Как пишется знак скрещивания в геометрии

Символьные обозначения

Для обозначения геометрических фигур и их проекций, для отображения отношения между геометрическими фигурами, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем используются символьные обозначения.

Символьные обозначения, все их многообразие, может быть подразделено на две группы:
— Первая группа — обозначения геометрических фигур и отношения между ними;
— Вторая группа — обозначения логических операций, составляющая синтаксическую основу геометрического языка.

Символьные обозначения — Первая группа

Символы, обозначающие геометрические фигуры и отношения между ними

Обозначения геометрических фигур:
Φ — геометрическая фигура;
A, B, C, D, …, L, M, N, … — точки расположенные в пространстве;
1, 2, 3, 4, …, 12, 13, 14, … — точки расположенные в пространстве;
a, b, c, d, …, l, m, n, … — линии, произвольно расположенные по отношению к плоскостям проекций;
h, υ(f), ω — линии уровня (горизонталь, фронталь, профильная прямая соответственно);
(AB) — прямая проходящая через точки A и B;
[AB) — луч с началом в точке A;
[AB] — отрезок прямой, ограниченный точками A и B;
α, β, γ, δ, …, ζ, η, θ — поверхность;
∠ABC — угол с вершиной в точке B;
∠α, ∠β, ∠γ — угол α, угол β, угол γ соответственно;
|AB| — расстояние от точки A до точки B (длина отрезка AB);
|Aa| — расстояние от точки A до линии a;
|Aα| — расстояние от точки A до поверхности α;
|ab| — расстояние между прямыми a и b;
|αβ| — расстояние между поверхностями α и β;
H, V, W — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно);
П1, П2, П3 — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно);
x, y, z — координатные оси проекций (ось абсцисс, ось ординат, ось аппликат);
ko — постоянная прямая эпюра Монжа;

O — точка пересечения осей проекций;
`, «, `» — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно);
1, 2, 3 — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно);
αH, αV, αW — след поверхности оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;

αH, αV, αW — след поверхности α оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;

aH, aV, aW — след прямой a оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;

Проекции точек, линий, поверхностей любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса A`, A», A`»
или 1`, 1″, 1`», соответствующего плоскости проекции, на которой они получены:
A`, B`, C`, D`, …, L`, M`, N`, … — горизонтальные проекции точек;
A», B», C», D», …, L», M», N», … — фронтальные проекции точек;
A`», B`», C`», D`», …, L`», M`», N`», … — профильные проекции точек;
a`, b`, c`, d`, …, l`, m`, n`, … — горизонтальные проекции линий;
a», b», c», d», …, l», m», n», … — фронтальные проекции линий;
a`», b`», c`», d`», …, l`», m`», n`», … — профильные проекции линий;
α`, β`, γ`, δ`, …, ζ`, η`, θ`, … — горизонтальные проекции поверхностей;
α», β», γ», δ», …, ζ», η», θ», … — фронтальные проекции поверхностей;
α`», β`», γ`», δ`», …, ζ`», η`», θ`», … — профильные проекции поверхностей;

Символы взаиморасположения геометрических объектов

Обозначение   Смысловое значение   Пример символической записи
  (…)   способ задания геометрического объекта в пространстве и на комплексном чертеже   А(А`, А») – точка А задана на комплексном чертеже горизонтальной и фронтальной проекциями;
α(А, b) – плоскость α задана прямой b и точкой А.
  ∈
⊂ , ⊃
  принадлежность   А∈l – точка А принадлежит прямой l;
l⊂α – прямая l лежит в плоскости α
  ≡   совпадение   А`≡ В` – горизонтальные проекции точек А и В совпадают.
  ‖ , //   параллельность   a // b – прямые a и b параллельны.
  ⊥   перпендикулярность   c⊥d – прямые c и d перпендикулярны.
  ∸   скрещивание    m ∸ n – прямые m и n скрещивающиеся.
   ∩   пересечение   k ∩ l – прямые k и l пересекаются.
   ∾   подобие   ΔАВС ~ ΔDEF – треугольники ABC и DEF подобны.
   ≅   конгруэнтность   ΔАВС ≅ /АВ/ = /CD/ – отрезки АВ и CD равны.
   =    равенство, результат действия   /АВ/ = /CD/ – длины отрезков AB и CD равны; k ∩ l = M — прямые k и l пересекаются в точке M.
   /   отрицание   А ∉ l – точка А не принадлежит прямой l.
   → ←   отображение, преобразование   V/H → V1/H– система ортогональных плоскостей V/H преобразуется в систему плоскостей V1/H

Символьные обозначения — Вторая группа

Символы обозначающие логические операции

   ∧   конъюнкция предложений (соответствует союзу «и»)   K ∈ a ∧ K ∈ d – точка K принадлежит прямым a и d
   ∨   дизъюнкция предложений (соответствует союзу «или»)   А ∈ α ∨ A ∉ α – точка А принадлежит плоскости α или точка А не принадлежит плоскости α.
   ⇒ ⇐   логическое следствие – импликация (следовательно, поэтому)    a // b ∧ c // b ⇒ a // c – прямые а и с параллельны прямой b, следовательно, они параллельны между собой.
   ⇔   логическая эквивалентность (что то же самое) A ∈ l ⇔ A` ∈ l`, A» ∈ l» – точка А принадлежит прямой l, следовательно, ее проекции лежат на одноименных проекциях прямой; справедливо и обратное утверждение: проекции точки А лежат на одноименных проекциях прямой l, следовательно, точка принадлежит этой прямой.

+

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык, составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I — обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается — Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, … , L, М, N, …

1,2,3,4,…,12,13,14,…

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, … , l, m, n, …

Линии уровня обозначаются: h — горизонталь; f— фронталь.

Для прямых используются также следующие обозначения:

(АВ) — прямая, проходящая через точки А а В;

[АВ) — луч с началом в точке А;

[АВ] — отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,…,ζ,η,ν,…

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) — плоскость α определяется параллельными прямыми а и b;

β(d1 d2gα) — поверхность β определяется направляющими d1 и d2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC — угол с вершиной в точке В, а также ∠α°, ∠β°, … , ∠φ°, …

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

— величина угла АВС;

— величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками — ||.

Например:

|АВ| — расстояние между точками А и В (длина отрезка АВ);

|Аа| — расстояние от точки А до линии a;

|Аα| — расстояшие от точки А до поверхности α;

|аb| — расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π1 и π2,
где π1 — горизонтальная плоскость проекций;

π2 —фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π3, π4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х — ось абсцисс; у — ось ординат; z — ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А’, В’, С’, D’, … , L’, М’, N’, горизонтальные проекции точек; А», В», С», D», … , L», М», N», … фронтальные проекции точек; a’ , b’ , c’ , d’ , … , l’, m’ , n’ , —
горизонтальные проекции линий; а» ,b» , с» , d» , … , l» , m» , n» , … фронтальные проекции линий; α’, β’, γ’, δ’,…,ζ’,η’,ν’,… горизонтальные проекции поверхностей;
α», β», γ», δ»,…,ζ»,η»,ν»,…
фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h — горизонтальный след плоскости (поверхности) α;

f — фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: Ha — горизонтальный след прямой (линии) а;

Fa — фронтальный след прямой (линии ) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,…, n:

А1, А2, А3,…,Аn;

a1, a2, a3,…,an;

α1, α2, α3,…,αn;

Ф1, Ф2, Ф3,…,Фn и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A0, B0, С0, D0, …

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А0, В0, С0, D0, …

10, 20, 30, 40, …

a0, b0, c0, d0, …

α0, β0, γ0, δ0, …

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1 :

А1 0, В1 0, С1 0, D1 0, …

11 0, 21 0, 31 0, 41 0, …

a1 0, b1 0, c1 0, d1 0, …

α1 0, β1 0, γ1 0, δ1 0, …

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами

№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) — прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK — угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK — треугольники АВС и MNK подобны
4 || Параллельны α||β — плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b — прямые а и b перпендикулярны
6 Скрещиваются с d — прямые с и d скрещиваются
7 Касательные t l — прямая t является касательной к линии l.
βα — плоскость β касательная к поверхности α
8 Отображаются Ф1→Ф2 — фигура Ф1 отображается на фигуру Ф2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
10 s Направление проецирования
11 P Параллельное проецирование рsα Параллельное проецирование — параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные

№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества
2 A,B,C,… Элементы
множества
3 { … } Состоит из … Ф{A, B, C,… } Ф{A, B, C,… } — фигура Ф состоит из точек А, В,С, …
4 Пустое множество L — ∅ — множество L пустое (не содержит элементов )
5 Принадлежит, является элементом 2∈N (где N — множество натуральных чисел) —
число 2 принадлежит множеству N
А ∈ а — точка А принадлежит прямой а
(точка А лежит на прямой а )
6 Включает, cодержит N⊂М — множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α — прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В — множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = [AB] ∪ [ВС] ∪ [CD] — ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС], [CD]
8 Пересечение множеств М=К∩L — множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅— пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β — прямая а есть пересечение
плоскостей α и β

а ∩ b = ∅ — прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ

№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу «и».
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу «или». Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
3 Импликация — логическое следствие. Предложение р⇒q означает: «если р, то и q» (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: «если р, то и q; если q, то и р» А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: «для всякого x: имеет место свойство Р(х) «
∀( ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: «существует х, обладающее свойством Р(х)»
(∀α)(∃a)[a⊄α∧a||α].Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)… Выражение ∃1(x)(Рх) означает: «существует единственное (только одно) х,
обладающее свойством Рх»
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α)(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 Отрицание знака [AB]≠[CD] —отрезок [АВ] не равен отрезку [CD].а?b — линия а не параллельна линии b

Скрещивающиеся прямые

Общая характеристика

Алгоритм определения того, что прямые линии (ПЛ) могут называться скрещивающимися, описывает расположение вне бесконечной поверхности. Существует несколько теорем и доказательств пересечения прямых в одной точке.

Основные понятия и теоремы

Из курса планиметрии известно, что две ПЛ в плоскости пересекаются, имеют одну точку или располагаются параллельно по отношению друг к другу.

Произвести вычисления, необходимые расчеты и графическое построение можно, изучив главные особенности и характеристику понятий. Когда прямые заданы векторными параметрическими уравнениями, выполняется равенство (формула) р = р0+SU и r = r0+tv.

Основные понятия и теоремы

Вычисление удаленности между ними определяется смешанным и векторным произведением D = (r 0 — p 0, u, v)/u, v.

Существует первая теорема, доказывающая признаки скрещивающихся ПЛ. Ее смысл заключается в теоретическом аспекте, указывающим на то, что когда одна из двух ПЛ расположена в плоскости, а другая ПЛ пересекает пространство в точке, не находящейся на отрезке, то эти ПЛ являются скрещивающимися. Данные можно доказать графически, используя методы черчения и рисования фигур, углов и перпендикуляров.

Например, дана плоскость α, в ней находится АВ, а прямая CD пересекается с плоскостью в т. С, расположенной на АВ. Для доказательства скрещивания прямых используется метод от обратного. Предполагается, что существует вторая плоскость, в которой расположены AB и DC. Во второй плоскости лежит отрезок АВ и т. С. Через ПЛ и точку, не лежащую на ней, проходит плоскость альфа. Второй плоскости бета не существует. Прямые скрещиваются.

Существует три положения прямых. В первом случае линии a и b пересекаются в т. С. Сквозь 2 ПЛ, которые пересекаются, проходит плоскость. ПЛ А II В, лежат в едином пространстве и не смогут пересечься. Прямые скрещиваются, когда не находятся в едином поле.

Вторая теорема о скрещивающихся прямых гласит, что через каждую из пары скрещивающихся ПЛ проходит одна плоскость, параллельная другой. Для подтверждения даны две ПЛ AB и CD. Требуется доказать, что через линию АВ проложена плоскость, параллельная СД.

Для этого через точку А проводится линия АЕ, расположенная параллельно DC. Согласно теореме о параллельных ПЛ, эта линия является единственной. Пересечение двух линий АВ и АЕ позволяет проложить плоскость альфа. Прямая DC, не лежащая в пространстве альфа, II АЕ, значит, DC параллельна пространству α.

Для доказательства единства такого пространства предполагается, что существует другая плоскость бета (β), проходящая через АВ, и является параллельной по отношению к DC.

Особенности ПЛ:

  • Отрезок АЕ пересекает пространство бета, линия DC пересекает β.
  • Отрезок DC не расположен параллельно бета.

Возникло противоречие, а плоскость α является единственной.

Прочие условия

У отрезков, которые скрещиваются, нет общей точки соприкосновения, потому что тогда они бы располагались в едином пространстве.

Признаки скрещивающихся прямых:

Признаки скрещивающихся прямых

  • Если на двух ПЛ имеются 4 точки, не находящиеся в одной плоскости, то линии будут скрещены. Если бы данные ПЛ были пересекающимися или параллельными по отношении друг к другу, то они лежали в единой плоскости.
  • Чтобы сонаправить линии (сделать их параллельными по отношению друг к другу), угол между скрещивающимися прямыми должен быть 0 градусов. Величина, наименьшая из 2 пересекающихся линий, представляет собой угол. Когда все углы одинаковы, образуется его 90-градусный параметр и перпендикулярность.

Угол между скрещивающимися ПЛ — когда из одной точки выходят 2 луча между двумя ПЛ, которые пересекаются, а также параллельны данным линиям.

В тригонометрии еще существует понятие обозначения косинуса — это отношение длины стороны, прилежащей к острому углу, к гипотенузе. Осуществить нахождение ПЛ параллельно скрещивающимся можно через произвольную точку. Это официальное утверждение. Две ПЛ могут быть параллельными или пресекать плоскость, значит, они находятся в едином пространстве координат.

Практическое применение

Теоретические основы, понятия на уроках геометрии в режиме онлайн понятны, но для закрепления материала в классе решаются разные задачи с доказательствами. Сначала нужно найти в пространстве линии, углы и охарактеризовать их вид.

Типовые задачи

Чтобы на практике понять действие теорем, нужно использовать пример решения и наглядный рисунок. Например, точка D не лежит в плоскости АВС, точки M, N, P будут центром DA, DB и DC. Точка К расположена на прямой ВС. Требуется определить взаимное расположение линий.

1) ND, АВ.

Линии будут обозначаться буквами АВ и BD, они находятся в плоскости АВD и пересекаются.

2) PK и ВС.

Типовые задачи

Эти две линии расположены в единой плоскости, поэтому являются параллельными или пересекающимися. Нужно провести среднюю линию NP, где N, P являются серединой отрезка DB и DC. По свойству средней линии, NP II (знак параллельности) ВС. Через т. Р проводится отрезок, II ВС, и это NP. Любая другая линия, проходящая через т. Р, не II ВС, поэтому PK и ВС пересекаются.

3) MN и AB.

В треугольнике ABD точки M и N являются центрами сторон АD и ВD, значит, МN — средняя линия. Основываясь на типовых свойствах, МN II АВ.

4) МР и АС.

В ADС точки M и Р будут серединами АD и СD. Значит, МР является средней линией. МР IIАС.

5) КN и АС.

Как решать задачи

Прямопроходящая линия КN и ВD являются одной и той же прямой. АС располагается в плоскости АВС, линия ВD пересекает АВС в точке, не расположенной на АС. По признаку ВD и АС являются скрещивающимися, КN и АС — такая же.

6) МD и ВС.

MD и АD будут одинаковой ПЛ по всем характеристикам и параметрам. Линия ВС располагается в плоскости АВС, прямая АD пересекает АВС в точке, расположенной в стороне от ВС. АD и ВС относятся к скрещиванию, а МD и ВС такие же.

Сложные задания

В нижней части пирамиды SABC расположена геометрическая фигура с прямым углом при вершине С, гипотенузой АВ = 13 и катетом АС = 12 (когда 1 из 2 сторон прямоугольного треугольника образует прямой угол). Максимальная точка пирамиды S проектируется в основании В. Боковое ребро CS равняется 5*корень из 5. Требуется выяснить расстояние между ребрами AS и ВС.

Сложные задания

Для решения нужно определить расстояние между отрезками AS и ВС. Они лежат на скрещивающихся прямых (СП). Точка s не принадлежит отрезку АВС, а точка А принадлежит АВС. AS пересекает АВС, ВС включает отрезок АВС и А не принадлежит ВС.

Расстояние между 1 из СП и плоскостью, проложенной через другую II первой, называется промежутком между СП. Нужно построить такое пространство, проходящее через 1 из СП, параллельно другой, и добавить перпендикуляр к пространству из точки, принадлежащей другой линии.

Выбрав прямую AS, нужно провести через нее плоскость, II ВС.

Пирамиду нужно достроить до параллелепипеда, через т. А на плоскости АВС проведя параллельную ВС и через т. В — АС. Точку пересечения ПЛ обозначают буквой D. Через А, С, D нужно провести прямые II SB, на каждой отложить отрезки, равные BS, а точки соединить линиями.

Определение скрещивающихся прямых подтверждено теоремами, также существует условие, описывающее, что через каждую пару ПЛ, которые скрещены, проложена плоскость, II другой линии. Изучены случаи расположения ПЛ в пространстве: они пересекаются, являются параллельными или скрещиваются.

  • Как пишется знак скорпиона
  • Как пишется знак скорости в математике
  • Как пишется знак сигма
  • Как пишется знак разделить
  • Как пишется знак процента слитно или раздельно