Земли, оно используется для определения долготы местности, а также во всех других случаях, когда требуются точные данные о положении Земли в пространстве.
Эфемеридное время. Движение небесных тел описывается математически уравнениями небесной механики. Решение этих уравнений позволяет установить координаты тела в виде функции времени. Время, входящее в эти уравнения, по определению, принятому в небесной механике, является равномерным, или эфемеридным. Существуют специальные таблицы эфемеридных (теоретически вычисленных) координат, которые дают расчетное положение небесного тела через определенные (обычно одинаковые) промежутки времени. Эфемеридное время может быть установлено по движению любой планеты или ее спутников в Солнечной системе. Астрономы определяют его по движению Земли по орбите вокруг Солнца. Оно может быть найдено путем наблюдений за положением Солнца по отношению к звездам, но обычно для этого следят за движением Луны вокруг Земли. Видимый путь, который Луна проходит в течение месяца среди звезд, может рассматриваться как своеобразные часы, в которых звезды образуют циферблат, а Луна служит часовой стрелкой. При этом эфемеридные координаты Луны должны быть вычислены с высокой степенью точности, и столь же точно должно быть определено ее наблюдаемое положение. Положение Луны обычно определялось по времени прохождения через меридиан и покрытию звезд лунным диском. Наиболее современный метод представляет собой фотографирование Луны среди звезд с помощью специальной фотокамеры. В этой камере используется плоскопараллельный светофильтр из темного стекла, которому во время 20-секундной экспозиции придается наклон; вследствие этого изображение Луны смещается, и это искусственное смещение как бы компенсирует действительное движение Луны по отношению к звездам. Таким образом, Луна сохраняет строго фиксированное положение относительно звезд, и все элементы на снимке получаются отчетливыми. Поскольку положение звезд известно, измерения по снимку позволяют точно определить координаты Луны. Эти данные сводятся в виде эфемеридных таблиц Луны и позволяют рассчитать эфемеридное время. Определение времени с помощью наблюдений за вращением Земли. В результате вращения Земли вокруг оси происходит кажущееся движение звезд с востока на запад. В современных методах определения точного времени используются астрономические наблюдения, заключающиеся в регистрации моментов прохождения звезд через небесный меридиан, положение которого строго определено по отношению к астрономической станции. Для этих целей обычно использовался т.н. «малый пассажный инструмент» — телескоп, смонтированный таким образом, что его горизонтальная ось ориентирована по широте (с востока на запад). Труба телескопа может быть направлена в любую точку небесного меридиана. Для наблюдения прохождения звезды через меридиан в фокальной плоскости телескопа помещается крестообразная тонкая нить. Время прохождения звезды фиксируется с помощью хронографа (устройства, регистрирующего одновременно сигналы точного времени и импульсы, возникающие внутри самого телескопа). Таким образом определяется точное время прохождения каждой звезды через данный меридиан. Значительно большую точность измерения времени вращения Земли дает использование фотографической зенитной трубы (ФЗТ). ФЗТ представляет собой телескоп с фокусным расстоянием 4,6 м и входным отверстием диаметром 20 см, обращенным прямо в зенит. Небольшая фотографическая пластинка размещается под линзой на расстоянии ок. 1,3 см. Еще ниже, на расстоянии, равном половине фокусного, расположена ванна с ртутью (ртутный горизонт); ртуть отражает свет звезд, фокусирующийся на фотопластинке. И линза, и фотопластинка могут поворачиваться как единый блок на 180° вокруг вертикальной оси. При фотографировании звезды делается четыре 20-секундных экспозиции при различных положениях линзы. Пластинка перемещается с помощью механического привода таким образом, чтобы компенсировать видимое суточное движение звезды, удерживая ее в поле зрения. При движении каретки с фотокассетой автоматически регистрируются моменты прохождения ее через определенную точку (например, путем замыкания контакта часов). Отснятая фотопластинка проявляется, и полученное на ней изображение измеряется. Данные измерений сопоставляются с показаниями хронографа, что дает возможность установить точное время прохождения звезды через небесный меридиан. В другом инструменте для определения звездного времени — призменной астролябии (не следует путать этот прибор со средневековым угломерным инструментом того же названия), 60-градусная (равносторонняя) призма и ртутный горизонт помещаются перед линзой телескопа. В призменной астролябии получаются два изображения наблюдаемой звезды, которые совпадают в момент, когда звезда находится на высоте 60° над горизонтом. При этом автоматически регистрируется показание часов. Во всех этих инструментах используется один и тот же принцип — для звезды, координаты которой известны, определяется время (звездное или среднее) прохождения через определенную линию, например небесный меридиан. При наблюдениях специальными часами фиксируется время прохождения. Разность между вычисленным временем и показаниями часов дает поправку. Величина поправки показывает, сколько минут или секунд нужно прибавить к показаниям часов, чтобы получить точное время. Например, если расчетное время 3 ч 15 мин 26,785 с, а на часах 3 ч 15 мин 26,773 с, то часы отстают на 0,012 с и поправка составляет 0,012 с. Обычно за ночь проводится наблюдение за 10-20 звездами, и по ним вычисляется средняя поправка. Последовательная серия поправок позволяет определить точность хода часов. При помощи таких инструментов, как ФЗТ и астролябия, за одну ночь устанавливается время с точностью ок. 0,006 с. Все эти инструменты предназначены для определения звездного времени, по которому устанавливается среднее солнечное время, а последнее переводится в поясное время.
ЧАСЫ
Чтобы следить за течением времени, необходим простой способ его определения. В древности для этого использовались водяные или песочные часы. Точное определение времени стало возможным после того, как Галилей в 1581 установил, что период колебаний маятника почти не зависит от их амплитуды. Однако практическое использование этого принципа в маятниковых часах началось лишь спустя сто лет. Самые совершенные маятниковые часы сейчас имеют точность хода ок. 0,001-0,002 с в сутки. Начиная с 1950-х годов, маятниковые часы перестали использоваться для точных измерений времени и уступили место кварцевым и атомным часам.
См. также ЧАСЫ.
Кварцевые часы. Кварц обладает т.н. «пьезоэлектрическими» свойствами: при деформации кристалла возникает электрический заряд, и наоборот под действием электрического поля происходит деформация кристалла. Контроль, осуществляемый с помощью кристалла кварца, позволяет получить почти постоянную частоту электромагнитных колебаний в электрическом контуре. Пьезокварцевый генератор обычно создает колебания с частотой 100 000 Гц и выше. Специальное электронное устройство, известное под названием «делитель частоты», позволяет снизить частоту до 1000 Гц. Сигнал, полученный на выходе, усиливается и приводит в действие синхронный электромотор часов. Фактически, работа электромотора синхронизирована с колебаниями пьезокристалла. С помощью системы зубчатых передач мотор может быть соединен со стрелками, показывающими часы, минуты и секунды. По существу, кварцевые часы представляют собой сочетание пьезокварцевого генератора, делителя частоты и синхронного электромотора. Точность хода лучших кварцевых часов достигает нескольких миллионных долей секунды в сутки.
Атомные часы. Для отсчета времени могут быть использованы также процессы поглощения (или излучения) электромагнитных волн атомами или молекулами некоторых веществ. Для этого применяется сочетание атомного генератора колебаний, делителя частоты и синхронного мотора. Согласно квантовой теории, атом может находиться в различных состояниях, каждое из которых соответствует определенному энергетическому уровню Е, представляющему дискретную величину. При переходе с более высокого энергетического уровня на более низкий возникает электромагнитное излучение, и наоборот, при переходе на более высокий уровень излучение поглощается. Частота излучения, т.е. число колебаний в секунду, определяется формулой: f = (E2 — E1)/h, где E2 — начальная энергия, E1 — конечная энергия и h — постоянная Планка. Многие квантовые переходы дают очень высокую частоту, примерно 5ґ1014 Гц, и возникающее излучение находится в диапазоне видимого света. Для создания атомного (квантового) генератора необходимо было найти такой атомный (или молекулярный) переход, частота которого могла бы быть воспроизведена с помощью электронной техники. Микроволновые устройства, подобные используемым в радиолокаторе, способны генерировать частоты порядка 10 10 (10 млрд.) Гц. Первые точные атомные часы, в которых использовался цезий, были разработаны Л. Эссеном и Дж. В. Л. Парри в Национальной физической лаборатории в Теддингтоне (Великобритания) в июне 1955. Атом цезия может существовать в двух состояниях, причем в каждом из них он притягивается или одним, или другим полюсом магнита. Атомы, выходящие из нагревательной установки, проходят по трубке, расположенной между полюсами магнита «А». Атомы, находящиеся в состоянии, условно обозначаемом 1, отклоняются магнитом и ударяются о стенки трубки, тогда как атомы, находящиеся в состоянии 2, отклоняются в другую сторону таким образом, что проходят вдоль трубки через электромагнитное поле, частота колебаний которого соответствует радиочастоте, и затем направляются ко второму магниту «В». Если радиочастота подобрана правильно, то атомы, переходя в состояние 1, отклоняются магнитом «В» и улавливаются детектором. В противном случае атомы сохраняют состояние 2 и отклоняются в сторону от детектора. Частота электромагнитного поля изменяется до тех пор, пока счетчик, присоединенный к детектору, не покажет, что генерируется нужная частота. Резонансная частота, генерируемая атомом цезия (133Cs), составляет 9 192 631 770 ± 20 колебаний в секунду (эфемеридного времени). Эта величина называется цезиевым эталоном. Преимущество атомного генератора перед кварцевым пьезоэлектрическим заключается в том, что его частота не меняется со временем. Однако он не может непрерывно функционировать столь же долго, как кварцевые часы. Поэтому принято комбинировать в одних часах пьезоэлектрический кварцевый генератор с атомным; частота кварцевого генератора время от времени проверяется по атомному генератору. Для создания генератора используется также изменение состояния молекул аммиака NH3. В устройстве, называемом «мазер» (микроволновом квантовом генераторе), внутри полого резонатора генерируются колебания в радиодиапазоне с почти постоянной частотой. Молекулы аммиака могут находиться в одном из двух энергетических состояний, различно реагирующих на электрический заряд определенного знака. Пучок молекул проходит в поле электрически заряженной пластины; при этом те из них, которые находятся на более высоком энергетическом уровне, под воздействием поля направляются в небольшое входное отверстие, ведущее в полый резонатор, а молекулы, находящиеся на более низком уровне, отклоняются в сторону. Часть молекул, попавших в резонатор, переходит на более низкий энергетический уровень, испуская при этом излучение, на частоту которого оказывает воздействие конструкция резонатора. По результатам экспериментов в Невшательской обсерватории в Швейцарии, полученная частота составила 22 789 421 730 Гц (в качестве эталона при этом использовалась резонансная частота цезия). Проводившееся в международных масштабах с помощью радио сопоставление частот колебаний, измеренных для пучка атомов цезия показало, что величина расхождений частот, получаемых в установках различной конструкции, составляет примерно две миллиардных. Квантовый генератор, в котором используется цезий или рубидий, известен под названием газонаполненного фотоэлемента. В качестве квантового генератора частот (мазера) применяется также водород. Изобретение (квантовых) атомных часов в значительной степени способствовало исследованиям изменений скорости вращения Земли и разработке общей теории относительности.
Секунда. Использование атомной секунды в качестве эталонной единицы времени было принято 12-й Международной конференцией по мерам и весам в Париже в 1964. Она определяется на основе цезиевого эталона. С помощью электронных устройств осуществляется подсчет колебаний цезиевого генератора, и время, за которое происходит 9 192 631 770 колебаний, принимается за эталон секунды.
Гравитационное (или эфемеридное) время и атомное время. Эфемеридное время устанавливается по данным астрономических наблюдений и подчиняется законам гравитационного взаимодействия небесных тел. Определение времени с помощью квантовых стандартов частоты основано на электрических и ядерных взаимодействиях внутри атома. Вполне возможно несовпадение масштабов атомного и гравитационного времени. В таком случае частота колебаний, генерируемых атомом цезия, будет изменяться по отношению к секунде эфемеридного времени в течение года, и это изменение нельзя отнести за счет ошибки наблюдения.
Радиоактивный распад. Хорошо известно, что атомы некоторых, т.н. радиоактивных, элементов самопроизвольно распадаются. В качестве показателя скорости распада используется «период полураспада» — промежуток времени, за который число радиоактивных атомов данного вещества уменьшается вдвое. Радиоактивный распад также может служить мерой времени — для этого достаточно подсчитать, какая часть от общего числа атомов подверглась распаду. По содержанию радиоактивных изотопов урана оценивается возраст горных пород в пределах нескольких миллиардов лет. Большое значение имеет радиоактивный изотоп углерода 14С, образующийся под воздействием космического излучения. По содержанию этого изотопа, имеющего период полураспада 5568 лет, можно датировать образцы возрастом несколько более 10 тыс. лет. В частности, его используют для определения возраста объектов, связанных с деятельностью человека, как в историческое, так и в доисторическое время.
Вращение Земли. Как предполагали астрономы, период вращения Земли вокруг своей оси изменяется во времени. Поэтому оказалось, что течение времени, отсчет которого ведется на основе вращения Земли, иногда бывает ускоренным, а иногда — замедленным по сравнению с тем, которое определяется по орбитальному движению Земли, Луны и других планет. За последние 200 лет ошибка в отсчете времени на основе суточного вращения Земли по сравнению с «идеальными часами» достигала 30 с. За сутки отклонение составляет несколько тысячных долей секунды, однако за год накапливается ошибка в 1-2 с. Различают три типа изменения скорости вращения Земли: вековые, являющиеся следствием приливов под воздействием лунного притяжения и приводящие к увеличению продолжительности суток примерно на 0,001 с в столетие; малые скачкообразные изменения продолжительности суток, причины которых точно не установлены, удлиняющие или укорачивающие сутки на несколько тысячных долей секунды, причем такая аномальная продолжительность может сохраняться на протяжении 5-10 лет; наконец, отмечаются периодические изменения, главным образом с периодом в один год.
ЛИТЕРАТУРА
Бакунин П.И., Блинов Н.С. Служба точного времени. М., 1977 Физика космоса. М., 1986 Завельский Ф.С. Время и его измерение от биллионных долей секунды до миллиардов лет. М., 1987

Энциклопедия Кольера. — Открытое общество. 2000.

dic.academic.ru

Список физических величин

В метрологии различают понятия размерность физической величины и единица физической величины. Размерность физической величины определяется используемой системой физических величин, которая представляет собой совокупность физических величин, связанных между собой зависимостями, и в которой несколько величин выбраны в качестве основных. Единица физической величины — это такая физическая величина, которой по соглашению присвоено числовое значение, равное единице[1]. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин[2]. В расположенных ниже таблицах приведены физические величины и их единицы, принятые в Международной системе единиц (СИ), основанной на Международной системе величин[3][4].

Основные величины Размерность Символ Описание Единица СИ Примечания

Длина L l Протяжённость объекта в одном измерении. метр (м)
Масса M m Величина, определяющая инерционные и гравитационные свойства тел. килограмм (кг) Экстенсивная величина
Время T t Продолжительность события. секунда (с)
Сила тока I I Протекающий в единицу времени заряд. ампер (А)
Температура Θ T Средняя кинетическая энергия частиц объекта. кельвин (К) Интенсивная величина
Количество вещества N n Количество однотипных структурных единиц, из которых состоит вещество. моль (моль) Экстенсивная величина
Сила света J Iv Количество световой энергии, излучаемой в заданном направлении в единицу времени. кандела (кд) Световая, экстенсивная величина

Производные величины Символ Описание Единица СИ Примечания

Площадь S Протяженность объекта в двух измерениях. м2
Объём V Протяжённость объекта в трёх измерениях. м3 экстенсивная величина
Скорость v Быстрота изменения координат тела. м/с вектор
Ускорение a Быстрота изменения скорости объекта. м/с² вектор
Импульс p Произведение массы и скорости тела. кг·м/с экстенсивная, сохраняющаяся величина
Сила F Действующая на объект внешняя причина ускорения. кг·м/с2 (ньютон, Н) вектор
Механическая работа A Скалярное произведение силы и перемещения. кг·м2/с2 (джоуль, Дж) скаляр
Энергия E Способность тела или системы совершать работу. кг·м2/с2 (джоуль, Дж) экстенсивная, сохраняющаяся величина, скаляр
Мощность P Скорость изменения энергии. кг·м2/с3 (ватт, Вт)
Давление p Сила, приходящаяся на единицу площади. кг/(м·с2) (паскаль, Па) интенсивная величина
Плотность ρ Масса на единицу объёма. кг/м3 интенсивная величина
Поверхностная плотность ρA Масса на единицу площади. кг/м2
Линейная плотность ρl Масса на единицу длины. кг/м
Количество теплоты Q Энергия, передаваемая от одного тела к другому немеханическим путём кг·м2/с2 (джоуль, Дж) скаляр
Электрический заряд q Способность тел быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии А·с (кулон, Кл) экстенсивная, сохраняющаяся величина
Напряжение U Изменение потенциальной энергии, приходящееся на единицу заряда. м2·кг/(с3·А) (вольт, В) скаляр
Электрическое сопротивление R сопротивление объекта прохождению электрического тока м2·кг/(с3·А2) (ом, Ом) скаляр
Магнитный поток Φ Величина, учитывающая интенсивность магнитного поля и занимаемую им область. кг·м2/(с2·А) (вебер, Вб)
Частота ν Число повторений события за единицу времени. с−1 (герц, Гц)
Угол α Величина изменения направления. радиан (рад)
Угловая скорость ω Скорость изменения угла. с−1 (радиан в секунду)
Угловое ускорение ε Быстрота изменения угловой скорости с−2 (радиан на секунду в квадрате)
Момент инерции I Мера инертности объекта при вращении. кг·м2 тензорная величина
Момент импульса L Мера вращения объекта. кг·м2/c сохраняющаяся величина
Момент силы M Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. кг·м2/с2 вектор
Телесный угол Ω Часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность стерадиан (ср)

ru.wikipedia.org

«Что такое время? «

«Сочинение по физике задали

Valja

С точки зрения элементарной физики, время — это четвертое линейное измерение пространства, в котором мы существуем.
Время – это одна из форм существования бесконечно развивающейся материи. Объективно время измеряется отслеживанием движения небесных тел. В более приземленном понимании время – это последовательная смена секунд, минут, часов, дней, лет… Продолжительность чего-либо во времени измеряется обычно секундами, минутами и часами.

Марина

по физике.. . Хм.. .
Ну время это единица измерения, которую не потрогать. А еще если метр для всех одинаковый. то время для всех разное, собака живет быстрее слона, в больнице человек живет медленнее, чем на работе

Капитолина виски

Время — одно из основных понятий физики и философии, одна из координат пространства-времени, вдоль которой протянуты мировые линии физических тел, а также сознание.
В классической физике, время — непрерывная величина, априорная характеристика мира, ничем не определяемая. В качестве основы измерения просто берётся некая последовательность событий, про которую считается несомненно верным, что она происходит через равные промежутки времени, то есть периодична [источник не указан 88 дней] . Именно на этом принципе и основаны часы. Такая же роль времени и в квантовой механике: несмотря на квантование почти всех величин, время осталось внешним, неквантованным параметром. В обоих случаях «скорость течения времени» не может ни от чего зависеть, а потому тавтологически равна константе. [источник не указан 88 дней]

В релятивистской физике ситуация кардинально меняется. Время рассматривается как часть единого пространства-времени, и, значит, может меняться при его преобразованиях. Можно сказать, что время становится четвёртой координатой, правда, в отличие от пространственных координат, она обладает противоположной сигнатурой [источник не указан 88 дней] . «Скорость течения времени» становится понятием «субъективным» , зависящим от системы отсчёта. Ситуация усложняется в общей теории относительности, где «скорость течения времени» зависит также и от близости к гравитирующим телам.

Физическая интерпретация вышеназванных теорий требует нового определения времени, как числа процессов в системе отсчёта, произошедших одновременно с данным процессом [источник не указан 88 дней] . Система отсчёта времени может быть неравномерная (как процесс вращения Земли вокруг Солнца) или равномерная [источник не указан 88 дней] . Эталон секунды — период излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

Ольга осипова

В классической физике, время — непрерывная величина, априорная характеристика мира, ничем не определяемая. В качестве основы измерения просто берётся некая последовательность событий, про которую считается несомненно верным, что она происходит через равные промежутки времени, то есть периодична [источник не указан 88 дней] . Именно на этом принципе и основаны часы. Такая же роль времени и в квантовой механике: несмотря на квантование почти всех величин, время осталось внешним, неквантованным параметром. В обоих случаях «скорость течения времени» не может ни от чего зависеть, а потому тавтологически равна константе. [источник не указан 88 дней]

В релятивистской физике ситуация кардинально меняется. Время рассматривается как часть единого пространства-времени, и, значит, может меняться при его преобразованиях. Можно сказать, что время становится четвёртой координатой, правда, в отличие от пространственных координат, она обладает противоположной сигнатурой [источник не указан 88 дней] . «Скорость течения времени» становится понятием «субъективным» , зависящим от системы отсчёта. Ситуация усложняется в общей теории относительности, где «скорость течения времени» зависит также и от близости к гравитирующим телам.

Физическая интерпретация вышеназванных теорий требует нового определения времени, как числа процессов в системе отсчёта, произошедших одновременно с данным процессом [источник не указан 88 дней] . Система отсчёта времени может быть неравномерная (как процесс вращения Земли вокруг Солнца) или равномерная [источник не указан 88 дней] . Эталон секунды — период излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

В этом контексте в некоторых гипотезах выделяют такое элементарное «мгновение» — хронон [2], соответствующее понятию планковское время и являющееся согласно этим гипотезам квантом времени, то есть его мельчайшей неделимой частицей, и составляющее примерно 5,3×10-44 с. Впервые понятие хронон было выдвинуто атомистами, которые рассматривали хрононы, как элементарные частицы времени.

подробно:
http://ru.wikipedia.org/wiki/Время

Arwen

“Что такое время? Кто способен коротко и ясно определить его? А ведь в наших беседах мы ни о чем не говорим с такой уверенностью и столь часто, как о времени, и когда мы говорим о нем, мы, несомненно, понимаем, о чем говорим, и понимаем, о чем идет речь, когда слышим это слово в разговоре. Так что же такое время? Когда меня не спрашивают, я знаю ответ, но если меня попросят объяснить это кому-нибудь, я понимаю, что ничего не знаю“, — писал еще в конце IV века блаж. Августин еп. Иппонийский — один из отцов и учителей Церкви.

Природа времени не доступна нашему пониманию. Время подобно ветру — мы не видим его, но судим о нем лишь по его делам. Человек, пытаясь постигнуть тайну времени, еще в древние времена убеждался, что “все течет, все изменяется“, как и он сам. Бог сотворил время прежде человека, которого создал святым, бессмертным “по образу Своему и подобию“.

Человек был бессмертным, время не имело над ним власти. Но ему была дана заповедь и наказание Божие за непослушание: “смертью умрешь“ (Быт. 2:17). Значит, жизнь зависела не от времени, но от жития, от исполнения заповеди Божией. Но по преслушании Адам, согрешив, впал во власть времени, т. е. стал тленным и смертным: он всю жизнь каялся и плакал, но своими силами сам не мог вновь уподобиться Богу.

«Slava»

Время – это одна из форм существования бесконечно развивающейся материи. Объективно время измеряется отслеживанием движения небесных тел. В более приземленном понимании время – это последовательная смена секунд, минут, часов, дней, лет… Продолжительность чего-либо во времени измеряется обычно секундами, минутами и часами.

Время в лингвистике – это грамматическая категория. То есть, время – это форма глагола, относящая действие или состояние к прошедшему, настоящему или будущему.

Время – это определенный момент, во время которого происходит что-либо: время обедать или время забрать ребенка из садика.

Что такое время? Какая это величина — физическая, математическая?

Что это за величина ? Физическая, математическая ?

Мастер

«Что такое время? Пока никто меня о том не спрашивает, я понимаю, нисколько не затрудняясь; но коль скоро хочу дать ответ об этом, я становлюсь совершенно в тупик».

(Августин Аврелий)

Сколько копий было сломано в дебатах на тему сущности времени…

сколько великих умов пытались понять его сущность!

Но так к единому мнению и не пришли. Хотя, результаты кое-какие есть

сейчас определились хотя бы две основные точки зрения:

  • относительная
  • вещественная

Первую концепцию лучше всего, на мой взгляд, можно пояснить словами Вадима Зеланда — автора книг о трансерфинге: «Время на самом деле так же статично, как и пространство. Течение времени ощущается только тогда, когда крутится киноплёнка и кадры следуют друг за другом. Разверните кинопленку и посмотрите на все кадры вместе. Куда подевалось время? Все кадры существуют одновременно».

(Что касается самого Вадима Зеланда, это — отдельная тема: есть мнение, что Вадим Зеланд — вымышленный персонаж, и под его псевдонимом прикрытием публикуется группа людей.)

Приверженцы второй концепция — вещественной — придерживаются мнения, что время есть отдельное явление природы, особого рода субстанция, существующая наряду с пространством, веществом и физическими полями. Есть даже теория о т. н. «частицах времени» (не утверждаю, но по-моему автор теории ни кто иной, как сам Исаак Ньютон).

Oroti

Время… Что мы знаем о времени?..

Ну, о времени можно сказать следующее.

Философское понятие времени. Еще древние греки выделали два типа времени — «Хронос» и «Кайрос». Хронос означал время, отмеряемое часами (то есть, к примеру, 2 часа 15 минут — какую-то конкретную цифру на часах). Оттуда и пошло понятие «хронология» — тоесть «повременное». Кайрос же означал удачный или подходящий момент. (то есть, когда окажусь у площади Ленина — забежать в тот магазинчик с классными гитарами — не каое-то конкретное время обозначается, а просто описывается стечение обстоятельств). В контексте философии — время скорее означает конкретный момент, связаный со стечением обстоятельств или последовательностей событий. Так же можно отнести сюда фразы злых гениев и супергероев из фильмов «Пришло мое время!» Или разочарованую фразу «Момент упущен».

Физико-математическая интерпритация времени. Так же понятие времени используется в физике и математике. используется оно для решения примитивных физико-математических задач «на движение» в одной формуле со скоростью и расстоянием. В более сложных задачах «на движение» — в формулах используется уже ускорение, учитывается траектория и прочие заморочки. Это все относится к разделу физики «механика».

Так же понятие времени используется как некая величина для рассчетов или научных наблюдений во многих науках: экономика, биология, астрономия, химия и пр. А так же во лженауках (или сомнительных науках): астрология, нумерология, хиромантия и пр.

Время, так или иначе, присутствует в любой области познания, в которой возможно построение графика, по зависимости от времени: это и графики переменных издержек, прироста прибыли, инфляции и пр. в экономике, и графики изменения электропроводности, затухания колебаний, графики движения и многое другое в физике, и графики изменения состояний, размножения микроорганизмов в средах и прочие — в биологии, и графики интенсивности и продолжительности реакций в химии…

От себя могу сказать, что ВРЕМЯ — это величина абсолютная и неизменная. Не зависимо от того, переводим мы часы на летнее или зимнее время, не зависимо от того, сидим мы за компом, спим, едим, работаем, отдыхаем или играем с детьми, независимо от нашего желания, местоположения, мировоззрения, вероисповедания и прочих факторов — время всегда идет. Ему все-равно, измеряем мы его часами или секундами, делим сутками или минутами, годами или тысячелетиями. Оно идет и идет непрерывно. Человек научился подчинять себе все в природе — вызывать дожди, разгонять тучи, овладел пространством, исследует космос. Но я очень сомневаюсь, что когда-нибудь человечество сможет овладеть временем.

В к

Время, это не математическая величина, не физическая и не химическая, не эфирная. Время — это энергетическая величина.

Время, не существует само по себе. В несуществующем — нет времени. Не Время зарождает что либо сущее, а сущее зарождает Время. Поэтому можно сказать: Время — это энергетический паспорт созданного.

У всего существующего имеется своё время, у каждого оно индивидуально, со своей отличительной характеристикой и качеством. — это похоже на энергетический, прозрачный купол покрывающий каждого, любое существо или предмет, любое сущее покрыто подобным куполом — временем. Но все они как миллиарды маленьких точек входят в единый большой энергетический купол вселенной и находятся внутри него, не выходя за её пределы. Также как все они содержат между собой прямую связь, взаимосвязаны и влияют друг на друга энергетическим импульсом.

Juliabond

У меня тоже первое определение времени, которое пришло в голову было «философское». Но не из-за того, что к нему все относятся по разному – кто-то как раз по-философски, кто-то по-потребительски – а именно потому, что мы не в состоянии понять его до конца. И остаётся только философствовать на тему времени…

Можно сказать, что в нашем ограниченном трёхмерном пространстве время является четвертым измерением и имеет единое линейное направление. Но никем не доказан факт, что такое его свойство сохраняется в мирах с большим количеством измерений. Возможно, существа, обитающие в этих мирах, совсем иначе расценивают время? Т.е. его свойства напрямую зависят от возможностей того или иного создания или сознания?

Уже сейчас известны факты временных аномалий на Тибете (наиболее известная) и в некоторых других районах… Следует ли нам в связи с этим уже сейчас начинать пересматривать свои взгляды на казалось бы столь очевидную и определённую величину?

Алексис

Когда ознакомишься с взглядами современных наук о времени, становится понятно, что о времени эти науки ровным счётом ничего не знают и воспринимают его как некую аксиому. Толком сформулировать мало-мальски толковую теорию времени пока никто не может.

Ещё называют время четвёртым измерением, познать которое априори невозможно. В этом смысле есть интересное сравнение:

допустим существование некого мира, который существует в 2 (двух) измерениях, на некой бесконечной плоскости, где живут двухмерно разумные учёные, а двухмерная жизнь кипит и процветает. Так вот, как объяснить тамошним двухмерным аборигенам понятие третьего измерения? Понятно, что наличие третьего измерения они признают, но не понимают и понять не смогут. Точно так же обстоит дело и у нас с нашим четвёртым измерением и, не дай Бог, если человечество познает сущность времени, тут уж конец света точно состоится.

Сергей42

Время порождение нашего ума и всего лишь иллюзия. Время не существует в природе, кто побывал в реанимации и ему удавалось запомнить свои ощущения отмечают отсутствие времени.В то же время если убрать понятие времени то рухнут многие физические формулы и современная наука потерпит крах.Отсюда следует, что мы живём в иллюзорном мире и никогда не рождались и не умирали а только меняем своё состояние.

Сергей 1965

Время весьма разноплановое понятие. Я занимаюсь исследованием его физических свойств. По поводу вопроса Владимира, могу сказать то, что, например, ход времени для любого объекта ( от материальной точки до всей вселенной ) кроме направленности имеет траекторию распространения, и значит может быть описан неким уравнением. Сергей. (Вектор Времени. Анизотропия.)

Gordonfreeman

С математической точки зрения время это абстракция. Тут сложно что-либо добавить.

С позиции современной физики время существуют только вместе с материей. То есть там где нет материи, нет и времени. С позиции квантовой физики и теории относительности многии обыденные представления о времени неприменимы.

Mung-asket

Альберт Энштейн хорошо сказал об этом в своих трудах. Время явление зависящее от пространства и объекта, что перемещается. Важны свойства объекта и пространства. От этих вещей зависит время или перемещение. Т.о. время чисто физическое явление. Которое легко посчитать с помощью формул.

Тана

Скорее-философская..

Медленнее всего тянется Время, когда ЖДЁШЬ..

Быстрее всего, когда Любишь..

А учитывая, что Время ещё и называют Лучшим Лекарем,

приходится учитывать, что у него, как у Доктора-самое большое Кладбище..

В общем Время-это самая лучшая Абстракция!

Ар

Время это величина характеризующая промежуток в течении которого изменяются свойства наблюдаемого объекта. Время отсчитывается равными промежутками а это означает что оно имеет математическую закономерность. Физическая структура времени равна полям пронизывающим наблюдаемый объект. Временем можно управлять но остановить его невозможно. Самое точное время это время импульсов квантов солнца или время ядерного распада радиоактивного элемента.

Valerakonovalov

1.Время-это Маятник,к которому мы привязались,как и к Глазам-которые видят Мир,к ногам-с помощью которых-передвигаемся.

2.Надо быть свободным от времени,выйти из зависимости от него.На самом деле =это не физическая и не математическая величина.Время-просто есть.Как облака на небе-они просто есть,вода в речке.

3.Время-это ограничитель Ваших возможностей,и Ваш помощник-одновременно!

4.Используя Время-можно рассказать о чем-то.

Максим костенко

Время это физическая величина которая является характеристикой энтропии системы. Вопрос «Сколько прошло времени?» равнозначен «Насколько во вселенной стало больше бардака?»

Время идёт только вперёд и никогда назад в полном согласии с законом неубывания энтропии.

Неубывание энтропии – это закон, гласящий, что всё разлагается, и глупо надеяться, что всё образуется. :)

Для наглядности:

Момент номер один:

Лежит бревно. Бревно (древесина) – это упорядоченная, структурированная материя.

Момент номер два:

Это бревно сгнило. Древесина превратилась в гниль. Гниль – это гораздо менее структурированная материя.

От момента «один» до момента «два» ПРОШЛО ВРЕМЯ или УВЕЛИЧИЛАСЬ ЭНТРОПИЯ

Время может замедляться (вблизи чёрных дыр, например), как и энтропия локально уменьшаться (на болоте выросло дерево).

Но в целом энтропии (= бардака) во вселенной постоянно становится больше.

Увеличение количества бардака во вселенной мы и называем ходом времени.

bolshoyvopros.ru

Читайте также

Darius Urbonas



Знаток

(251),
закрыт



5 лет назад

Лидия Строгунова (Малетина)

Ученик

(137)


11 лет назад

Ну обычно большой буквой обозначается период разных колебаний

Остальные ответы

Артур

Просветленный

(38514)


11 лет назад

суточные, годовые часы

Александр Ершов

Мыслитель

(6447)


11 лет назад

Т — например, период колебаний, т. е время одного колебания

Несмотря на то, что явление времени кажется интуитивно понятным и является фундаментальным понятием в философии и науке, точное определение времени до сих пор не сформировано. В данной статье мы рассмотрим несколько основных концепций времени с точки зрения науки.

Классическая физика сложилась до возникновения теории относительности Эйнштейна и квантовой теории. Согласно классической концепции времени, время – непрерывная величина, которая не определяется чем-либо и является априорной характеристикой мира. Время – основное условие протекания каких-либо процессов в мире. Такое время одинаково течет для всех процессов и во всех точках мира, при этом нет ничего, что способно повлиять на ход времени. Несмотря на то, что тела и процессы могут ускоряться и замедляться, течение времени равномерно. В связи с этим с точки зрения классической физики время называют абсолютным. Эти свойства времени описал Исаак Ньютон в своем труде «Математические начала натуральной философии» 1687-го года.

В классической механике переход от одной системы отсчета (инерциальной) к другой описывается так называемыми преобразованиями Галилея. Уравнения механики Ньютона по отношению к данным преобразованиям являются инвариантными, из чего выплывает абсолютность времени.

Следует отметить, что в классической физике для времени не выделяется определенная ось, так как в рамках данной концепции течение времени в обратную сторону равносильно обычному его течению.

Термодинамика

В отличие от классической физики, термодинамика утверждает, что время необратимо в силу второго закона термодинамики. Согласно этому закону существует некоторая функция состояния – энтропия, которая не убывает в любых процессах в замкнутых системах. Если бы время могло идти в обратном направлении, энтропия бы в таких системах уменьшалась, что противоречит вышеизложенному закону.

Термодинамика отличается жестким требованием существования оси времени.

Квантовая механика

В большинстве своем концепция времени в рамках квантовой механики схожа с интерпретацией классической физики, то есть время течет равномерно. Однако, основным отличием данного определения является необратимость времени. Это связано с тем, что процесс измерения несимметричен во времени. Измерение в данный момент даст информацию о состоянии объекта в прошлом, но в будущем даст новое состояние.

Релятивистская физика (теория относительности Эйнштейна)

Наиболее популярной концепцией времени сегодня является определение времени в рамках .

Прежде всего следует отметить основные постулаты данной концепции:

  • Скорость света в вакууме одинакова во всех системах координат, которые движутся относительно друг друга равномерно и прямолинейно.
  • Физические законы одинаковы во всех системах координат, которые движутся относительно друг друга равномерно и прямолинейно.
  • Любое событие может влиять лишь на события, которые происходят позже него и не влияет на события, которые происходят раньше него.

Исходя из вышеупомянутых постулатов, можно утверждать, что события, которые происходят одновременно в одной системе отсчета, могут быть не одновременны в другой системе отсчета, движущейся относительно первой системы отсчета. Таким образом, в рамках данной концепции ход времени зависит от движения выбранной системы отсчета. Проще говоря, скорость хода часов зависит от того, кто их носит.
Интереснейшим аспектом данной теории является влияние гравитации на течение времени. В рамках данной концепции пространство и время являются несамостоятельными частями одного пространственно-временного континуума. Тогда вблизи массивных объектов искажается не только пространство, но и изменяется скорость течения времени.

В релятивистской физике время определяется как четвертая координатная ось системы координат, три другие оси которой представляют три пространственные координаты «нашего трехмерного мира». Таким образом каждое тело имеет так называемую мировую линию. Если рассматривать данное тело в упомянутой четырехмерной системе координат, то оно будет представляться протяженным множеством этих тел. То есть в каждый момент времени своего существования тело будет наноситься на четырехмерную систему координат, в зависимости от его пространственного, а также временного положения.

Мировая линия человека (упрощенно), где X и Y — две пространственные координаты, а T — временная координата.

Что же такое время?

Исходя из сказанного выше, становится ясно, что человечеству совершенно неясно, что такое время. Перечисленные здесь теории лишь пытаются математически (и геометрически) определить время, как нечто, что может использоваться в дальнейших расчетах для объяснения наблюдаемых явлений.

Опираясь на постулаты, выплывающие из основных концепций времени, можно попытаться сформулировать следующее субъективное определение:

«Время – априорный геометрический параметр, который характеризирует движение, определяет длительность существования всех процессов, есть условие существования изменения. Является неотъемлемой частью пространственно-временного континуума, есть его четвертая координата наряду с тремя пространственными. Время способно искривляться в результате гравитационного возмущения, при этом является необратимым. Данное явление относительное и зависит от выбора системы отсчета и ее скорости. Подчиняется постулату причинности, согласно которому любое событие может влиять лишь на события, которые происходят позже него и не влияет на события, которые происходят раньше него».

Данное явление невозможно представить в уме, а потому ученые со всего мира пытаются объяснить его математически, что пока остается непосильной задачей и вызывает множество разногласий в научном сообществе. Если же ученому задать вопрос «Что такое время?», то скорее всего в ответ Вы услышите – «Это то, что измеряется часами».

Фактрум
последовательно рассматривает каждую из них.

1. Теория времени Святого Августина

У Святого Августина, христианского философа, были своеобразные представления о времени. Прежде всего, он считал, что время — не бесконечно. Время, по его словам, было создано Богом, кроме того, совершенно невозможно создать что-то бесконечное.

Когда что-то остаётся в прошлом
, у него больше нет никаких свойств бытия, потому что оно больше не существует

А ещё Августин полагал, что время на самом деле существует лишь в нашем сознании и зависит только от того, как мы его трактуем. Мы можем сказать, что-то длится долго или не слишком долго, но Августин утверждал, что не существует ни одного реального способа объективно оценить это.

Когда что-то остаётся в прошлом, у него больше нет никаких свойств бытия, потому что теперь оно не существует. И когда мы говорим, что что-то «заняло слишком много времени» — это потому, что мы вспоминаем это «что-то» именно таким способом.

И так как мы измеряем время, основываясь лишь на том, как помним его, следовательно, и существовать оно должно лишь в нашей памяти. Что касается будущего, то оно ещё не существует, поэтому измерить его невозможно. Существует только настоящее, так что единственный логический вывод состоит в том, что понятие времени обитает исключительно у нас в голове.

2. Топология времени

Как выглядит время? Если вы попытаетесь представить его себе, вы вообразите его в виде прямой линии , которая никогда не заканчивается? А может, вы подумаете о чём-то вроде часов, стрелки которых описывают круг за кругом каждый день и каждый год?

Очевидно, что правильного ответа нет, но есть некоторые интригующие идеи, связанные с этим.

Аристотель полагал, что время не может существовать в виде линии. По крайней мере, у него нет ни начала, ни конца, несмотря на то, что должно быть время, когда всё началось. А если представить тот момент, когда всё началось, то придётся отметить точку до этого момента. А если мир перестанет существовать — то появится ещё одна точка, после этого момента.

А ещё совершенно непонятно, сколько может быть линий времени. Может ли это быть всего одна линия времени, направленная вперёд, или же этих линий много, они направлены параллельно друг другу, или наоборот — пересекаются? Может ли время быть одной линией, поделённой на множество отрезков? Может ли быть так, что моменты в потоке времени существуют совершенно независимо друг от друга? Относительно всего этого есть масса мнений. И ни единого ответа.

3. Правдоподобное настоящее

Идея «правдоподобного настоящего» пытается дать ответ на вопрос, как долго это настоящее длится. Обычный ответ, связанный с этим, звучит как «сейчас», но он не слишком информативен.

Допустим, когда в процессе разговора мы доходим до середины предложения, значит ли это, что мы уже закончили начало предложения, и оно осталось в прошлом? А сам разговор — он находится в настоящем времени? Или же в настоящем только часть разговора, а часть его — уже в прошлом?

Э. Р. Клей и Уильям Джеймс высказали идею «правдоподобного настоящего» — это промежуток времени, который мы ощущаем как настоящее. По мнению Клея и Джеймса, этот момент длится всего несколько секунд и не может длиться дольше минуты, и это — то количество времени, о котором мы сознательно осведомлены
.

Но даже в этих рамках есть над чем поспорить.

Теоретически, всё перечисленное выше может быть связано с краткосрочной памятью человека — чем эта память лучше, тем дольше настоящее. Ещё есть мнение, что всё это лишь вопрос мгновенного восприятия. А как только вы полагаетесь на свою краткосрочную память — такой момент уже не может быть частью настоящего. То есть возникает проблема «правдоподобного настоящего», и чего-то наподобие «расширенного настоящего», которое возникает сразу после того, как «правдоподобное настоящее» исчезло.

Фактически, у настоящего вообще не должно быть продолжительности, потому что если она есть — часть настоящего сразу оказывается в прошлом, а часть в будущем, и возникает противоречие. А «правдоподобное настоящее» пытается объяснить настоящее как некий продолжительный интервал времени, и это весьма спорно.

4. Невысокие люди воспринимают «сейчас» раньше высоких

Это звучит странно, но в этом есть смысл. Эту теорию выдвинул нейробиолог Дэвид Иглмен, и назвал он её «привязкой по времени».

Всё это основано на идее о том, что мы воспринимаем мир, получая некие информационные пакеты, которые собираются нашими органами чувств, а затем обрабатываются мозгом. Информация от различных частей тела добирается до мозга за разное время. Допустим, вы идёте, на ходу пишете кому-то SMS, и внезапно ударяетесь головой о телеграфный столб. В то же самое время вы травмируете об этот же столб ещё и большой палец на ноге. Теоретически, информация о травме головы должна поступить в ваш мозг быстрее, чем информация о травме большого пальца ноги. Однако вы будете думать, что всё это вы почувствовали одновременно.

А всё потому, что мозг — это своего рода сенсорная структура с чёткой организацией. И эта структура выстраивает для нас вещи в порядке возрастания их смысла.

Указанная выше задержка в обработке информации играет на руку невысоким людям. Потому что невысокий человек ощущает более точную версию времени, поскольку в его случае информации требуется меньше времени, чтобы попасть в мозг.

5. Время замедляется, и мы можем это видеть

Одна из давних проблем физики связана с существованием тёмной энергии. Мы можем видеть эффекты от этой энергии, но понятия не имеем, что она такое.

Команда профессоров из Испании считает, что все усилия по поиску тёмной энергии оказались напрасны просто потому, что её не существует. Они полагают, что все эффекты тёмной энергии можно объяснить альтернативной идеей, что на самом деле мы видим замедление времени перед его возможной остановкой.

Возьмём астрономическое явление, известное как «красное смещение». Когда мы видим звёзды, светящиеся красным светом, мы знаем, что они ускоряются. Группа испанских профессоров объясняет феномен ускорения Вселенной не как результат присутствия в ней тёмной энергии, а как иллюзию, созданную замедлением времени.

У света времени достаточно для того, чтобы дойти до нас. И когда это наконец происходит, время замедляется, создавая иллюзию того, что всё вокруг ускоряется. Время останавливается чрезвычайно, невообразимо медленно, но если учесть обширность космического пространства и его умопомрачительные расстояния, то получится, что мы можем видеть, как замедляется время, просто глядя на звёзды.

6. Времени не существует

Также есть мнение, что времени не существует вовсе. Именно это утверждал в начале прошлого века философ Мактаггарт (J.M. E. McTaggart). По мнению Мактаггарта, при рассмотрении времени допустимо два подхода.

Первый подход называется А-Теория
.

Она гласит, что время имеет определённый порядок и непрерывно течёт, что вещи в нём организованы так, как мы их видим. И что события перемещаются из прошлого в настоящее, а затем в будущее.

В-Теория
, напротив, утверждает, что принятие временных рамок и самого времени — это иллюзия, и нет никакого способа, позволяющего сделать так, чтобы все события в мире происходили в строго определённом порядке.

Эта версия «времени» поддерживается лишь нашими воспоминаниями, а в нашей памяти, как правило, фиксируются отдельные события, и вспоминаем мы их как отдельные «временные карманы», а не как некий сплошной поток.

С учётом этой теории можно доказать, что времени не существует, поскольку для того, чтобы время существовало, требуется непрерывное изменение событий, мира и обстоятельств
. В-теория по определению не ссылается на течение времени, и об изменениях там тоже речи не идёт. Таким образом, времени не существует.

Однако если А-Теория верна, то утверждение о том, что времени нет, выглядит слишком поспешным. К примеру, возьмём день, когда вам исполнился 21 год. С одной стороны, этот день когда-то был в будущем. С другой стороны, этот же день когда-то окажется и в прошлом. Но один и тот же момент не может быть одновременно и в прошлом, и в настоящем и в будущем. Именно поэтому Мактаггарт говорит, что А-Теория — противоречива, а следовательно невозможна, как и само время.

7. Теория четырёх измерений и блока Вселенной

Теория четырёх измерений и блока Вселенной связана с представлением о времени как о реальном измерении. Есть версия, что все объекты существуют в четырёх измерениях, а не в трёх. Четвёртое измерение — это время.

А в нём объекты тоже можно рассматривать с точки зрения их трёх размеров, то есть трёх измерений. Теория блока Вселенной представляет всю Вселенную в виде блока измерений, разделённых «прослойками» времени.

Этот блок имеет длину, ширину и высоту, и для всего в этом блоке, для каждого события, есть определённые слои времени. Каждый человек — это четырёхмерный объект, который существует в разных слоях времени. Есть слой времени для младенчества, есть слой для детства, для отрочества и так далее.

Таким образом, у временного слоя нет прошлого, настоящего или будущего. Однако каждая точка внутри блока Вселенной может оказаться либо прошлым, либо настоящим, либо будущим по отношению к другим точкам времени в этом блоке.

8. Эффект замедления времени

Иногда мы слышим рассказы людей, попавших в опасную для жизни или страшную ситуацию. И эти люди клянутся, что время в таких ситуациях замедляется. Подобное замедление часто ощущается во время событий, не поддающихся объяснению, или событий, случившихся внезапно. Это распространённое явление, и оно уже стало предметом множества дискуссий о том, что же мы испытываем на самом деле.

Исследователи решили узнать, что будет, если время и в самом деле замедлится. Например, мы смогли бы лучше рассмотреть многие вещи, потому что у нашего мозга есть нехорошая привычка смешивать похожие стимулы в одно общее событие, если интервал между стимулами менее 80 миллисекунд.

Был проведён один эксперимент.

Испытуемым предложили смотреть на цифры, которые мигали, и постоянно менялись. Так учёные хотели определить точку, в которой мозг перестаёт обращать внимание на время и человек начинает различать различные серии номеров.

Вначале эксперимент провели в нормальных условиях, а затем решили повторить в условиях экстремальных: участникам предлагалось смотреть на серии мигающих цифр, падая с башни высотой 46 м.

Затем их попросили посмотреть, как другие люди падают с той же башни и оценить, какими долгими эти падения были по сравнению с их падением.

Собственное падение испытуемым казалось на 36% дольше. Кроме того, в экстремальной ситуации люди лучше идентифицировали мигающие цифры. И всё это наводит на мысль, что это не какой-то момент времени замедляется для нас, а замедляется наша память об этом моменте.

И хотя практическая польза от эффекта замедления времени может быть удивительна, не следует забывать о том, что тот же эффект вполне может заставить ужасные события в нашей памяти длиться вечно.

9. Хронос, Кронос и Время

Ещё до попыток греческих философов объяснить время, у времени было мифологическое объяснение.

До начала времён были только изначальные боги — Хронос и Ананке. Хронос был богом времени, и был частично человеком, частично львом и частично быком.

Ананке был змеем, обвившимся вокруг яйца мира, и символом вечности. Ещё Хроноса в греко-римской мифологии часто изображают стоящим в зодиакальном круге, там его изображают человеком, причём человек этот может быть как молодым, так и старым.

Хронос был отцом титанов, и его часто путают с Кроносом, который тоже был связан со временем. Именно Кронос сверг с трона, а затем кастрировал собственного отца, а позднее был убит собственным сыном, Зевсом.

Хронос был тем, кто отвечал за смену времён года и за течение времени в целом. Но за вещи, происходящие с мужчинами и женщинами в течение этого времени, отвечал не Хронос, а кое-кто другой.

Жизненный цикл человека, его рождение, взросление, старение и смерть, был областью ответственности тех, кого называли богинями судьбы — Мойрами. Клото пряла нить жизни, Лахезис определяла человеческую судьбу, и наконец, Атропос перерезала нить, и жизнь человека на этом заканчивалась.

10. Мы плохо измеряем время

Когда речь заходит о физике пространства, о времени, о размерах и обо всём, что идёт в с ними комплекте, то время, пожалуй, объяснить сложнее всего.

Мы, вообще-то, не слишком хорошо измеряем время.

С одной стороны, есть время сидерическое, то есть время, измеряемое с помощью положения звёзд и вращения Земли. Очевидно, что это время хотя и варьируется, но очень незначительно.

Однако в 20-м веке астрономы установили, что вращение планеты замедляется, потому была создана ещё одна шкала — эфемеридное время.

Ещё позднее появилось так называемое топоцентрическое время (TDT) которое считалось наиболее точным, поскольку в его основе было международное атомное время (IAT). В 1991-м году атомное время было переименовано в Земное время (ТТ). И если отслеживание часовых поясов сегодня кому-то может показаться сложным, то не следует забывать, что даже в наши дни положение звёзд и иных небесных тел используется в сочетании с Земным временем, поскольку именно так достигается его максимальная точность.

Всё это говорит лишь об одном: мы до сих пор понятия не имеем, что нам делать со временем, несмотря на то, что живём по нему каждый день.

Вы можете превратить яйцо в омлет, но невозможно сделать из омлета яйцо. Поразмыслите над этим примером и его связью с таким понятием, как время.

Канадский музыкант Сэм Робертс поёт: «Время — увёртливая рыбка». Понимание времени сложно сформулировать. Философы и даже лингвисты имеют право на свою трактовку в равной степени с физиками.

Ниже приводятся некоторые попытки сформулировать концепцию времени, некоторые интересные факты о времени и взгляд на мир без времени.

Время и хаос

Австрийский физик Людвиг Больцман в 1870 г. высказал идею, в которой время ассоциировалось с беспорядком. Физик Шон Кэрролл в 2010 г. пояснил: «Если вы аккуратно разложите листы бумаги на своём столе и уйдёте, то рано или поздно на столе возникнет беспорядок. Вы бы очень удивились, если бы наоборот разбросанные листы сами собой легли ровными стопочками.

Физик Шон Кэрролл: «Если вы аккуратно разложите листы бумаги на своём столе и уйдёте, то рано или поздно на столе возникнет беспорядок. Вы бы очень удивились, если бы наоборот разбросанные листы сами собой легли ровными стопочками». Фото: Shutterstock*

Фактически наблюдаемая нами Вселенная зародилась 13,7 миллиарда лет назад из состояния идеального порядка… Вселенная напоминает заводную игрушку, которая медленно движется по инерции на протяжении последних 13,7 миллиарда лет, постепенно останавливаясь».

Четвёртое измерение

Альберт Эйнштейн представлял время-пространство как четвёртое измерение, отдельное от нашего трёхмерного пространства.

Альберт Эйнштейн. Фото: Oren Jack Turner

Конец времени

Д-р. Джулиан Барбур, независимый физик, считает, что следующим большим шагом в физике могло бы стать упразднение времени.

«Объединение общей теории относительности и квантовой механики могут сыграть в этом свою роль… Мы придём к пониманию, что времени не существует, — пишет он в своей книге «Конец времени». — Безусловно, многие люди посчитают абсурдной идею о том, что времени не существует. Я не отрицаю могущественного явления, которое мы наделили названием время. Но что это такое на самом деле? Я считаю, что настоящее явление слишком отличается от представлений людей о нём. Без упоминаний слово «время», вам бы не пришло в голову называть его так».

Он продолжает: «Размышления о личной жизни навели меня на мысль, что мы должны ценить настоящее. Оно действительно существует и гораздо прекраснее, чем мы осознаём. Как говорили римляне: «Carpe diem — живи одним днём»».

Как будет выглядеть мир без времени? «Совсем не так, что мы вдруг ощутим, что время остановилось, — пишет д-р. Барбур. — Наоборот, новые, не подвластные времени принципы объяснят, почему мы ощущаем течение времени. Я думаю, мы должны перейти в другую, более высокую реальность, где ничто: ни Небо, ни Земля — не движутся. Царство покоя».

Какую роль играет восприятие? Существуют ли культуры, в которых нет концепции о времени?

Время не движется одинаково для всех в самом буквальном смысле этого слова. Если поместить сверхточные часы на каждом этаже высотного здания, окажется, что на нижних этажах время идёт медленнее, чем на верхних. Эта разница во времени составляет сущее мгновение, одну миллиардную долю секунды, такой пример приводится в докладе National Geographic.

Особенности восприятия также порождают различия.

В языке племени амондава отсутствует слово «время»

Племя амондава, живущее в Амазонии, имеет уникальное восприятие времени. У них отсутствует представление о событиях, происходивших в прошлом или которые должны произойти в ближайшем будущем. В их языке не существует слова «время» и слов, обозначающих временные промежутки, например «месяц» или «год».

«Нельзя сказать, что это «люди без времени» или «вне времени, — говорит Крис Синха, профессор психологии языка из Университета Портсмута в Англии, в интервью Би-би-си 2011 г. — Представители племени амондава, как и другие люди, могут говорить о событиях и их последовательности.

Чего мы не смогли обнаружить у них — это представления о времени, как о чём-то независимом от событий, которые происходят одновременно с ним; у них нет понятия о времени, как нечто таком, что сопровождает события».

Индейцы хопи

Индейцы хопи. Фото: Shutterstock*

Лингвист Бенджамин Ли Уорф (1897-1941) был большим сторонником относительного времени. В работе «Наука и лингвистика» он пишет, что язык индейцев племени хопи «может быть назван безвременным языком… он не делает различий между настоящим, прошлым и будущим».

Утверждения Ворфа позднее были подвергнуты сомнениям, но многие лингвисты согласились, что в языке хопи другое представление о времени, чем в индоевропейских языках.

В китайском языке нет настоящего, прошедшего и будущего времён, но есть слова, указывающие на время, например «раньше» и «позже». Лингвисты расходятся во мнении, определяет ли язык, на котором говорит человек, его паттерн мышления.

Африканцы и будущее

Кенийский философ Мбити считает, что восприятие времени у африканцев негативно влияет на развитие континента. «В традиционном африканском мышлении отсутствует концепция о том, что история движется «вперёд» по нарастающей… В результате у жителей Африки отсутствует «вера в прогресс», идея о том, что развитие человеческой деятельности и достижения движутся от нижней точки к высшим ступеням. Люди не делают планов на будущее и «не строят воздушные замки», говорит он.

Африканцы понимает смену сезонов или другие подобные естественные явления, но у них нет представления о долговременном планировании или мыслей о будущем, считает Мбити. Он говорит, что его идеи несовершенны и требуют дополнительного анализа, но с его точки зрения, если позволить африканцам понять такую концепцию, как «будущее», это могло бы способствовать развитию континента.

Философ Аврелий Августин: «Если никто меня не спрашивает, я знаю, что такое время, но когда мне задают такой вопрос, мне нечего ответить». Картина Юстуса ван Гента, 1474 г., Лувр.

Установили бы Вы себе на телефон приложение для чтения статей сайта epochtimes?

Так что же такое время? Такое понятие как время было придумано людьми. Для чего? Для того, чтобы было понятней, как измерить происходящие события, ориентироваться в них, иметь некую постоянную для всех понятную величину. Для чего и выдумали единицы измерения — тысячелетие, столетие, год… секунда…

Все люди ощущают время по-разному. Для кого-то оно быстротечно, а кто-то хотел бы его ускорить. И это связано исключительно с субъективным восприятием событий, которые происходят в окружающем нас мире.

Вот как могли бы дать определение времени люди, относящиеся к различным слоям населения:

Студент ботаник: время – это 4-е измерение нашего 3-х мерного пространства. Но с другой стороны его возможно рассматривать как миг между прошлым и будущим. А еще ко времени следует относиться как к неуправляемой абстракции.

Простой обыватель: время – это такое понятие, с которым неразрывно связана вся жизнь человека. Для одних оно очень долго тянется, а для кого-то пролетает как мгновенье. В зависимости от человека и от его восприятия окружающей действительности. Время – это непознанный фактор жизни, которого довольно часто не хватает. Кроме того его невозможно вернуть или остановить, с целью исправления ошибок.

Руководитель: время – это необъяснимая величина, придуманная для упорядочивания событий в окружающем мире. Такое понятие в известной степени необходимо для того, чтобы человек мог чувствовать себя в безопасности. Примечательно то, что настоящего времени на практике нет, можно с уверенностью говорить, что его значение равно нулю. Это связано с тем, что будущее событие моментально превращается в прошлое.

Философ: время – это постоянная нашего бытия, с его участием происходит совокупность изменений, которые имеют связь, как с прошлым, так и будущим. Время и пространство неразделимы.

Возможно, такое представление о времени будет не совсем серьезным, однако лишь таким способом возможно подчеркнуть необъяснимость такого понятия как время.

Однако во времени есть одно интересне свойство, а именно — временем можно управлять…

Временем можно управлять

Возьмем пример с яичницей. Если взять все необходимое: сковороду, масло, яйца, соль, печку и т. д. то мы знаем, что на приготовление яичницы уйдет минут 5 — 10. В этом случае у нас есть время, как постоянная величина.

А ведь эту постоянную величину возможно изменить. Следует изменить одну из составляющих процесса.

Если для приготовления блюда изменить температуру. Взять, например, мартеновскую печь, то сколько уйдет времени на приготовление яичницы? Можно предположить что несколько секунд… А если поставить сковородку на простую печь, но толщина стенок сковородки будет сантиметров так 10. То сколько тогда времени понадобится для приготовления, как вариант, можно будет время измерять часами.

Так вот. Изменяя качество составляющих процесса мы изменяем время течения этого процесса. Его можно как ускорить, так и замедлить, им можно управлять. Для этого необходимо просто знать, что и как изменять.

Времени, как постоянной величины, которая имеет определяющее влияние, не существует. Имеется только то, чем можно измерить те или иные стадии процессов, не более. И то, это измерение надо только для понимания, для ориентации между происходящим, для согласования этого понимания.

Для того что бы это понять, не следует торопиться и не делать поспешных выводов. Это очень важный момент для управления процессами.

Примеры для размышления:

За секунды, при клинической смерти, люди вспоминают всю свою жизнь (говорят: перед глазами вся жизнь прошла).

Детские годы — каждый день, это множество разнообразных событий, а в возрасте — годы летят, как один день.

Попадая в экстремальную ситуацию, человек порой делает за секунду столько и таким образом, что, в обычных обстоятельствах не сделает никогда.

Для начала, будет более чем достаточно попросту сдвинуть с мертвой точки само понимание такого понятия, как время, и просто принять то, что с этим вопросом, имея желание, можно научиться правильно взаимодействовать.

По законам времени. Что говорит наука

Законы физики не могут приблизить нас к пониманию природы времени. В них нет ничего, что мы смогли бы интерпретировать как описание времени, процесса его течения.

Когда появилась частная теория относительности мы стали все отчетливей понимать, до какой степени загадочен и сложен феномен времени. Ведь из уравнений, которые были выведены Эйнштейном, явствовало, что для двух людей, движущихся один относительно другого, само время течет по-разному. Чем быстрей перемещается человек, тем медленней для него течет время.

Парадокс близнецов

Классическим стал пример с молодым космонавтом, который возвратился на Землю после полета со скоростью, приближенной световой, и увидал, что его брат-близнец за непродолжительное время разлуки превратился в дряхлого старика; сам же космический странник, «человек молодой, бодрый», с ужасом смотрел на эту непостижимую перемену.

Индивидуальное время

С точки зрения Эйнштейна и современной физики, в такой перемене не было ничего сверхъестественного. Такого понятия, как «истинное время», не существует. У любого наблюдателя есть свое собственное, «индивидуальное время».

В наши дни во время космических полетов время замедляется всего лишь на считанные доли секунды, потому как скорость полетов сравнительно невысока. Если же когда-то ракеты помчатся на скорости, близкой световой, то «парадокс близнецов», может быть, воплотится наяву.

Эксперименты со временем

В экспериментах, которые проводились физиками, уже доказана относительность времени.

Так, в опытах немецкого физика Геральда Хубера, поставленных в начале 90-х годов XX века в лаборатории Гейдельбергского университета, ионы лития разгоняли до скорости 19 200 км/сек. После сравнили их поведение с поведением частиц, которые находились в покое. Так установили, что для ионов лития, мчавшихся на большой скорости, время замедлялось на одну десятимиллионную долю секунды.

В особенности эффектен был эксперимент, который поставили в 1976 г. Известно, что период полураспада мюонов, тяжелых собратьев электронов, составляет полторы миллионные доли секунды. Во время эксперимента мюоны удалось разогнать до скорости, равной 99,94% скорости света. Тут-то и смогли выяснить, что продолжительность их жизни увеличилась в 29 раз!

Ситуация станет еще запутанней, если принять во внимание уравнения обшей теории относительности. Согласно им, мощные источники гравитации, то есть сверхмассивные объекты, тоже замедляют течение времени. И это смогли доказать экспериментально.

Если взять пару точнейших атомных часов, которые показывают одно и то же время, и оставить одни из часов в лаборатории, а другие отправить на самолете, который совершает сверхдальний перелет, то после того как он приземлится часы на его борту будут спешить на несколько миллиардных долей секунды. Планета Земля создает мощное гравитационное поле и замедляет течение времени. Данный эффект был достоверно зафиксирован еще в 1970-е годы. 1985 год — он получил подтверждение с высокой степенью точности в рамках эксперимента NAVEX, который проводился на борту космического корабля «Space Shuttle».

Время и черные дыры

Изменяется время и в окрестностях черных дыр. Во время приближения к черной дыре постепенно начинает возрастать сила гравитации, а потому как эта сила замедляет бег времени, оно течет все медленней. Каждая секунда, как капля из опустевшего сосуда, неторопливо скатывается на часы, только изредка подталкивая стрелку. Это время за пределами черных дыр мчится, как лавина с гор. Здесь же, возле самого сердца Тьмы, время будто взрывается. За доли секунды остынет Солнце — словно и не было пяти миллиардов лет. За тот же миг небо покроется новыми галактиками, растратив вчистую еще миллиарды лет. Стрела времени, только что уходившая в вечность, внутри черной дыры сожмется в точку. В этой точке уместится все, чему суждено быть «до скончания веков». А потом?

Согласно расчетам, там должна наступить сингулярность — то особенное состояние, выхода из которого нет. Сингулярность в центре черной дыры — средоточие нашего неведения. Там нарушаются законы физики. Температура и плотность увеличиваются до бесконечности, а время и пространство стремятся к нулю. Время останавливается. Все это только результат математических выкладок. Никто не знает, что в действительности может происходить в центре черной дыры.

Следует признать, что наше привычное представление о времени крайне примитивно, потому как опирается только на известные нам факты — на наблюдение за природой одного крохотного уголка мироздания. Вселенная же непомерно велика и неведома.

Прошлое, настоящее и будущее

Время нами воспринимается как прошлое, настоящее и будущее. Однако более реально мы, на наш взгляд, ощущаем настоящее, не думая о том, что большая часть из того, что мы называем «настоящим», по сути уже является прошлым. Настоящее — это стремительно проходящий миг, который отображен на временной шкале очень тонкой линией.

Настоящее еще можно сравнить с записывающим лазером, фиксирующим воспоминания у нас в мозгу. Представим, что какой-то человек собрался сходить на концерт, но заснул и так и не попал на концетр. В его голове не останется воспоминаний о мероприятии, словно его и не было в прошлом, хотя по факту концерт состоялся.

В отличие от настоящего, прошлое и будущее — это временные промежутки, которые возможно измерить (будь то свадьба или важная деловая встреча), подобно тому, как можно измерить записанный на пленке материал. Вот только прошлое — это уже записанные воспоминания, а будущее — это «пленка», которую еще лишь предстоит записать.

У исторических событий имеется тот же набор временных характеристик, что и у историй, являющиеся продуктом воображения человека. И там, и здесь имеются события, которые произошли «раньше», «позже» и «в недалеком прошлом», а это доказывает, что прошлое в действительности похоже на память о событиях.

Будущее же представляет из себя некую проекцию, составленную на основе прошлого опыта, воспоминания о котором хранятся у нас в мозгу.
Выходит, что настоящее, которое мы воспринимаем наиболее реально, не может быть измерено, в то время как «неощутимые» прошлое и будущее имеют некоторую продолжительность и могут быть измерены. А это значит, что наше восприятие времени ошибочно.

Все мы помним, как во времена СССР все республики с замиранием сердца ждали боя курантов в новогоднюю ночь. Сегодня эти часы отбивают время исключительно для России, однако, это не лишает их особой магии и привлекательности.

Кремлевская башня (еще называется Спасской), на которой установлены эти часы, была построена еще в 1491 году. В 1625 году она была модернизирована — именно тогда часовое устройство и было установлено на башню. В 1626 году из-за пожара часы были уничтожены, поэтому пришлось построить аналогичные. В 1706 году снова часы заменили на новые. В этот раз они были привезены лично Петром Первым. Однако они также пострадали из-за пожара.

Последняя замена циферблата произошла в прошлом веке после попадания в них снаряда в 1917 году. Мало кто знает, но изначально башня называлась Фроловской, так как ее создатель (итальянец Пьетро Антонио Солари) выбирал название для своего строения, исходя из находящейся поблизости церкви Фрола и Лавра. Только в 1658 году было принято решение переименовать башню в Спасскую. Это было зафиксировано в царском указе, а основанием для переименования стало расположение иконы Спаса Нерукотворного над воротами.

Сегодня абсолютная точность времени достигается при помощи подключения часов к контрольным часам. Для этого под землей проведен специальный кабель.

Куранты способны воспроизводить множество мелодий. До 1932 года ежедневно в обед воспроизводился «Интернационал», сегодня основной мотив — гимн Российской Федерации.

Доступ к самому циферблату разрешен ограниченному кругу лиц. При этом в башне нет лифта — подниматься приходится по старинной винтовой лестнице. Длина каждой из стрелок составляет 3 метра, а размер всевозможных шестеренок и колес превышает человеческий рост. Общий вес конструкции превышает 25 тонн.

Главная » Разное » Что такое время в физике определение

Время (физика) — это… Что такое Время (физика)?

Время (физика)

Сейчас — 9 июня 2009, 02:30 (UTC)

Время — одно из основных понятий физики и философии, одна из координат пространства-времени, вдоль которой протянуты мировые линии физических тел, а также сознание.

В диалектическом материализме время — это объективно реальная форма существования движущейся материи, характеризующая последовательность развёртывания материальных процессов, отделённость друг от друга разных стадий этих процессов, их длительность, их развитие.

В количественном (метрологическом) смысле понятие время имеет два аспекта:

Свойства времени

В классической физике, время — непрерывная величина, априорная характеристика мира, ничем не определяемая. В качестве основы измерения просто берётся некая последовательность событий, про которую считается несомненно верным, что она происходит через равные промежутки времени, то есть периодична. Именно на этом принципе и основаны часы. Такая же роль времени и в квантовой механике: несмотря на квантование почти всех величин, время осталось внешним, неквантованным параметром. В обоих случаях «скорость течения времени» не может ни от чего зависеть, а потому тавтологически равна константе.

В релятивистской физике ситуация кардинально меняется. Время рассматривается как часть единого пространства-времени, и, значит, может меняться при его преобразованиях. Можно сказать, что время становится четвёртой координатой, правда, в отличие от пространственных координат, она обладает противоположной сигнатурой. «Скорость течения времени» становится понятием «субъективным», зависящим от системы отсчёта. Ситуация усложняется в общей теории относительности, где «скорость течения времени» зависит также и от близости к гравитирующим телам.

Физическая интерпретация вышеназванных теорий требует нового определения времени, как числа процессов в системе отсчёта, произошедших одновременно с данным процессом. Система отсчёта времени может быть неравномерная (как процесс вращения Земли вокруг Солнца) или равномерная. Эталон секунды — период излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

В этом контексте в некоторых гипотезах выделяют такое элементарное «мгновение» — хронон[1], соответствующее понятию планковское время и являющееся согласно этим гипотезам квантом времени, то есть его мельчайшей неделимой частицей, и составляющее примерно 5,3×10-44 с.

Отсчёт времени

Как в классической, так и в релятивистской физике для отсчёта времени используется временна́я координата пространства-времени, причём (традиционно) принято использовать знак «+» для будущего, а знак «-» — для прошлого. Однако смысл временно́й координаты в классическом и релятивистском случае различен (см. Ось времени).

См. также:

  • Единицы измерения времени
  • Собственное время

Зависимость от времени

Поскольку состояния всего нашего мира зависят от времени, то и состояние какой-либо системы тоже может зависеть от времени, как обычно и происходит. Однако в некоторых исключительных случаях зависимость какой-либо величины от времени может оказаться пренебрежимо слабой, так что с высокой точностью можно считать эту характеристику независящей от времени. Если такие величины описывают динамику какой-либо системы, то они называются сохраняющимися величинами, или интегралами движения. Например, в классической механике полная энергия, полный импульс и полный момент импульса изолированной системы являются интегралами движения.

Различные физические явления можно разделить на три группы

  • стационарные — явления, основные характеристики которых не меняются со временем. Фазовый портрет стационарного явления описывается неподвижной точкой.
  • нестационарные — явления, для которых зависимость от времени принципиально важна. Фазовый портрет нестационарного явления описывается движущейся по некоторой траектории точкой. Они, в свою очередь, делятся на
    • периодические — если в явлении наблюдается чёткая периодичность (фазовый портрет — замкнутая кривая)
    • квазипериодические — если они не являются в строгом смысле периодическими, но в малом масштабе выглядят как периодические (фазовый портрет — почти замкнутая кривая)
    • хаотические — апериодические явления (фазовый портрет — незамкнутая кривая, заметающая некоторую площадь более или менее равномерно, аттрактор).
  • квазистационарные — явления, которые, строго говоря, нестационарны, но характерный масштаб их эволюции много больше тех времён, которые интересуют в задаче.

Направленность времени

Большинство современных учёных полагают, что различие между прошлым и будущим является принципиальным. Согласно современному уровню развития науки, информация переносится из прошлого в будущее, но не наоборот. Второе начало термодинамики указывает также на накопление в будущем энтропии.

Впрочем, некоторые ученые думают немного иначе. Стивен Хокинг в своей книге «Краткая история времени: от Большого взрыва до чёрных дыр» оспаривает утверждение, что для физических законов существует различие между направлением «вперёд» и «назад» во времени. Хокинг обосновывает это тем, что передача информации возможна только в том же направлении во времени, в котором возрастает общая энтропия Вселенной. Таким образом, Второй закон термодинамики является тривиальным, так как энтропия растет со временем, потому что мы измеряем время в том направлении, в котором растет энтропия[2].

Единственность прошлого считается весьма правдоподобной. Мнения учёных касательно наличия или отсутствия различных «альтернативных» будущих различны[3].

Единицы измерения времени

Хронологически обособленные временные отрезки

В геологии

  • Эон
  • Эра
  • Эпоха
  • Период
  • Век (геологический) — не путать со столетием
  • Фаза

В истории

Метрология

Средства отсчёта текущего времени (автономные)

  • Календарь (печатное издание) — только дискретный счёт
  • Часы
  • Стандарт частоты

Централизованные способы определения текущего времени

  • По телефону с помощью службы точного времени
  • По телевизору или бытовому радиоприёмнику, используя аудио- или визуальные сигналы точного времени, передаваемые вещательными службами
  • По приёмнику сигналов точного времени, используя особые сигналы, передаваемые специальными радиостанциями
  • По компьютеру с помощью специальных сетевых сервисов в Интернете и локальных сетях (например, таких как

Что такое время?

Что такое время?

Несмотря на то, что явление времени кажется интуитивно понятным и является фундаментальным понятием в философии и науке, точное определение времени до сих пор не сформировано. В данной статье мы рассмотрим несколько основных концепций времени с точки зрения науки.

Классическая физика

Классическая физика сложилась до возникновения теории относительности Эйнштейна и квантовой теории. Согласно классической концепции времени, время – непрерывная величина, которая не определяется чем-либо и является априорной характеристикой мира. Время – основное условие протекания каких-либо процессов в мире. Такое время одинаково течет для всех процессов и во всех точках мира, при этом нет ничего, что способно повлиять на ход времени. Несмотря на то, что тела и процессы могут ускоряться и замедляться, течение времени равномерно. В связи с этим с точки зрения классической физики время называют абсолютным. Эти свойства времени описал Исаак Ньютон в своем труде «Математические начала натуральной философии» 1687-го года.

«Математические начала натуральной философии» Исаака Ньютона

В классической механике переход от одной системы отсчета (инерциальной) к другой описывается так называемыми преобразованиями Галилея. Уравнения механики Ньютона по отношению к данным преобразованиям являются инвариантными, из чего выплывает абсолютность времени.

Следует отметить, что в классической физике для времени не выделяется определенная ось, так как в рамках данной концепции течение времени в обратную сторону равносильно обычному его течению.

Термодинамика

В отличие от классической физики, термодинамика утверждает, что время необратимо в силу второго закона термодинамики. Согласно этому закону существует некоторая функция состояния – энтропия, которая не убывает в любых процессах в замкнутых системах. Если бы время могло идти в обратном направлении, энтропия бы в таких системах уменьшалась, что противоречит вышеизложенному закону.

Термодинамика отличается жестким требованием существования оси времени.

Квантовая механика

В большинстве своем концепция времени в рамках квантовой механики схожа с интерпретацией классической физики, то есть время течет равномерно. Однако, основным отличием данного определения является необратимость времени. Это связано с тем, что процесс измерения несимметричен во времени. Измерение в данный момент даст информацию о состоянии объекта в прошлом, но в будущем даст новое состояние.

Релятивистская физика (теория относительности Эйнштейна)

Наиболее популярной концепцией времени сегодня является определение времени в рамках теории относительности Эйнштейна.

Альберт Эйнштейн на пляже (1939 г.), вероятно думает о физике

Прежде всего следует отметить основные постулаты данной концепции:

  • Скорость света в вакууме одинакова во всех системах координат, которые движутся относительно друг друга равномерно и прямолинейно.
  • Физические законы одинаковы во всех системах координат, которые движутся относительно друг друга равномерно и прямолинейно.
  • Любое событие может влиять лишь на события, которые происходят позже него и не влияет на события, которые происходят раньше него.

Исходя из вышеупомянутых постулатов, можно утверждать, что события, которые происходят одновременно в одной системе отсчета, могут быть не одновременны в другой системе отсчета, движущейся относительно первой системы отсчета. Таким образом, в рамках данной концепции ход времени зависит от движения выбранной системы отсчета. Проще говоря, скорость хода часов зависит от того, кто их носит. Интереснейшим аспектом данной теории является влияние гравитации на течение времени. В рамках данной концепции пространство и время являются несамостоятельными частями одного пространственно-временного континуума. Тогда вблизи массивных объектов искажается не только пространство, но и изменяется скорость течения времени.

Искривление пространства-времени как результат гравитационного возмущения

В релятивистской физике время определяется как четвертая координатная ось системы координат, три другие оси которой представляют три пространственные координаты «нашего трехмерного мира». Таким образом каждое тело имеет так называемую мировую линию. Если рассматривать данное тело в упомянутой четырехмерной системе координат, то оно будет представляться протяженным множеством этих тел. То есть в каждый момент времени своего существования тело будет наноситься на четырехмерную систему координат, в зависимости от его пространственного, а также временного положения.

Мировая линия человека (упрощенно), где X и Y — две пространственные координаты, а T — временная координата.

Что же такое время?

Исходя из сказанного выше, становится ясно, что человечеству совершенно неясно, что такое время. Перечисленные здесь теории лишь пытаются математически (и геометрически) определить время, как нечто, что может использоваться в дальнейших расчетах для объяснения наблюдаемых явлений.

Опираясь на постулаты, выплывающие из основных концепций времени, можно попытаться сформулировать следующее субъективное определение:

«Время – априорный геометрический параметр, который характеризирует движение, определяет длительность существования всех процессов, есть условие существования изменения. Является неотъемлемой частью пространственно-временного континуума, есть его четвертая координата наряду с тремя пространственными. Время способно искривляться в результате гравитационного возмущения, при этом является необратимым. Данное явление относительное и зависит от выбора системы отсчета и ее скорости. Подчиняется постулату причинности, согласно которому любое событие может влиять лишь на события, которые происходят позже него и не влияет на события, которые происходят раньше него».

Картина Сальвадора Дали «Постоянство памяти» 1931 г.

Данное явление невозможно представить в уме, а потому ученые со всего мира пытаются объяснить его математически, что пока остается непосильной задачей и вызывает множество разногласий в научном сообществе. Если же ученому задать вопрос «Что такое время?», то скорее всего в ответ Вы услышите – «Это то, что измеряется часами».

comments powered by HyperComments

Временем — это… Что такое Временем?

Временем

Сейчас — 9 июня 2009, 02:30 (UTC)

Время — одно из основных понятий физики и философии, одна из координат пространства-времени, вдоль которой протянуты мировые линии физических тел, а также сознание.

В диалектическом материализме время — это объективно реальная форма существования движущейся материи, характеризующая последовательность развёртывания материальных процессов, отделённость друг от друга разных стадий этих процессов, их длительность, их развитие.

В количественном (метрологическом) смысле понятие время имеет два аспекта:

Свойства времени

В классической физике, время — непрерывная величина, априорная характеристика мира, ничем не определяемая. В качестве основы измерения просто берётся некая последовательность событий, про которую считается несомненно верным, что она происходит через равные промежутки времени, то есть периодична. Именно на этом принципе и основаны часы. Такая же роль времени и в квантовой механике: несмотря на квантование почти всех величин, время осталось внешним, неквантованным параметром. В обоих случаях «скорость течения времени» не может ни от чего зависеть, а потому тавтологически равна константе.

В релятивистской физике ситуация кардинально меняется. Время рассматривается как часть единого пространства-времени, и, значит, может меняться при его преобразованиях. Можно сказать, что время становится четвёртой координатой, правда, в отличие от пространственных координат, она обладает противоположной сигнатурой. «Скорость течения времени» становится понятием «субъективным», зависящим от системы отсчёта. Ситуация усложняется в общей теории относительности, где «скорость течения времени» зависит также и от близости к гравитирующим телам.

Физическая интерпретация вышеназванных теорий требует нового определения времени, как числа процессов в системе отсчёта, произошедших одновременно с данным процессом. Система отсчёта времени может быть неравномерная (как процесс вращения Земли вокруг Солнца) или равномерная. Эталон секунды — период излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

В этом контексте в некоторых гипотезах выделяют такое элементарное «мгновение» — хронон[1], соответствующее понятию планковское время и являющееся согласно этим гипотезам квантом времени, то есть его мельчайшей неделимой частицей, и составляющее примерно 5,3×10-44 с.

Отсчёт времени

Как в классической, так и в релятивистской физике для отсчёта времени используется временна́я координата пространства-времени, причём (традиционно) принято использовать знак «+» для будущего, а знак «-» — для прошлого. Однако смысл временно́й координаты в классическом и релятивистском случае различен (см. Ось времени).

См. также:

  • Единицы измерения времени
  • Собственное время

Зависимость от времени

Поскольку состояния всего нашего мира зависят от времени, то и состояние какой-либо системы тоже может зависеть от времени, как обычно и происходит. Однако в некоторых исключительных случаях зависимость какой-либо величины от времени может оказаться пренебрежимо слабой, так что с высокой точностью можно считать эту характеристику независящей от времени. Если такие величины описывают динамику какой-либо системы, то они называются сохраняющимися величинами, или интегралами движения. Например, в классической механике полная энергия, полный импульс и полный момент импульса изолированной системы являются интегралами движения.

Различные физические явления можно разделить на три группы

  • стационарные — явления, основные характеристики которых не меняются со временем. Фазовый портрет стационарного явления описывается неподвижной точкой.
  • нестационарные — явления, для которых зависимость от времени принципиально важна. Фазовый портрет нестационарного явления описывается движущейся по некоторой траектории точкой. Они, в свою очередь, делятся на
    • периодические — если в явлении наблюдается чёткая периодичность (фазовый портрет — замкнутая кривая)
    • квазипериодические — если они не являются в строгом смысле периодическими, но в малом масштабе выглядят как периодические (фазовый портрет — почти замкнутая кривая)
    • хаотические — апериодические явления (фазовый портрет — незамкнутая кривая, заметающая некоторую площадь более или менее равномерно, аттрактор).
  • квазистационарные — явления, которые, строго говоря, нестационарны, но характерный масштаб их эволюции много больше тех времён, которые интересуют в задаче.

Направленность времени

Большинство современных учёных полагают, что различие между прошлым и будущим является принципиальным. Согласно современному уровню развития науки, информация переносится из прошлого в будущее, но не наоборот. Второе начало термодинамики указывает также на накопление в будущем энтропии.

Впрочем, некоторые ученые думают немного иначе. Стивен Хокинг в своей книге «Краткая история времени: от Большого взрыва до чёрных дыр» оспаривает утверждение, что для физических законов существует различие между направлением «вперёд» и «назад» во времени. Хокинг обосновывает это тем, что передача информации возможна только в том же направлении во времени, в котором возрастает общая энтропия Вселенной. Таким образом, Второй закон термодинамики является тривиальным, так как энтропия растет со временем, потому что мы измеряем время в том направлении, в котором растет энтропия[2].

Единственность прошлого считается весьма правдоподобной. Мнения учёных касательно наличия или отсутствия различных «альтернативных» будущих различны[3].

Единицы измерения времени

Хронологически обособленные временные отрезки

В геологии

  • Эон
  • Эра
  • Эпоха
  • Период
  • Век (геологический) — не путать со столетием
  • Фаза

В истории

Метрология

Средства отсчёта текущего времени (автономные)

  • Календарь (печатное издание) — только дискретный счёт
  • Часы
  • Стандарт частоты

Централизованные способы определения текущего времени

  • По телефону с помощью службы точного времени
  • По телевизору или бытовому радиоприёмнику, используя аудио- или визуальные сигналы точного времени, передаваемые вещательными службами
  • По приёмнику сигналов точного времени, используя особые сигналы, передаваемые специальными радиостанциями
  • По компьютеру с помощью специальных сетевых сервисов в Интернете и локальных сетях (например, таких как

Что такое время с точки зрения физики?

На протяжении всей истории человечества люди пытаются понять, как устроен мир, в котором им довелось существовать. На нынешнем историческом промежутке наиболее авторитетным и популярным способом наблюдения и объяснения феноменов окружающей действительности является научный метод познания.

Основные проблемы, волнующие людей как несколько тысяч лет тому назад, так и в настоящий момент, можно свести к нескольким простым и понятным вопросам: «Кто мы такие?», «Почему и как мы возникли?», «Зачем мы существуем?» и «Что такое пространство и время, в рамках которых происходит наше существование?». В данной статье мы рассмотрим вопрос о том, что такое время.

История понятия «время»

С самых давних пор люди заметили, что происходящие в мире события случаются в определенном порядке и подчиняются некоторой внутренней логике: то, что происходит раньше, имеет необратимое влияние на то, что происходит позднее — как вылупившийся цыпленок не может залезть обратно в яйцо, так и человек не может вернуться во вчерашний день или даже в только что прошедшую секунду.

Эти особенности окружающего мира многократно отражены в длинной череде народных пословиц и поговорок: «Былого не воротишь», «В одну реку не войти два раза» и т.д. Именно эту последовательность течения событий люди стали называть временем.

Понятие времени в физике

С тех пор как научное познание разделилось на самостоятельные, хотя и взаимосвязанные отрасли, понятие времени входит в ту область исследований, которой занимается наука под названием физика. Практически каждому читателю этой статьи физика известна как минимум в качестве школьного предмета, однако область физических исследований отнюдь не ограничивается рамками школьной программы. Помимо прочего в задачи физики входит поиск и формулировка внятного и достоверного ответа на один из так называемых «вечных вопросов»: «Что такое время?».

Следует сразу сообщить, что однозначного и бесспорного ответа на этот достаточно просто звучащий вопрос получить не удалось до сих пор, хотя лучшие умы человечества пытаются сделать это всеми доступными им способами. Тем не менее, мы можем несколько успокоить читателя, сообщив ему о том, что ученым удалось разработать несколько достаточно убедительных теорий, описывающих роль времени в тех процессах, которые происходят вокруг и внутри нас. С точки зрения физики время является одним из измерений. Измерениями называют некоторые физические величины, такие как длина, ширина, высота и, как мы уже упомянули, время. Другие физические величины, такие как скорость, температура, влажность и т.д., являются как бы вторичными по отношению к перечисленным выше или производными от них. Длина, ширина и высота отличаются от остальных физических величин тем, что они описывают не свойства материальных объектов, а то пространство, в котором эти объекты располагаются и движутся.

Можно сказать, что сами по себе физические объекты не имеют длины, ширины и высоты — они просто совпадают с высотой, длиной и шириной пространства, которое занимают в данный момент времени. Поэтому длину, ширину, высоту и время называют измерениями и наделяют некоей первичностью по отношению к другим физическим величинам.

Понять это довольно просто, ведь если предмет не имеет положения в пространстве и времени, то он просто не существует в окружающей нас действительности, и как следствие не может иметь каких-либо физических характеристик.

В совокупности с пространственными измерениями время составляет так называемый пространственно-временной континуум, включающий в себя все наблюдаемые нами предметы и события. Сами мы тоже находимся в пространственно-временном континууме, более того, с научной точки зрения мы являемся всего лишь его частью и не можем существовать отдельно от него.

Само существование пространственно-временного континуума можно считать вполне очевидным, ведь даже если окружающее нам только снится, то действие наших снов происходит во времени и пространстве. А вот о сущности и форме этого континуума можно вести споры, которые не утихают с тех пор, как существует наука; можно даже сказать, что именно эти споры и привели к возникновению науки как таковой.

Четырехмерное пространство и этернализм

Существует гипотеза, согласно которой время можно рассматривать как четвертое пространственное измерение, ничем по сути не отличающееся от длины, ширины и высоты. С этой точки зрения события в действительности не происходят в определенном порядке, этот порядок возникает лишь в силу особенностей нашего восприятия. В философии данный подход называется этернализм.

С точки зрения этернализма материальные объекты, в том числе люди и животные, вовсе не движутся во времени, так как никакое движение во времени невозможно в принципе. Этернализм рассматривает прошлое и будущее как объективно существующие состояния реальности, такие же как настоящий момент. Данный подход не объясняет, почему же мы воспринимаем события именно в той последовательности, в которой мы их воспринимаем, но справедливости ради стоит отметить, что традиционный подход к пространству-времени тоже не дает убедительного и исчерпывающего ответа на данный вопрос, именно поэтому вопрос о сущности времени принято относить к разряду «вечных».

«Сейчас: Физика времени»

Что такое время? Ответить на этот вопрос всегда было трудно, но современная физика многое сделала для его понимания. А что такое сейчас? Здесь даже физики порой встают в тупик. Ричард Мюллер, автор книги «Сейчас. Физика времени», знакомит читателей с проблематикой вопроса и на простом языке объясняет крайне непростые парадоксы теории относительности. Совместно с издательством «Манн, Иванов и Фербер», выпустившим эту книгу в 2017 году, N + 1 знакомит своих читателей с фрагментами из ее второй главы.

Возвращение Эйнштейна в детство

Несмотря на внешнюю простоту, нижеследующая фраза не принадлежит детской книге о времени:

Если, например, я скажу: «Этот поезд прибывает в 7 часов», то я имею в виду примерно следующее: «Нахождение маленькой стрелки моих часов и прибытие поезда будут одновременными событиями».

Это обманчиво простое предложение появилось в одном из престижных физических журналов своих дней, Annalen der Physik, 30 июня 1905 года. Статья, в которой оно содержалось, была, безусловно, самой глубокой и важной публикацией с 1687 года, когда Ньютон заложил фундамент классической физики в своих «Принципах» («Математических началах натуральной философии»). Ее автор однажды станет символом гениальности, научной продуктивности и 95 лет спустя будет назван в журнале Time («Время» — очень говорящее название) человеком века. Подобную его честь мало кто оспаривал. Слова же о маленьких наручных часах принадлежат Альберту Эйнштейну.

Статья называлась «К электродинамике движущихся тел». Что общего может быть между маленькой стрелкой на часах и прибытием поезда с электродинамикой, то есть исследованиями в области электричества и магнетизма? Оказывается, очень много. Статья Эйнштейна на самом деле касалась времени и пространства: он хотел ввести эти понятия в область физики. Более подходящим названием скорее могло бы быть «Теория относительности — революционный прорыв в нашем понимании времени и пространства». До Эйнштейна эти понятия были просто координатами, которые использовались для постановки и решения задач. Ответ на вопрос «Когда прибудет поезд?» мог быть сформулирован как определенный момент времени. Эйнштейн показал, что не все так просто.

Теория относительности

Что такое время? Его трудно определить. Ньютон надменно избегал этого вопроса. В упомянутом монументальном труде он писал: «Я не даю определений времени, месту или движению, поскольку это и так всем хорошо известно». Может быть, и известно, но труднопостижимо. Эйнштейн тоже не дал определения времени, но он удивительно талантливо его исследовал, открыв при этом совершенно неожиданные его свойства. Он продолжает изложение в своей основополагающей статье о теории относительности в стиле педанта, до смешного элементарном, а иногда даже скучном:

Если в точке А пространства расположены часы, то наблюдатель, находящийся в этой точке, может определять временнЫе значения происходящих в непосредственной близости от него событий, отыскивая положения стрелок на часах одновременно с происхождением этих событий.

Кому он адресует свою статью? Простым любителям? Разве не утверждает совершенно очевидное? Зачем использует этот детский стиль?

Ученый делал все это по вполне определенным причинам. Чтобы добиться прогресса в изысканиях, требовалось разбить скрытые предрассудки и неправильные представления, засевшие в подсознании его коллег. Для этого он прежде всего должен был раскрыть эти идеи как не обязательно вполне очевидные и, что еще более важно, — как не соответствующие истине. Он обратился к самым фундаментальным понятиям — тем, которым вас учили в детстве, когда вы впервые сумели определить время на часах; понятиям абсолютности времени. К тому, что даже если часы идут неправильно, их можно синхронизировать с другими; что если отец говорит вам нечто сделать сейчас, то значение этого сейчас для вас и для него одинаково.

Эйнштейну требовалось удалить из головоломки те детали, которые были вставлены в нее неправильно.

И он пришел к выводу, что несколько очевидных, само собой разумеющихся принципов не соответствовали истине. Его логические рассуждения строились на базе явлений электричества — отсюда и название статьи. Трудность теории относительности состояла не в сложности ее математического аппарата — в статье Эйнштейн использует только элементарную алгебру; а в тех искаженных представлениях о времени и пространстве, которые имели ее читатели, крупнейшие мировые ученые.

Попробуйте заставить себя вновь подумать о времени и пространстве так, как о них думает ребенок. Можете вспомнить, когда вы впервые подумали, что скорость течения времени непостоянна? Для меня время буквально «летело» во время школьных каникул или в ходе забав и приключений. Оно чрезвычайно замедляло свой бег при посещениях стоматолога (который не верил в обезболивающие средства) или когда я в магазине ожидал маму, примеряющую обувь. Газета New York Times в 1929 году цитировала Эйнштейна: «Когда ты сидишь с красивой девушкой два часа, они кажутся тебе минутой, но если ты сидишь на горячей печи хотя бы минуту, покажется, что прошло два часа».

Через 10 лет после своих основополагающих работ по теории относительности Эйнштейн опубликовал статью в ее развитие, объясняя природу гравитации. Эту часть теории он назвал общей теорией относительности (ОТО). Тогда ученый решил, что ее первая часть, не касающаяся вопросов гравитации, должна быть переименована в специальную теорию относительности (СТО). Эта смена названия оказалась неудачной и вызывала путаницу. Было бы гораздо понятнее, если бы Эйнштейн назвал свою первую работу просто теорией относительности, а вторую расширенной теорией относительности. Великий ученый вынашивал мысли о дальнейшем развитии теории и о пересмотре теорий электричества и магнетизма, а также включении их всех в объединенную теорию. Но ему это не удалось.

Откуда вообще появилось здесь слово относительность? Чтобы понять это, остановитесь на секунду и ответьте на вопрос: какова ваша скорость в этот момент?

Вы сказали: «Нуль», — потому что сейчас сидите? Вы можете сказать: «Нуль», — также сидя в самолете, который летит на высоте 12 000 метров. Горит табло «Пристегните ремни», и стюардесса объясняет, что передвижение по самолету запрещено. Поскольку вы сидите не двигаясь, ваша скорость должна составлять 0 км/ч.

Или вы сказали: «900 км/ч», — поскольку с такой скоростью двигается самолет? Или вы читаете книгу на катере, покачивающемся на воде в устье Амазонки, и даете ответ: «1670 км/ч», — поскольку это скорость вращения Земли в районе экватора (40 000 км за 24 часа)? Возможно, вы достаточно знаете астрономию, чтобы сообщить о скорости вращения Земли вокруг Солнца — «30 км/с». Если бы еще вспомнили о скорости вращения Солнца вокруг центра Млечного Пути и скорости движения Млечного Пути во Вселенной (которую можно определить по микроволновому излучению), видимо, вы бы произнесли: «1 500 000 км/ч».

Какой из этих ответов правильный? Разумеется, все. Ваша скорость зависит от той платформы наблюдения, на которой вы находитесь. Физики называют ее системой отсчета. Этой системой могут быть Земля, самолет, земная ось, Солнце или космическое пространство. Или что-то между ними.Когда вы летите в самолете, можете ли не согласиться с кем-то, находящимся на Земле, относительно скорости вашего передвижения? Нет, такое несогласие выглядело бы глупо. Вы оба знаете, что вы неподвижны относительно самолета, но передвигаетесь со скоростью 900 км/ч относительно Земли. Оба ответа правильные.

Поразительным новым качеством относительности стало то, что не только скорость, но и время зависит от системы отсчета. Абсолютного времени, о котором вы узнали от своих родителей и учителей, не существует. Вы не только будете получать разные показания времени в зависимости от того, какую точку отсчета выберете — землю, самолет, планету Земля или космическое пространство; вы получите еще и разную скорость течения времени. Это означает, что промежуток времени между двумя событиями, между двумя тиканьями ваших часов, не универсален и абсолютен, а зависит от выбранной вами системы отсчета.

В других книгах по теории относительности вы, видимо, читали, что разные наблюдатели, двигающиеся с разными скоростями, «расходятся между собой в восприятии действительности». Это совсем не так. Даже если это утверждают самые великие физики мира, они понимают, что это не соответствует истине. (Признаюсь, я тоже попал в такую ловушку в одной из своих же ранних статей по теории относительности. Тогда я думал, что это поможет яснее донести предмет до читателей. Я ошибался.)

Утверждения о «несогласных между собой наблюдателях» вызвали бóльшую путаницу и затруднение понимания людьми теории относительности, чем ее сложный математический аппарат. Наблюдатели в относительности не согласны между собой только в степени ошибки по поводу скорости передвижения кого-то в самолете. Но все эти наблюдатели знают, что скорость относительна, а ее показатель зависит от точки отсчета. Они также знают (если внимательно изучали ОТО), что то же самое верно и для времени. Блеск теории относительности состоит в том, что все наблюдатели и везде согласны друг с другом.

Когда я спросил о вашей скорости, вы, возможно, сочли, что это вопрос с каким-то подтекстом, и отказались отвечать. Вы подумали: «Скорости по отношению к чему?» Отлично. Вы правильно поняли направление моей мысли.

Замедление времени

Эйнштейн показал, что время того или иного события зависит от системы отсчета: земной поверхности, самолета, планеты Земля, Солнца или космического пространства. При этом время события будет разным. Для небольших скоростей (то есть около 1 500 000 км/ч или меньше) эта разница будет небольшой. Но все равно она существует. Когда системы отсчета движутся быстро — близко к скорости света, время начинает различаться очень сильно. Уравнения для расчета времени в разных системах отсчета несложные. Это просто алгебраические формулы, включающие квадраты и квадратные корни. Я привожу их в Приложении 1.

Давайте рассмотрим числовой пример. Предположим, вы находитесь в космическом корабле, который двигается со скоростью 97% скорости света по отношению к Земле. Начнем с промежутков времени, потому что формула их расчета весьма доступна. Если взять космический корабль за систему отсчета, промежуток между вашими соседними днями рождения составит один год. Если принять системой отсчета Землю, тот же самый промежуток будет длиться не один год, а три месяца. Через несколько мгновений я покажу, как сделать соответствующие вычисления.

Вот что скажет внимательный наблюдатель на Земле: «Временной интервал между двумя днями рождения (двумя событиями) в системе отсчета Земли составил три месяца, а в системе отсчета космического корабля — один год». Наблюдатель на корабле скажет то же самое. Наблюдатели не расходятся во мнениях о временных интервалах больше, чем они могут расходиться в оценке скорости движения объектов.

В какой системе отсчета находитесь лично вы? Это вопрос с подтекстом. Однако в любом случае попробуйте ответить на него.

Вы находитесь во всех системах. Эти системы существуют только для определения движения тел отсчета по отношению к ним. Можете выбрать любую систему отсчета. Если ваша скорость в одной из них равна нулю (скажем, если вы находитесь в самолете), то эта система называется собственной системой отсчета. По отношению к собственной системе отсчета Солнца (где оно находится в покое) вы двигаетесь со скоростью 29 км/с, совершая один оборот вокруг светила за год.

Вы можете запутаться в этом вопросе, если ранее читали другие книги о релятивистском замедлении времени, в которых приводятся объяснения вроде «часы, находящиеся в движении, как нам кажется, идут медленнее, чем ваши». Да, это так, но это не вся правда. Вам не только кажется, что они идут медленнее: они на самом деле идут медленнее — если замерять их ход в вашей системе отсчета. В собственной системе отсчета они идут быстрее, чем в вашей. Это не парадокс или противоречие. Во всяком случае, не большее противоречие, чем скорость движения человека в самолете — 0 км/ч или 900 км/ч? Все наблюдатели согласны между собой.

Означает ли замедление времени, что если я лечу в самолете, то проживаю большее время, чем на Земле? Да, и гамма-фактор (фактор замедления времени — прим. N + 1) для самолета был измерен в 1971 году учеными Джозефом Хафеле и Ричардом Китингом. Это был очень элегантный эксперимент, о котором я всегда рассказываю студентам на лекциях по теории относительности. В качестве системы отсчета исследователи использовали обычный пассажирский реактивный самолет. Их бюджет составлял всего $8000. Немного, причем он почти весь ушел на приобретение авиабилетов для путешествия вокруг Земли (включая отдельное место для специальных часов). Результаты были опубликованы в одном из престижнейших научных журналов Science.

Хафеле и Китинг использовали для эксперимента весьма необычные часы, которые все же смогли арендовать. При скорости самолета в 900 км/час безразмерная скорость b (отношение скорости света к скорости объекта — прим. N + 1) составляет 0,000000821. Чтобы получить фактор замедления времени, то есть гамма-фактор, можете подставить это число в приведенную выше формулу, но вам потребуется 15-значный калькулятор. (Excel не подойдет, но приложение к смартфону под названием Calculator сгодится.) Расположите смартфон горизонтально для работы в режиме научного вычислительного устройства. Вы обнаружите, что при таком путешествии на самолете вы живете дольше с гамма-фактором, равным 1,000000000000337. Настолько каждый ваш день становится длиннее. Дополнительная его часть (те самые 337) составляет 29 наносекунд (миллиардных долей секунды) в день.

Возможно, словосочетание «29 наносекунд» и не впечатляет, но за это время процессор в моем смартфоне может сделать 41 операцию (за этот период он совершает 41 рабочий цикл). Хафеле и Китинг смогли обнаружить явление замедления времени и доказать, что теория относительности позволила им получить его правильное значение. Конечно, еще до этого эксперимента физики много раз обнаруживали замедление времени при экспериментах со скоростями, близкими к скорости света, как, например, я делал это в своей лаборатории. Но было интересно пронаблюдать тот же эффект на нормальных для обычного самолета скоростях.

Летайте на самолетах или даже на космических кораблях — и будете жить дольше с точки зрения земной системы отсчета. Однако вы не почувствуете более долгую жизнь. Просто при вашем движении время бежит медленнее. Ваши часы будут идти медленнее, но так же медленнее будет биться ваше сердце, медленнее будете думать и стареть. Так что вы ничего не заметите. И это удивительное свойство релятивизма. Медленнее идут не только часы. Медленнее происходит все. Именно поэтому мы и говорим, что меняется скорость течения времени.

Публикуется с сокращениями. Подробнее читайте:

Мюллер, Ричард. Сейчас. Физика времени /Пер. с англ. Михаила Попова, Натальи Лисовой; науч. ред. А. Гизатулин. — М.: Манн, Иванов и Фербер, 2017. — 368 с.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Эксперименты по созданию CRISPR-детей глазами оппонентов и пациентов

Формула времени

В понятие времени отражаются такие свойства мира как постоянное развитие, изменение его в сознании человека. Процессы идут в определенной последовательности, при этом имеют определённую продолжительность.

Определение

Время – физическая величина, отражающая свойство материальных процессов иметь определенную продолжительность, следовать друг за другом в установленной последовательности и развиваться этапно. Обозначают время буквой t.

Особенности времени как физической величины

Время неотделимо от материи и ее движения, так как является ее формой существования. Нет смысла говорить о времени самом по себе, так как в отрыве от материальных процессов течение времени становится бессодержательным. Только исследование процессов, происходящих в материальном мире и их взаимосвязей, делает понятие времени физически содержательным.

В череде процессов, происходящих в природе, особенное место занимают повторяющиеся процессы (повторение дней и ночей, дыхание, перемещение звезд по небосводу и т. д). Исследование и сравнение подобных процессов между собой ведет к идее о длительности материальных процессов, сравнение их длительности приводит к идее об их измерении.

Эталоном измерения является периодический процесс, который называют часами. Существуют системы отсчета, в которых возможно введение единого времени с достаточной для практики точностью. Введение единого времени хорошо подтверждается экспериментом. Теория дает возможность предсказать отклонения единого времени, что можно проверить эмпирически.

Длительность физического процесса, который происходит в некоторой точке, определяют при помощи часов, которые располагают в той же точке. При этом применяется прямое сравнение, сравниваются длительности процессов, которые текут в одной точке. Измерение длительности сводят к фиксации начала и окончания рассматриваемого процесса на шкале процесса, который принимают за эталонный. При этом говорят как о фиксации показаний часов в момент начала и окончания процесса, и это не имеет отношения к фактическому месту нахождения часов (процесса) в точке рассмотрения.

Синхронизация часов и изучения законов распространения физических сигналов развивались параллельно, при этом происходили взаимные уточнения и дополнения. Синхронизацию проводят при помощи сигналов, которые распространяются с конечной скоростью. Этот метод использует определение постоянной скорости: если из точки, в которой часы показывают t0, исходит сигнал, перемещающийся со скоростью v=const, то тогда, когда сигнал придет в точку на расстоянии s, часы в этой точке должны показать время:

Такая синхронизация согласуется с синхронизацией с использованием световых сигналов. Тогда часы синхронизируются по формуле:

где c=299792,4562 км/с – скорость света, которая не зависит от скорости источника и приемника по всем направлениям пространства одинакова.

Особенности времени как физической величины

Перемещение (), равно:

где – радиус-вектор в момент времени – радиус-вектор в момент времени .

Мгновенная скорость ():

Мгновенное ускорение ():

Единицы измерения времени

Основной единицей измерения момента силы в системах СИ и СГС является: [t]=c

Единицы измерения времени основываются на периоде вращения Земли около своей оси и вокруг Солнца, Луни вокруг Земли. Внесистемные единицы измерения времени: час, минута, сутки и т.д.

Примеры решения задач

Пример

Задание. Движения двух тел заданы уравнениями: и s1(t)=5t и s2(t)=150-10t. Найдите время встречи.

Решение. В точке встречи s1(t)=s2(t). Приравняем правые части функцийx(t), имеем:

Ответ. t=10 c

Пример

Задание. Движение материальной точки, задано уравнением: x=4t-0,05t2 . В какой момент времени, скорость точки равна нулю? Коэффициенты имеют размерности: 4 м/с, 0,05м/с2 . Изобразите графики зависимости модуля ускорения от времени.

Решение. В условиях задачи задана функция x(t), скорость можно найти как:

Приравняем скорость к нулю, найдем время:

Определим, какова зависимость модуля ускорения от времени, для этого возьмем производную по времени от функции v(t) (2.1):

Тогда график зависимости a(t) имеет вид:

Ответ. t=40 c

Читать дальше: Формула длины волны.

Вы поняли, как решать? Нет?

Символ Значение и происхождение Площадь (лат. area), векторный потенциал[1], работа (нем. Arbeit), амплитуда (лат. amplitudo), параметр вырождения, Работа выхода (нем. Austrittsarbeit), коэффициент Эйнштейна для спонтанного излучения, массовое число Ускорение (лат. acceleratio), амплитуда (лат. amplitudo), активность (лат. activitas), коэффициент температуропроводности, вращательная способность, радиус Бора, натуральный показатель поглощения света Вектор магнитной индукции[1], барионный заряд (англ. baryon number), удельная газовая постоянная, вириальний коэффициент, функция Бриллюэна (англ. Brillion function), ширина интерференционной полосы (нем. Breite), яркость, постоянная Керра, коэффициент Эйнштейна для вынужденного излучения, коэффициент Эйнштейна для поглощения, вращательная постоянная молекулы Вектор магнитной индукции[1], красивый кварк (англ. beauty/bottom quark), постоянная Вина, ширина распада (нем. Breite) Электрическая ёмкость (англ. capacitance), теплоёмкость (англ. heatcapacity), постоянная интегрирования (лат. constans), очарование (чарм, шарм; англ. charm), коэффициенты Клебша — Гордана (англ. Clebsch-Gordan coefficients), постоянная Коттона — Мутона (англ. Cotton-Mouton constant), кривизна (лат. curvatura) Скорость света (лат. celeritas), скорость звука (лат. celeritas), Теплоёмкость (англ. heat capacity), очарованный кварк (англ. charm quark), концентрация (англ. concentration), первая радиационная постоянная, вторая радиационная постоянная, удельная теплоёмкость Вектор электрической индукции[1] (англ. electric displacement field), Коэффициент диффузии (англ. diffusion coefficient), Оптическая сила (англ. dioptric power), коэффициент прохождения, тензор квадрупольного электрического момента, угловая дисперсия спектрального прибора, линейная дисперсия спектрального прибора, коэффициент прозрачности потенциального барьера, D-мезон (англ. D meson), Диаметр (лат. diametros, др.-греч. διάμετρος) Расстояние (лат. distantia), Диаметр (лат. diametros, др.-греч. διάμετρος), дифференциал (лат. differentia), нижний кварк (англ. down quark), дипольный момент (англ. dipole moment), период дифракционной решётки, толщина (нем. Dicke) Энергия (лат. energīa), напряжённость электрического поля[1] (англ. electric field), Электродвижущая сила (англ. electromotive force), магнитодвижущая сила, освещенность (фр. éclairement lumineux), излучательная способность тела, модуль Юнга Основание натуральных логарифмов (2,71828…), электрон (англ. electron), элементарный электрический заряд (англ. elementaty electric charge), константа электромагнитного взаимодействия Сила (лат. fortis), постоянная Фарадея (англ. Faraday constant), свободная энергия Гельмгольца (нем. freie Energie), атомный фактор рассеяния, тензор электромагнитного поля, магнитодвижущая сила, модуль сдвига, фокусное расстояние (англ. focal length) Частота (лат. frequentia), функция (лат. functia), летучесть (нем. Flüchtigkeit), сила (лат. fortis), фокусное расстояние (англ. focal length), сила осциллятора, коэффициент трения Гравитационная постоянная (англ. gravitational constant), тензор Эйнштейна, свободная энергия Гиббса (англ. Gibbs free energy), метрика пространства-времени, вириал, парциальная мольная величина, поверхностная активность адсорбата, модуль сдвига, полный импульс поля, Глюон (англ. gluon), константа Ферми, квант проводимости, электрическая проводимость, Вес (нем. Gewichtskraft) Ускорение свободного падения (англ. gravitational acceleration), Глюон (англ. gluon), фактор Ланде, фактор вырождения, весовая концентрация, Гравитон (англ. graviton), метрический тензор Напряжённость магнитного поля[1], эквивалентная доза, энтальпия (англ. heat contents или от греческой буквы «эта», H — ενθαλπος[2]), гамильтониан (англ. Hamiltonian), функция Ганкеля (англ. Hankel function), функция Хевисайда (англ. Heaviside step function), бозон Хиггса (англ. Higgs boson), экспозиция, полиномы Эрмита (англ. Hermite polynomials) Высота (нем. Höhe), постоянная Планка (нем. Hilfsgröße[3]), спиральность (англ. helicity) сила тока (фр. intensité de courant), интенсивность звука (лат. intēnsiō), интенсивность света (лат. intēnsiō), сила излучения, сила света, момент инерции, вектор намагниченности Мнимая единица (лат. imaginarius), единичный вектор (координатный орт) Плотность тока (также 4-вектор плотности тока), момент импульса, функция Бесселя, момент инерции, полярный момент инерции сечения, вращательное квантовое число, сила света, J/ψ-мезон Мнимая единица (в электротехнике и радиоэлектронике), плотность тока (также 4-вектор плотности тока), единичный вектор (координатный орт) Каона (англ. kaons), термодинамическая константа равновесия, коэффициент электронной теплопроводности металлов, модуль всестороннего сжатия, механический импульс, постоянная Джозефсона, кинетическая энергия Коэффициент (нем. Koeffizient), постоянная Больцмана, теплопроводность, волновое число, единичный вектор (координатный орт) Момент импульса, дальность полёта, удельная теплота парообразования и конденсации, индуктивность, функция Лагранжа (англ. Lagrangian), классическая функция Ланжевена (англ. Langevin function), число Лоренца (англ. Lorenz number), уровень звукового давления, полиномы Лагерра (англ. Laguerre polynomials), орбитальное квантовое число, энергетическая яркость, яркость (англ. luminance) Длина (англ. length), длина свободного пробега (англ. length), орбитальное квантовое число, радиационная длина Момент силы, масса (лат. massa, от др.-греч. μᾶζα, кусок теста), вектор намагниченности (англ. magnetization), крутящий момент, число Маха, взаимная индуктивность, магнитное квантовое число, молярная масса Масса, магнитное квантовое число (англ. magnetic quantum number), магнитный момент (англ. magnetic moment), эффективная масса, дефект массы, масса Планка Количество (лат. numerus), постоянная Авогадро, число Дебая, полная мощность излучения, увеличение оптического прибора, концентрация, мощность, сила нормальной реакции Показатель преломления, количество вещества, нормальный вектор, единичный вектор, нейтрон (англ. neutron), количество (англ. number), основное квантовое число, частота вращения, концентрация, показатель политропы, постоянная Лошмидта Начало координат (лат. origo) Мощность (лат. potestas), давление (лат. pressūra), полиномы Лежандра, вес (фр. poids), сила тяжести, вероятность (лат. probabilitas), поляризуемость, вероятность перехода, импульс (также 4-импульс, обобщённый импульс; лат. petere) Импульс (также 4-импульс, обобщённый импульс; лат. petere), протон (англ. proton), дипольный момент, волновой параметр, давление, число полюсов, плотность. Электрический заряд (англ. quantity of electricity), количество теплоты (англ. quantity of heat), объёмный расход, обобщённая сила, хладопроизводительность, энергия излучения, световая энергия, добротность (англ. quality factor), нулевой инвариант Аббе, квадрупольный электрический момент (англ. quadrupole moment), энергия ядерной реакции Электрический заряд, обобщённая координата, количество теплоты (англ. quantity of heat), эффективный заряд, добротность Электрическое сопротивление (англ. resistance), универсальная газовая постоянная, постоянная Ридберга (англ. R ydberg constant), постоянная фон Клитцинга, коэффициент отражения, сопротивление излучения (англ. resistance), разрешение (англ. resolution), светимость, пробег частицы, расстояние Радиус (лат. radius), радиус-вектор, радиальная полярная координата, удельная теплота фазового перехода, удельная рефракция (лат. rēfractiō), расстояние Площадь поверхности (англ. surface area), энтропия[4], действие, спин (англ. spin), спиновое квантовое число (англ. spin quantum number), странность (англ. strangeness), главная функция Гамильтона, матрица рассеяния (англ. scattering matrix), оператор эволюции, вектор Пойнтинга, крутизна передаточной характеристики Перемещение (итал. spostamento), странный кварк (англ. strange quark), путь, пространственно-временной интервал (англ. spacetime interval), оптическая длина пути Температура (лат. temperātūra), период (лат. tempus), кинетическая энергия, критическая температура, терм, период полураспада, критическая энергия, изоспин Время (лат. tempus), истинный кварк (англ. true quark), правдивость (англ. truth), планковское время Внутренняя энергия, потенциальная энергия, вектор Умова, потенциал Леннард-Джонса, потенциал Морзе, 4-скорость, электрическое напряжение Верхний кварк (англ. up quark), скорость, подвижность, удельная внутренняя энергия, групповая скорость Объём (фр. volume), электрическое напряжение (англ. voltage), потенциальная энергия, видность полосы интерференции, постоянная Верде (англ. Verdet constant) Скорость (лат. vēlōcitās), фазовая скорость, удельный объём Механическая работа (англ. work), работа выхода, W-бозон, энергия, энергия связи атомного ядра, мощность Скорость, плотность энергии, коэффициент внутренней конверсии, ускорение Реактивное сопротивление, продольное увеличение, X-бозон Переменная, перемещение, абсцисса (декартова координата), молярная концентрация, постоянная ангармоничности, расстояние Гиперзаряд, силовая функция, линейное увеличение, сферические функции, Y-бозон ордината (декартова координата) Импеданс, Z-бозон, атомный номер или зарядовое число ядра (нем. Ordnungszahl), статистическая сумма (нем. Zustandssumme), вектор Герца, валентность, полное электрическое сопротивление (импеданс), угловое увеличение, волновое сопротивление вакуума аппликата (декартова координата)

Содержание материала

  1. Формула времени. Решение задач
  2. Видео
  3. Формулы для расчета пути и времени движения при неравномерном движении тела
  4. Скорость
  5. График пути равномерного движения
  6. Единицы измерения времени
  7. Первые часы
  8. Как люди измеряли время?
  9. Способы вычисления расстояния и времени

Формула времени. Решение задач

Скорость, время и расстояние — физические величины, взаимосвязаны процессом движения. Виды движений: 1) равномерное (прямолинейное, криволинейное и по окружности), 2) равноускоренное (с постоянным ускорением), 3) гармоническое. Для каждого вида движения своя формула времени.

Время обозначается как t. Единица измерения времени – с (секунды).

Самая простая формула при равномерном прямолинейном движении. Время, необходимое для прохождения пути равняется частному от деления пути на скорость равномерного прямолинейного движения: t = S / v.

При равноускоренном движении время равняется частному от деления разницы конечной и начальной скорости на ускорение: t = (v — v) / a  или частному от деления пути на разность конечной и начальной скорости: t = S / (v — v).

Видео

Видео

Формулы для расчета пути и времени движения при неравномерном движении тела

При неравномерном движении мы используем определение средней скорости, которую можем найти по формуле

$$upsilon_{ср} = frac{S}{t}$$

Чтобы определить путь при неравномерном движении, нужно среднюю скорость движения умножить на время:

$$large S = upsilon_{ср} t$$

Также мы можем рассчитать время, разделив путь, пройденный телом, на среднюю скорость его движения:

$$t = frac{s}{upsilon_{ср}}$$

Скорость

Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.

Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.

Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.

Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.

Формула скорости

Чтобы найти скорость, нужно разделить путь на время:

v = s : t

Показатели скорости чаще всего выражаются в м/сек или км/час.

Скорость сближения — это расстояние, на которое сблизились два объекта за единицу времени. Чтобы найти скорость сближения двух объектов, которые движутся навстречу друг другу, надо сложить скорости этих объектов.

Скорость удаления — расстояние, на которое отдалились друг от друга два объекта за единицу времени.

Чтобы найти скорость удаления объектов, которые движутся в противоположных направлениях, нужно сложить скорости этих объектов.

Чтобы найти скорость удаления при движении с отставанием или скорость сближения при движении вдогонку, нужно из большей скорости вычесть меньшую.

Онлайн-курсы по математике для детей — отличный способ разобраться в сложных темах под руководством внимательного преподавателя.

График пути равномерного движения

Пример графика зависимости пути равномерного движения представлен на рисунке 3.

Рисунок 3. График пути равномерного движения.

Рисунок 3. График пути равномерного движения.

Здесь $S$ — ось пройденных путей, $t$ — ось времени. По этому графику мы можем найти путь, пройденный телом за определенный промежуток времени. Например, за 1 с тело проходит путь длиной 2 м, за 2 с – 4 м, за 3 с – 6 м.

Зная путь и время, мы можем рассчитать скорость. Для удобства расчета возьмем самый первый отрезок пути: $t = 1 с, s = 2 м$. Тогда,

$upsilon = frac{s}{t} = frac{2 м}{1 с} = 2 frac{м}{с}$.

Единицы измерения времени

Основной единицей измерения момента силы в системах СИ и СГС является: [t]=c

Единицы измерения времени основываются на периоде вращения Земли около своей оси и вокруг Солнца, Луни вокруг Земли. Внесистемные единицы измерения времени: час, минута, сутки и т.д.

Первые часы

Сначала было достаточно палочки, на которой каменным топором можно делать зарубки и тем самым отсчитывать прошедшие дни. Но это скорее был календарь, а не часы.

Первые и самые древние часы – солнечные. Их действие основано на изменении длины тени предметов по мере того, как солнце движется по небосводу.  Такие часы представляли собой гномон – длинный шест, воткнутый в землю.  Солнечные часы применялись в Древнем Египте и Китае. О них было доподлинно известно уже в 1200 году до нашей эры.

Солнечные часы в Китае

Солнечные часы в Китае

Затем появились водяные, песочные и огненные часы. Работа этих механизмов не была привязана к движению небесных светил. Долгое время водяные часы были главным инструментом для измерения времени.

Первые механические часы были изготовлены китайскими мастерами в 725 году нашей эры. Однако широкое распространение они получили относительно недавно.

В средневековой Европе механические часы устанавливались в башнях соборов и имели только одну стрелку – часовую. Карманные часы появились только в 1675 году (изобретение запатентовал Гюйгенс), а наручные – намного позже.

Как люди измеряли время?

Для измерения времени нужны какие-либо повторяющиеся с одинаковым периодом события. Например, смена дня и ночи. Солнце каждый день встает на востоке и садится на западе, а Луна каждый синодический месяц проходит весь цикл фаз освещенности солнцем — от тоненького серпа полумесяца до полнолуния.

Древним людям ничего не оставалось, как привязать отсчет времени к движению небесных тел и событиям, связанным с ним. А именно – к смене дней, ночей и сезонов года.

В году 4 сезона и 12 месяцев. Именно столько раз за весну, лето, осень и зиму Луна меняет свои фазы.

По мере развития прогресса методы измерения времени совершенствовались, появились солнечные, водяные, песочные, огненные, механические, электронные и, наконец, молекулярные часы.

Часы FOCS 1

Часы FOCS 1

Способы вычисления расстояния и времени

Можно и наоборот, зная скорость, найти значение расстояния или времени. Например:

S=v*t, где v — понятно что такое,

S — расстояние, которое требуется найти,

t — время, за которое объект прошел это расстояние.

Таким образом вычисляется значение расстояния.

Или вычисляем значение времени, за которое пройдено расстояние:

t=S/v, где v — все та же скорость,

S — расстояние, пройденный путь,

t — время, значение которого в данном случае нужно найти.

Для нахождения средних значений этих параметров существует довольно много представлений как данной формулы, так и всех остальных. Главное, знать основные правила перестановок и вычислений. А еще главнее знать сами формулы и лучше наизусть. Если же запомнить не получается, тогда лучше записывать. Это поможет, не сомневайтесь.

Пользуясь такими перестановками можно с легкостью найти время, расстояние и другие параметры, используя нужные, правильные способы их вычисления.

И это еще не предел!

Теги

  • Как пишется время в тексте
  • Как пишется время в англии
  • Как пишется временный медотвод от вакцинации
  • Как пишется временно исполняющий обязанности сокращенно в приказе
  • Как пишется геннадьевича правильно