Названия больших чисел
Существует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Числа состоят из цифр. Число 52 состоит из двух цифр: 5 и 2. Числа с 1 впереди и последующими нулями имеют названия. Всем известны: 10 — десять, 100 — сто, 1000 — тысяча, 1 000 000 — миллион. Так как большие числа с большим числом нулей записывать неудобно, используют сокращения в виде степеней: запись 1011 означает число с 11-ю нулями, запись 1052 означает число с 52-мя нулями и т.д. Приведем названия чисел с десятками и сотнями нулей.
Названия «круглых» чисел, которые можно встретить в школьной программе:
1 000 000 — миллион (6 нулей)
1 000 000 000 — миллиард или биллион (9 нулей)
1 000 000 000 000 — триллион (12 нулей)
1 000 000 000 000 000 — квадриллион (15 нулей)
1 000 000 000 000 000 000 — квинтиллион (18 нулей)
1 000 000 000 000 000 000 000 — секстиллион (21 нуль)
1 000 000 000 000 000 000 000 000 — септиллион (24 нуля)
1 000 000 000 000 000 000 000 000 000 — октиллион (27 нулей)
1 000 000 000 000 000 000 000 000 000 000 — нониллион (30 нулей)
1 000 000 000 000 000 000 000 000 000 000 000 — дециллион (33 нуля)
Еще некоторые примеры интересных названий:
10100 — гугол, googol (100 нулей)
1010100 — гуголплекс, googolplex (десять в степени гугол)
10140 — асанкхейя, asankhyeya или сто квинквадрагинтиллионов
10303 — центиллион, centillion
103003 — миллиллион, millillion
103000003 — милли-миллиллион, milli-millillion
Самого большого числа в мире не существует, так как любое большое число всегда можно увеличить, умножить, возвести в степень, и получится другое большее число. Бесконечность не является числом.
Из известных самых больших чисел, имеющих название (математическое доказательство) можно выделить: число TREE(3), число SCG(13), число Лоудера, число Мозера, число Скьюза, число Райо, число Грэма, инфитеиплеон.
Таблица больших чисел с указанием количества нулей и названиями на русском и английском.
Число нулей | Краткая запись | Название | Название на английском |
---|---|---|---|
3 | 103 | тысяча | thousand |
6 | 106 | миллион | million |
9 | 109 | миллиард (биллион) | billion |
12 | 1012 | триллион | trillion |
15 | 1015 | квадриллион | quadrillion |
18 | 1018 | квинтиллион | quintillion |
21 | 1021 | секстиллион | sextillion |
24 | 1024 | септиллион | septillion |
27 | 1027 | октиллион | octillion |
30 | 1030 | нониллион | nonillion |
33 | 1033 | дециллион | decillion |
36 | 1036 | ундециллион | undecillion |
39 | 1039 | дуодециллион | duodecillion |
42 | 1042 | тредециллион | tredecillion |
45 | 1045 | кватуордециллион | quattuordecillion |
48 | 1048 | квиндециллион | quindecillion |
51 | 1051 | сексдециллион | sexdecillion |
54 | 1054 | септендециллион | septendecillion |
57 | 1057 | октодециллион | octodecillion |
60 | 1060 | новемдециллион | novemdecillion |
63 | 1063 | вигинтиллион | vigintillion |
66 | 1066 | унвигинтиллион | unvigintillion |
69 | 1069 | дуовигинтиллион | duovigintillion |
72 | 1072 | тревигинтиллион | trevigintillion |
75 | 1075 | кватуорвигинтиллион | quattuorvigintillion |
78 | 1078 | квинвигинтиллион | quinvigintillion |
81 | 1081 | сексвигинтиллион | sexvigintillion |
84 | 1084 | септенвигинтиллион | septenvigintillion |
87 | 1087 | октовигинтиллион | octovigintillion |
90 | 1090 | новемвигинтиллион | novemvigintillion |
93 | 1093 | тригинтиллион | trigintillion |
96 | 1096 | унтригинтиллион | untrigintillion |
99 | 1099 | дуотригинтиллион | duotrigintillion |
102 | 10102 | третригинтиллион | trestrigintillion |
105 | 10105 | кватортригинтиллион | quattuortrigintillion |
108 | 10108 | квинтригинтиллион | quintrigintillion |
111 | 10111 | секстригинтиллион | sextrigintillion |
114 | 10114 | септентригинтиллион | septentrigintillion |
117 | 10117 | октотригинтиллион | octotrigintillion |
120 | 10120 | новемтригинтиллион | novemtrigintillion |
123 | 10123 | квадрагинтиллион | quadragintillion |
126 | 10126 | унквадрагинтиллион | unquadragintillion |
129 | 10129 | дуоквадрагинтиллион | duoquadragintillion |
132 | 10132 | треквадрагинтиллион | trequadragintillion |
135 | 10135 | кваторквадрагинтиллион | quattuorquadragintillion |
138 | 10138 | квинквадрагинтиллион | quinquadragintillion |
141 | 10141 | сексквадрагинтиллион | sexquadragintillion |
144 | 10144 | септенквадрагинтиллион | septenquadragintillion |
147 | 10147 | октоквадрагинтиллион | octoquadragintillion |
150 | 10150 | новемквадрагинтиллион | novemquadragintillion |
153 | 10153 | квинквагинтиллион | quinquagintillion |
156 | 10156 | унквинкагинтиллион | unquinquagintillion |
159 | 10159 | дуоквинкагинтиллион | duoquinquagintillion |
162 | 10162 | треквинкагинтиллион | trequinquagintillion |
165 | 10165 | кваторквинкагинтиллион | quattuorquinquagintillion |
168 | 10168 | квинквинкагинтиллион | quinquinquagintillion |
171 | 10171 | сексквинкагинтиллион | sexquinquagintillion |
174 | 10174 | септенквинкагинтиллион | septenquinquagintillion |
177 | 10177 | октоквинкагинтиллион | octoquinquagintillion |
180 | 10180 | новемквинкагинтиллион | novemquinquagintillion |
183 | 10183 | сексагинтиллион | sexagintillion |
186 | 10186 | унсексагинтиллион | unsexagintillion |
189 | 10189 | дуосексагинтиллион | duosexagintillion |
192 | 10192 | тресексагинтиллион | tresexagintillion |
195 | 10195 | кваторсексагинтиллион | quattuorsexagintillion |
198 | 10198 | квинсексагинтиллион | quinsexagintillion |
201 | 10201 | секссексагинтиллион | sexsexagintillion |
204 | 10204 | септенсексагинтиллион | septensexagintillion |
207 | 10207 | октосексагинтиллион | octosexagintillion |
210 | 10210 | новемсексагинтиллион | novemsexagintillion |
213 | 10213 | септагинтиллион | septuagintillion |
216 | 10216 | унсептагинтиллион | unseptuagintillion |
219 | 10219 | дуосептагинтиллион | duoseptuagintillion |
222 | 10222 | тресептагинтиллион | treseptuagintillion |
225 | 10225 | кваторсептагинтиллион | quattuorseptuagintillion |
228 | 10228 | квинсептагинтиллион | quinseptuagintillion |
231 | 10231 | секссептагинтиллион | sexseptuagintillion |
234 | 10234 | септенсептагинтиллион | septenseptuagintillion |
237 | 10237 | октосептагинтиллион | octoseptuagintillion |
240 | 10240 | новемсептагинтиллион | novemseptuagintillion |
243 | 10243 | октогинтиллион | octogintillion |
246 | 10246 | уноктогинтиллион | unoctogintillion |
249 | 10249 | дуооктогинтиллион | duooctogintillion |
252 | 10252 | треоктогинтиллион | treoctogintillion |
255 | 10255 | кватороктогинтиллион | quattuoroctogintillion |
258 | 10258 | квиноктогинтиллион | quinoctogintillion |
261 | 10261 | сексоктогинтиллион | sexoctogintillion |
264 | 10264 | септоктогинтиллион | septoctogintillion |
267 | 10267 | октооктогинтиллион | octooctogintillion |
270 | 10270 | новемоктогинтиллион | novemoctogintillion |
273 | 10273 | нонагинтиллион | nonagintillion |
276 | 10276 | уннонагинтиллион | unnonagintillion |
279 | 10279 | дуононагинтиллион | duononagintillion |
282 | 10282 | тренонагинтиллион | trenonagintillion |
285 | 10285 | кваторнонагинтиллион | quattuornonagintillion |
288 | 10288 | квиннонагинтиллион | quinnonagintillion |
291 | 10291 | секснонагинтиллион | sexnonagintillion |
294 | 10294 | септеннонагинтиллион | septennonagintillion |
297 | 10297 | октононагинтиллион | octononagintillion |
300 | 10300 | новемнонагинтиллион | novemnonagintillion |
303 | 10303 | центиллион | centillion |
4,3
средняя
из 3088 оценок
Бесплатный калькулятор “Сумма прописью онлайн” поможет быстро перевести сумму, записанную цифрами, в сумму прописью по всем правилам орфографии. Правописание числительных — обширная тема с массой нюансов, не все помнят ее со школы. Наш простой калькулятор покажет суммы прописью на русском языке без ошибок. Вам нужно только ввести цифровое значение в поле.
При заполнении финансовых, бухгалтерских и налоговых документов нужно написать денежный показатель цифрами и продублировать его прописью — то есть, прописать словами. Это делается в зарплатных ведомостях, договорах, кассовых ордерах, применяется для банковского чека — деньги фигурируют почти во всех бумагах. Основная цель прописывания сумм — желание избежать подделки. Внешний вид цифр легко изменить, а вот словесное написание исправить трудно.
Перевод цифровых значений в словесные — утомительное занятие. Если вам приходится заполнять много документов, то возрастает и риск ошибки. Чтобы легко и бесплатно перевести сумму в правильный прописной вариант, воспользуйтесь нашим калькулятором.
Как работает калькулятор «Сумма прописью онлайн»
Введите числовой вариант суммы в рублях в поле калькулятора. Программа отреагирует на введение числа автоматически и предложит словесную формулировку суммы. Она будет писаться ниже числового поля сразу же после ввода цифр. Дополнительно ничего нажимать не нужно.
Прописная расшифровка появляется именно в том варианте, который принят для финансовых документов: рубли указываются прописью, копейки — цифрами, это правило. Сумма пишется с заглавной буквы, значение суммы в рублях и копейках не разделяется запятой или другим знаком препинания (точка, скобка). Например: “Двадцать тысяч пятьсот один рубль 51 копейка”.
Если нужно указать число копеек в сумме, пишите их после запятой или точки в составе числа. Пробел для этой цели использовать не удастся. Например: “20500,56” или “346.5”.
Если сумма целая, без копеек, пишите число без запятой и нулевых показателей после нее. Например: “3000000”. Калькулятор все поймет сам и предложит прописной вариант суммы с дополнением: “00 копеек”. Но и указание суммы в виде десятичной дроби с нулевыми значениями после запятой тоже допустимо. Например: “100,00”. Третий знак после запятой (точки) поставить не удастся.
Будьте внимательны, прописывая большие числа, особенно с несколькими нулями подряд.
Возможно, вам пригодятся другие онлайн-калькуляторы
Расчет пособия по временной нетрудоспособности
Расчет отпускных по нормам законодательства
Попробуйте Контур.Бухгалтерию
Удобный расчет зарплаты, простое ведение бухгалтерии, легкая подготовка
и отправка отчетности через интернет.
Two naming scales for large numbers have been used in English and other European languages since the early modern era: the long and short scales. Most English variants use the short scale today, but the long scale remains dominant in many non-English-speaking areas, including continental Europe and Spanish-speaking countries in Latin America. These naming procedures are based on taking the number n occurring in 103n+3 (short scale) or 106n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion.
Names of numbers above a trillion are rarely used in practice; such large numbers have practical usage primarily in the scientific domain, where powers of ten are expressed as 10 with a numeric superscript.
Indian English does not use millions, but has its own system of large numbers including lakhs and crores.[1] English also has many words, such as «zillion», used informally to mean large but unspecified amounts; see indefinite and fictitious numbers.
Standard dictionary numbers
x | Name (SS/LS, LS) |
SS (103x+3) |
LS (106x, 106x+3) |
Authorities | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AHD4[2] | CED[3] | COD[4] | OED2[5] | OEDweb[6] | RHD2[7] | SOED3[8] | W3[9] | HM[10] | ||||
1 | Million | 106 | 106 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Milliard | 109 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
2 | Billion | 109 | 1012 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
3 | Trillion | 1012 | 1018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
4 | Quadrillion | 1015 | 1024 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
5 | Quintillion | 1018 | 1030 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
6 | Sextillion | 1021 | 1036 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
7 | Septillion | 1024 | 1042 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
8 | Octillion | 1027 | 1048 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
9 | Nonillion | 1030 | 1054 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
10 | Decillion | 1033 | 1060 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
11 | Undecillion | 1036 | 1066 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
12 | Duodecillion | 1039 | 1072 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
13 | Tredecillion | 1042 | 1078 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
14 | Quattuordecillion | 1045 | 1084 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
15 | Quindecillion | 1048 | 1090 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
16 | Sexdecillion | 1051 | 1096 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
17 | Septendecillion | 1054 | 10102 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
18 | Octodecillion | 1057 | 10108 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
19 | Novemdecillion | 1060 | 10114 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
20 | Vigintillion | 1063 | 10120 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
100 | Centillion | 10303 | 10600 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Usage:
- Short scale: US, English Canada, modern British, Australia, and Eastern Europe
- Long scale: French Canada, older British, Western & Central Europe
Apart from million, the words in this list ending with —illion are all derived by adding prefixes (bi-, tri-, etc., derived from Latin) to the stem —illion.[11] Centillion[12] appears to be the highest name ending in -«illion» that is included in these dictionaries. Trigintillion, often cited as a word in discussions of names of large numbers, is not included in any of them, nor are any of the names that can easily be created by extending the naming pattern (unvigintillion, duovigintillion, duoquinquagintillion, etc.).
Name | Value | Authorities | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AHD4 | CED | COD | OED2 | OEDnew | RHD2 | SOED3 | W3 | UM | ||
Googol | 10100 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Googolplex | 10googol (1010100) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
All of the dictionaries included googol and googolplex, generally crediting it to the Kasner and Newman book and to Kasner’s nephew. None include any higher names in the googol family (googolduplex, etc.). The Oxford English Dictionary comments that googol and googolplex are «not in formal mathematical use».
Usage of names of large numbers
Some names of large numbers, such as million, billion, and trillion, have real referents in human experience, and are encountered in many contexts. At times, the names of large numbers have been forced into common usage as a result of hyperinflation. The highest numerical value banknote ever printed was a note for 1 sextillion pengő (1021 or 1 milliard bilpengő as printed) printed in Hungary in 1946. In 2009, Zimbabwe printed a 100 trillion (1014) Zimbabwean dollar note, which at the time of printing was worth about US$30.[13]
Names of larger numbers, however, have a tenuous, artificial existence, rarely found outside definitions, lists, and discussions of how large numbers are named. Even well-established names like sextillion are rarely used, since in the context of science, including astronomy, where such large numbers often occur, they are nearly always written using scientific notation. In this notation, powers of ten are expressed as 10 with a numeric superscript, e.g. «The X-ray emission of the radio galaxy is 1.3×1045 joules.» When a number such as 1045 needs to be referred to in words, it is simply read out as «ten to the forty-fifth». This is easier to say and less ambiguous than «quattuordecillion», which means something different in the long scale and the short scale.
When a number represents a quantity rather than a count, SI prefixes can be used—thus «femtosecond», not «one quadrillionth of a second»—although often powers of ten are used instead of some of the very high and very low prefixes. In some cases, specialized units are used, such as the astronomer’s parsec and light year or the particle physicist’s barn.
Nevertheless, large numbers have an intellectual fascination and are of mathematical interest, and giving them names is one way people try to conceptualize and understand them.
One of the earliest examples of this is The Sand Reckoner, in which Archimedes gave a system for naming large numbers. To do this, he called the numbers up to a myriad myriad (108) «first numbers» and called 108 itself the «unit of the second numbers». Multiples of this unit then became the second numbers, up to this unit taken a myriad myriad times, 108·108=1016. This became the «unit of the third numbers», whose multiples were the third numbers, and so on. Archimedes continued naming numbers in this way up to a myriad myriad times the unit of the 108-th numbers, i.e. and embedded this construction within another copy of itself to produce names for numbers up to Archimedes then estimated the number of grains of sand that would be required to fill the known universe, and found that it was no more than «one thousand myriad of the eighth numbers» (1063).
Since then, many others have engaged in the pursuit of conceptualizing and naming numbers that have no existence outside the imagination. One motivation for such a pursuit is that attributed to the inventor of the word googol, who was certain that any finite number «had to have a name». Another possible motivation is competition between students in computer programming courses, where a common exercise is that of writing a program to output numbers in the form of English words.[citation needed]
Most names proposed for large numbers belong to systematic schemes which are extensible. Thus, many names for large numbers are simply the result of following a naming system to its logical conclusion—or extending it further.[citation needed]
Origins of the «standard dictionary numbers»
The words bymillion and trimillion were first recorded in 1475 in a manuscript of Jehan Adam. Subsequently, Nicolas Chuquet wrote a book Triparty en la science des nombres which was not published during Chuquet’s lifetime. However, most of it was copied by Estienne de La Roche for a portion of his 1520 book, L’arismetique. Chuquet’s book contains a passage in which he shows a large number marked off into groups of six digits, with the comment:
Ou qui veult le premier point peult signiffier million Le second point byllion Le tiers point tryllion Le quart quadrillion Le cinqe quyllion Le sixe sixlion Le sept.e septyllion Le huyte ottyllion Le neufe nonyllion et ainsi des ault’s se plus oultre on vouloit preceder
(Or if you prefer the first mark can signify million, the second mark byllion, the third mark tryllion, the fourth quadrillion, the fifth quyillion, the sixth sixlion, the seventh septyllion, the eighth ottyllion, the ninth nonyllion and so on with others as far as you wish to go).
Adam and Chuquet used the long scale of powers of a million; that is, Adam’s bymillion (Chuquet’s byllion) denoted 1012, and Adam’s trimillion (Chuquet’s tryllion) denoted 1018.
The googol family
The names googol and googolplex were invented by Edward Kasner’s nephew Milton Sirotta and introduced in Kasner and Newman’s 1940 book Mathematics and the Imagination[14] in the following passage:
The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely 1 with one hundred zeroes after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out. It was first suggested that a googolplex should be 1, followed by writing zeros until you got tired. This is a description of what would happen if one tried to write a googolplex, but different people get tired at different times and it would never do to have Carnera a better mathematician than Dr. Einstein, simply because he had more endurance. The googolplex is, then, a specific finite number, equal to 1 with a googol zeros after it.
Value | Name | Authority |
---|---|---|
10100 | Googol | Kasner and Newman, dictionaries (see above) |
10googol = 1010100 | Googolplex | Kasner and Newman, dictionaries (see above) |
John Horton Conway and Richard K. Guy[15] have suggested that N-plex be used as a name for 10N. This gives rise to the name googolplexplex for 10googolplex = 101010100. Conway and Guy[15] have proposed that N-minex be used as a name for 10−N, giving rise to the name googolminex for the reciprocal of a googolplex, which is written as 10-(10100). None of these names are in wide use.
The names googol and googolplex inspired the name of the Internet company Google and its corporate headquarters, the Googleplex, respectively.
Extensions of the standard dictionary numbers
This section illustrates several systems for naming large numbers, and shows how they can be extended past vigintillion.
Traditional British usage assigned new names for each power of one million (the long scale): 1,000,000 = 1 million; 1,000,0002 = 1 billion; 1,000,0003 = 1 trillion; and so on. It was adapted from French usage, and is similar to the system that was documented or invented by Chuquet.
Traditional American usage (which was also adapted from French usage but at a later date), Canadian, and modern British usage assign new names for each power of one thousand (the short scale.) Thus, a billion is 1000 × 10002 = 109; a trillion is 1000 × 10003 = 1012; and so forth. Due to its dominance in the financial world (and by the US dollar), this was adopted for official United Nations documents.
Traditional French usage has varied; in 1948, France, which had originally popularized the short scale worldwide, reverted to the long scale.
The term milliard is unambiguous and always means 109. It is seldom seen in American usage and rarely in British usage, but frequently in continental European usage. The term is sometimes attributed to French mathematician Jacques Peletier du Mans circa 1550 (for this reason, the long scale is also known as the Chuquet-Peletier system), but the Oxford English Dictionary states that the term derives from post-Classical Latin term milliartum, which became milliare and then milliart and finally our modern term.
Concerning names ending in -illiard for numbers 106n+3, milliard is certainly in widespread use in languages other than English, but the degree of actual use of the larger terms is questionable. The terms «Milliarde» in German, «miljard» in Dutch, «milyar» in Turkish, and «миллиард,» milliard (transliterated) in Russian, are standard usage when discussing financial topics.
For additional details, see billion and long and short scale.
The naming procedure for large numbers is based on taking the number n occurring in 103n+3 (short scale) or 106n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 103·999+3 = 103000 (short scale) or 106·999 = 105994 (long scale) may be named. The choice of roots and the concatenation procedure is that of the standard dictionary numbers if n is 9 or smaller. For larger n (between 10 and 999), prefixes can be constructed based on a system described by Conway and Guy.[15] Today, sexdecillion and novemdecillion are standard dictionary numbers and, using the same reasoning as Conway and Guy did for the numbers up to nonillion, could probably be used to form acceptable prefixes. The Conway–Guy system for forming prefixes:
Units | Tens | Hundreds | |
---|---|---|---|
1 | Un | N Deci | NX Centi |
2 | Duo | MS Viginti | N Ducenti |
3 | Tre (*) | NS Triginta | NS Trecenti |
4 | Quattuor | NS Quadraginta | NS Quadringenti |
5 | Quinqua | NS Quinquaginta | NS Quingenti |
6 | Se (*) | N Sexaginta | N Sescenti |
7 | Septe (*) | N Septuaginta | N Septingenti |
8 | Octo | MX Octoginta | MX Octingenti |
9 | Nove (*) | Nonaginta | Nongenti |
- (*) ^ When preceding a component marked S or X, «tre» changes to «tres» and «se» to «ses» or «sex»; similarly, when preceding a component marked M or N, «septe» and «nove» change to «septem» and «novem» or «septen» and «noven».
Since the system of using Latin prefixes will become ambiguous for numbers with exponents of a size which the Romans rarely counted to, like 106,000,258, Conway and Guy co-devised with Allan Wechsler the following set of consistent conventions that permit, in principle, the extension of this system indefinitely to provide English short-scale names for any integer whatsoever.[15] The name of a number 103n+3, where n is greater than or equal to 1000, is formed by concatenating the names of the numbers of the form 103m+3, where m represents each group of comma-separated digits of n, with each but the last «-illion» trimmed to «-illi-«, or, in the case of m = 0, either «-nilli-» or «-nillion».[15] For example, 103,000,012, the 1,000,003rd «-illion» number, equals one «millinillitrillion»; 1033,002,010,111, the 11,000,670,036th «-illion» number, equals one «undecillinilliseptuagintasescentillisestrigintillion»; and 1029,629,629,633, the 9,876,543,210th «-illion» number, equals one «nonilliseseptuagintaoctingentillitresquadragintaquingentillideciducentillion».[15]
The following table shows number names generated by the system described by Conway and Guy for the short and long scales.
Base -illion (short scale) |
Base -illion (long scale) |
Value | US, Canada and modern British (short scale) |
Traditional British (long scale) |
Traditional European (Peletier) (long scale) |
SI Symbol |
SI Prefix |
---|---|---|---|---|---|---|---|
1 | 1 | 106 | Million | Million | Million | M | Mega- |
2 | 1 | 109 | Billion | Thousand million | Milliard | G | Giga- |
3 | 2 | 1012 | Trillion | Billion | Billion | T | Tera- |
4 | 2 | 1015 | Quadrillion | Thousand billion | Billiard | P | Peta- |
5 | 3 | 1018 | Quintillion | Trillion | Trillion | E | Exa- |
6 | 3 | 1021 | Sextillion | Thousand trillion | Trilliard | Z | Zetta- |
7 | 4 | 1024 | Septillion | Quadrillion | Quadrillion | Y | Yotta- |
8 | 4 | 1027 | Octillion | Thousand quadrillion | Quadrilliard | R | Ronna- |
9 | 5 | 1030 | Nonillion | Quintillion | Quintillion | Q | Quetta- |
10 | 5 | 1033 | Decillion | Thousand quintillion | Quintilliard | ||
11 | 6 | 1036 | Undecillion | Sextillion | Sextillion | ||
12 | 6 | 1039 | Duodecillion | Thousand sextillion | Sextilliard | ||
13 | 7 | 1042 | Tredecillion | Septillion | Septillion | ||
14 | 7 | 1045 | Quattuordecillion | Thousand septillion | Septilliard | ||
15 | 8 | 1048 | Quindecillion | Octillion | Octillion | ||
16 | 8 | 1051 | Sedecillion | Thousand octillion | Octilliard | ||
17 | 9 | 1054 | Septendecillion | Nonillion | Nonillion | ||
18 | 9 | 1057 | Octodecillion | Thousand nonillion | Nonilliard | ||
19 | 10 | 1060 | Novendecillion | Decillion | Decillion | ||
20 | 10 | 1063 | Vigintillion | Thousand decillion | Decilliard | ||
21 | 11 | 1066 | Unvigintillion | Undecillion | Undecillion | ||
22 | 11 | 1069 | Duovigintillion | Thousand undecillion | Undecilliard | ||
23 | 12 | 1072 | Tresvigintillion | Duodecillion | Duodecillion | ||
24 | 12 | 1075 | Quattuorvigintillion | Thousand duodecillion | Duodecilliard | ||
25 | 13 | 1078 | Quinvigintillion | Tredecillion | Tredecillion | ||
26 | 13 | 1081 | Sesvigintillion | Thousand tredecillion | Tredecilliard | ||
27 | 14 | 1084 | Septemvigintillion | Quattuordecillion | Quattuordecillion | ||
28 | 14 | 1087 | Octovigintillion | Thousand quattuordecillion | Quattuordecilliard | ||
29 | 15 | 1090 | Novemvigintillion | Quindecillion | Quindecillion | ||
30 | 15 | 1093 | Trigintillion | Thousand quindecillion | Quindecilliard | ||
31 | 16 | 1096 | Untrigintillion | Sedecillion | Sedecillion | ||
32 | 16 | 1099 | Duotrigintillion | Thousand sedecillion | Sedecilliard | ||
33 | 17 | 10102 | Trestrigintillion | Septendecillion | Septendecillion | ||
34 | 17 | 10105 | Quattuortrigintillion | Thousand septendecillion | Septendecilliard | ||
35 | 18 | 10108 | Quintrigintillion | Octodecillion | Octodecillion | ||
36 | 18 | 10111 | Sestrigintillion | Thousand octodecillion | Octodecilliard | ||
37 | 19 | 10114 | Septentrigintillion | Novendecillion | Novendecillion | ||
38 | 19 | 10117 | Octotrigintillion | Thousand novendecillion | Novendecilliard | ||
39 | 20 | 10120 | Noventrigintillion | Vigintillion | Vigintillion | ||
40 | 20 | 10123 | Quadragintillion | Thousand vigintillion | Vigintilliard | ||
50 | 25 | 10153 | Quinquagintillion | Thousand quinvigintillion | Quinvigintilliard | ||
60 | 30 | 10183 | Sexagintillion | Thousand trigintillion | Trigintilliard | ||
70 | 35 | 10213 | Septuagintillion | Thousand quintrigintillion | Quintrigintilliard | ||
80 | 40 | 10243 | Octogintillion | Thousand quadragintillion | Quadragintilliard | ||
90 | 45 | 10273 | Nonagintillion | Thousand quinquadragintillion | Quinquadragintilliard | ||
100 | 50 | 10303 | Centillion | Thousand quinquagintillion | Quinquagintilliard | ||
101 | 51 | 10306 | Uncentillion | Unquinquagintillion | Unquinquagintillion | ||
110 | 55 | 10333 | Decicentillion | Thousand quinquinquagintillion | Quinquinquagintilliard | ||
111 | 56 | 10336 | Undecicentillion | Sesquinquagintillion | Sesquinquagintillion | ||
120 | 60 | 10363 | Viginticentillion | Thousand sexagintillion | Sexagintilliard | ||
121 | 61 | 10366 | Unviginticentillion | Unsexagintillion | Unsexagintillion | ||
130 | 65 | 10393 | Trigintacentillion | Thousand quinsexagintillion | Quinsexagintilliard | ||
140 | 70 | 10423 | Quadragintacentillion | Thousand septuagintillion | Septuagintilliard | ||
150 | 75 | 10453 | Quinquagintacentillion | Thousand quinseptuagintillion | Quinseptuagintilliard | ||
160 | 80 | 10483 | Sexagintacentillion | Thousand octogintillion | Octogintilliard | ||
170 | 85 | 10513 | Septuagintacentillion | Thousand quinoctogintillion | Quinoctogintilliard | ||
180 | 90 | 10543 | Octogintacentillion | Thousand nonagintillion | Nonagintilliard | ||
190 | 95 | 10573 | Nonagintacentillion | Thousand quinnonagintillion | Quinnonagintilliard | ||
200 | 100 | 10603 | Ducentillion | Thousand centillion | Centilliard | ||
300 | 150 | 10903 | Trecentillion | Thousand quinquagintacentillion | Quinquagintacentilliard | ||
400 | 200 | 101203 | Quadringentillion | Thousand ducentillion | Ducentilliard | ||
500 | 250 | 101503 | Quingentillion | Thousand quinquagintaducentillion | Quinquagintaducentilliard | ||
600 | 300 | 101803 | Sescentillion | Thousand trecentillion | Trecentilliard | ||
700 | 350 | 102103 | Septingentillion | Thousand quinquagintatrecentillion | Quinquagintatrecentilliard | ||
800 | 400 | 102403 | Octingentillion | Thousand quadringentillion | Quadringentilliard | ||
900 | 450 | 102703 | Nongentillion | Thousand quinquagintaquadringentillion | Quinquagintaquadringentilliard | ||
1000 | 500 | 103003 | Millinillion[16] | Thousand quingentillion | Quingentilliard |
Value | Name | Equivalent | ||
---|---|---|---|---|
US, Canadian and modern British (short scale) |
Traditional British (long scale) |
Traditional European (Peletier) (long scale) |
||
10100 | Googol | Ten duotrigintillion | Ten thousand sedecillion | Ten sedecilliard |
1010100 | Googolplex | [1] Ten trillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentilliduotrigintatrecentillion | [2] Ten thousand millisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillion | [2] Ten millisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentilliard |
- ^[1] Googolplex’s short scale name is derived from it equal to ten of the 3,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,332nd «-illion»s (This is the value of n when 10 X 10(3n + 3) = 1010100)
- ^[2] Googolplex’s long scale name (both traditional British and traditional European) is derived from it being equal to ten thousand of the 1,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666th «-illion»s (This is the value of n when 10,000 X 106n = 1010100).
Binary prefixes
The International System of Quantities (ISQ) defines a series of prefixes denoting integer powers of 1024 between 10241 and 10248.[17]
Power | Value | ISQ symbol |
ISQ prefix |
---|---|---|---|
1 | 10241 | Ki | Kibi- |
2 | 10242 | Mi | Mebi- |
3 | 10243 | Gi | Gibi- |
4 | 10244 | Ti | Tebi- |
5 | 10245 | Pi | Pebi- |
6 | 10246 | Ei | Exbi- |
7 | 10247 | Zi | Zebi- |
8 | 10248 | Yi | Yobi- |
Other large numbers used in mathematics and physics
- Avogadro number
- Graham’s number
- Skewes’ number
- Steinhaus–Moser notation
- TREE(3)
- Rayo’s number
See also
- -yllion
- Asaṃkhyeya
- Chinese numerals
- History of large numbers
- Indefinite and fictitious numbers
- Indian numbering system
- Knuth’s up-arrow notation
- Law of large numbers
- List of numbers
- Long and short scale
- Metric prefix
- Names of small numbers
- Number names
- Number prefix
- Orders of magnitude
- Orders of magnitude (data)
- Orders of magnitude (numbers)
- Power of 10
References
- ^
Bellos, Alex (2011). Alex’s Adventures in Numberland. A&C Black. p. 114. ISBN 978-1-4088-0959-4. - ^
The American Heritage Dictionary of the English Language (4th ed.). Houghton Mifflin. 2000. ISBN 0-395-82517-2. - ^
«Collins English Dictionary». HarperCollins. - ^
«Cambridge Dictionaries Online». Cambridge University Press. - ^
The Oxford English Dictionary (2nd ed.). Clarendon Press. 1991. ISBN 0-19-861186-2. - ^
«Oxford English Dictionary». Oxford University Press. - ^
The Random House Dictionary of the English Language (2nd ed.). Random House. 1987. - ^
Brown, Lesley; Little, William (1993). The New Shorter Oxford English Dictionary. Oxford University Press. ISBN 0198612710. - ^
Webster, Noah (1981). Webster’s Third New International Dictionary of the English Language, Unabridged. Merriam-Webster. ISBN 0877792011. - ^
Rowlett, Russ. «How Many? A Dictionary of Units of Measures». Russ Rowlett and the University of North Carolina at Chapel Hill. Archived from the original on 1 March 2000. Retrieved 25 September 2022. - ^
Emerson, Oliver Farrar (1894). The History of the English Language. Macmillan and Co. p. 316. - ^
«Entry for centillion in dictionary.com». dictionary.com. Retrieved 25 September 2022. - ^
«Zimbabwe rolls out Z$100tr note». BBC News. 16 January 2009. Retrieved 25 September 2022. - ^
Kasner, Edward; Newman, James (1940). Mathematics and the Imagination. Simon and Schuster. ISBN 0-486-41703-4. - ^ a b c d e f
Conway, J. H.; Guy, R. K. (1998). The Book of Numbers. Springer Science & Business Media. pp. 15–16. ISBN 0-387-97993-X. - ^
Stewart, Ian (2017). Infinity: A Very Short Introduction. Oxford University Press. p. 20. ISBN 978-0-19-875523-4. - ^
«IEC 80000-13:2008». International Organization for Standardization. Retrieved 25 September 2022.
Two naming scales for large numbers have been used in English and other European languages since the early modern era: the long and short scales. Most English variants use the short scale today, but the long scale remains dominant in many non-English-speaking areas, including continental Europe and Spanish-speaking countries in Latin America. These naming procedures are based on taking the number n occurring in 103n+3 (short scale) or 106n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion.
Names of numbers above a trillion are rarely used in practice; such large numbers have practical usage primarily in the scientific domain, where powers of ten are expressed as 10 with a numeric superscript.
Indian English does not use millions, but has its own system of large numbers including lakhs and crores.[1] English also has many words, such as «zillion», used informally to mean large but unspecified amounts; see indefinite and fictitious numbers.
Standard dictionary numbers
x | Name (SS/LS, LS) |
SS (103x+3) |
LS (106x, 106x+3) |
Authorities | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AHD4[2] | CED[3] | COD[4] | OED2[5] | OEDweb[6] | RHD2[7] | SOED3[8] | W3[9] | HM[10] | ||||
1 | Million | 106 | 106 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Milliard | 109 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
2 | Billion | 109 | 1012 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
3 | Trillion | 1012 | 1018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
4 | Quadrillion | 1015 | 1024 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
5 | Quintillion | 1018 | 1030 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
6 | Sextillion | 1021 | 1036 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
7 | Septillion | 1024 | 1042 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
8 | Octillion | 1027 | 1048 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
9 | Nonillion | 1030 | 1054 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
10 | Decillion | 1033 | 1060 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
11 | Undecillion | 1036 | 1066 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
12 | Duodecillion | 1039 | 1072 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
13 | Tredecillion | 1042 | 1078 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
14 | Quattuordecillion | 1045 | 1084 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
15 | Quindecillion | 1048 | 1090 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
16 | Sexdecillion | 1051 | 1096 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
17 | Septendecillion | 1054 | 10102 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
18 | Octodecillion | 1057 | 10108 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
19 | Novemdecillion | 1060 | 10114 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
20 | Vigintillion | 1063 | 10120 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
100 | Centillion | 10303 | 10600 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Usage:
- Short scale: US, English Canada, modern British, Australia, and Eastern Europe
- Long scale: French Canada, older British, Western & Central Europe
Apart from million, the words in this list ending with —illion are all derived by adding prefixes (bi-, tri-, etc., derived from Latin) to the stem —illion.[11] Centillion[12] appears to be the highest name ending in -«illion» that is included in these dictionaries. Trigintillion, often cited as a word in discussions of names of large numbers, is not included in any of them, nor are any of the names that can easily be created by extending the naming pattern (unvigintillion, duovigintillion, duoquinquagintillion, etc.).
Name | Value | Authorities | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AHD4 | CED | COD | OED2 | OEDnew | RHD2 | SOED3 | W3 | UM | ||
Googol | 10100 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Googolplex | 10googol (1010100) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
All of the dictionaries included googol and googolplex, generally crediting it to the Kasner and Newman book and to Kasner’s nephew. None include any higher names in the googol family (googolduplex, etc.). The Oxford English Dictionary comments that googol and googolplex are «not in formal mathematical use».
Usage of names of large numbers
Some names of large numbers, such as million, billion, and trillion, have real referents in human experience, and are encountered in many contexts. At times, the names of large numbers have been forced into common usage as a result of hyperinflation. The highest numerical value banknote ever printed was a note for 1 sextillion pengő (1021 or 1 milliard bilpengő as printed) printed in Hungary in 1946. In 2009, Zimbabwe printed a 100 trillion (1014) Zimbabwean dollar note, which at the time of printing was worth about US$30.[13]
Names of larger numbers, however, have a tenuous, artificial existence, rarely found outside definitions, lists, and discussions of how large numbers are named. Even well-established names like sextillion are rarely used, since in the context of science, including astronomy, where such large numbers often occur, they are nearly always written using scientific notation. In this notation, powers of ten are expressed as 10 with a numeric superscript, e.g. «The X-ray emission of the radio galaxy is 1.3×1045 joules.» When a number such as 1045 needs to be referred to in words, it is simply read out as «ten to the forty-fifth». This is easier to say and less ambiguous than «quattuordecillion», which means something different in the long scale and the short scale.
When a number represents a quantity rather than a count, SI prefixes can be used—thus «femtosecond», not «one quadrillionth of a second»—although often powers of ten are used instead of some of the very high and very low prefixes. In some cases, specialized units are used, such as the astronomer’s parsec and light year or the particle physicist’s barn.
Nevertheless, large numbers have an intellectual fascination and are of mathematical interest, and giving them names is one way people try to conceptualize and understand them.
One of the earliest examples of this is The Sand Reckoner, in which Archimedes gave a system for naming large numbers. To do this, he called the numbers up to a myriad myriad (108) «first numbers» and called 108 itself the «unit of the second numbers». Multiples of this unit then became the second numbers, up to this unit taken a myriad myriad times, 108·108=1016. This became the «unit of the third numbers», whose multiples were the third numbers, and so on. Archimedes continued naming numbers in this way up to a myriad myriad times the unit of the 108-th numbers, i.e. and embedded this construction within another copy of itself to produce names for numbers up to Archimedes then estimated the number of grains of sand that would be required to fill the known universe, and found that it was no more than «one thousand myriad of the eighth numbers» (1063).
Since then, many others have engaged in the pursuit of conceptualizing and naming numbers that have no existence outside the imagination. One motivation for such a pursuit is that attributed to the inventor of the word googol, who was certain that any finite number «had to have a name». Another possible motivation is competition between students in computer programming courses, where a common exercise is that of writing a program to output numbers in the form of English words.[citation needed]
Most names proposed for large numbers belong to systematic schemes which are extensible. Thus, many names for large numbers are simply the result of following a naming system to its logical conclusion—or extending it further.[citation needed]
Origins of the «standard dictionary numbers»
The words bymillion and trimillion were first recorded in 1475 in a manuscript of Jehan Adam. Subsequently, Nicolas Chuquet wrote a book Triparty en la science des nombres which was not published during Chuquet’s lifetime. However, most of it was copied by Estienne de La Roche for a portion of his 1520 book, L’arismetique. Chuquet’s book contains a passage in which he shows a large number marked off into groups of six digits, with the comment:
Ou qui veult le premier point peult signiffier million Le second point byllion Le tiers point tryllion Le quart quadrillion Le cinqe quyllion Le sixe sixlion Le sept.e septyllion Le huyte ottyllion Le neufe nonyllion et ainsi des ault’s se plus oultre on vouloit preceder
(Or if you prefer the first mark can signify million, the second mark byllion, the third mark tryllion, the fourth quadrillion, the fifth quyillion, the sixth sixlion, the seventh septyllion, the eighth ottyllion, the ninth nonyllion and so on with others as far as you wish to go).
Adam and Chuquet used the long scale of powers of a million; that is, Adam’s bymillion (Chuquet’s byllion) denoted 1012, and Adam’s trimillion (Chuquet’s tryllion) denoted 1018.
The googol family
The names googol and googolplex were invented by Edward Kasner’s nephew Milton Sirotta and introduced in Kasner and Newman’s 1940 book Mathematics and the Imagination[14] in the following passage:
The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely 1 with one hundred zeroes after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out. It was first suggested that a googolplex should be 1, followed by writing zeros until you got tired. This is a description of what would happen if one tried to write a googolplex, but different people get tired at different times and it would never do to have Carnera a better mathematician than Dr. Einstein, simply because he had more endurance. The googolplex is, then, a specific finite number, equal to 1 with a googol zeros after it.
Value | Name | Authority |
---|---|---|
10100 | Googol | Kasner and Newman, dictionaries (see above) |
10googol = 1010100 | Googolplex | Kasner and Newman, dictionaries (see above) |
John Horton Conway and Richard K. Guy[15] have suggested that N-plex be used as a name for 10N. This gives rise to the name googolplexplex for 10googolplex = 101010100. Conway and Guy[15] have proposed that N-minex be used as a name for 10−N, giving rise to the name googolminex for the reciprocal of a googolplex, which is written as 10-(10100). None of these names are in wide use.
The names googol and googolplex inspired the name of the Internet company Google and its corporate headquarters, the Googleplex, respectively.
Extensions of the standard dictionary numbers
This section illustrates several systems for naming large numbers, and shows how they can be extended past vigintillion.
Traditional British usage assigned new names for each power of one million (the long scale): 1,000,000 = 1 million; 1,000,0002 = 1 billion; 1,000,0003 = 1 trillion; and so on. It was adapted from French usage, and is similar to the system that was documented or invented by Chuquet.
Traditional American usage (which was also adapted from French usage but at a later date), Canadian, and modern British usage assign new names for each power of one thousand (the short scale.) Thus, a billion is 1000 × 10002 = 109; a trillion is 1000 × 10003 = 1012; and so forth. Due to its dominance in the financial world (and by the US dollar), this was adopted for official United Nations documents.
Traditional French usage has varied; in 1948, France, which had originally popularized the short scale worldwide, reverted to the long scale.
The term milliard is unambiguous and always means 109. It is seldom seen in American usage and rarely in British usage, but frequently in continental European usage. The term is sometimes attributed to French mathematician Jacques Peletier du Mans circa 1550 (for this reason, the long scale is also known as the Chuquet-Peletier system), but the Oxford English Dictionary states that the term derives from post-Classical Latin term milliartum, which became milliare and then milliart and finally our modern term.
Concerning names ending in -illiard for numbers 106n+3, milliard is certainly in widespread use in languages other than English, but the degree of actual use of the larger terms is questionable. The terms «Milliarde» in German, «miljard» in Dutch, «milyar» in Turkish, and «миллиард,» milliard (transliterated) in Russian, are standard usage when discussing financial topics.
For additional details, see billion and long and short scale.
The naming procedure for large numbers is based on taking the number n occurring in 103n+3 (short scale) or 106n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 103·999+3 = 103000 (short scale) or 106·999 = 105994 (long scale) may be named. The choice of roots and the concatenation procedure is that of the standard dictionary numbers if n is 9 or smaller. For larger n (between 10 and 999), prefixes can be constructed based on a system described by Conway and Guy.[15] Today, sexdecillion and novemdecillion are standard dictionary numbers and, using the same reasoning as Conway and Guy did for the numbers up to nonillion, could probably be used to form acceptable prefixes. The Conway–Guy system for forming prefixes:
Units | Tens | Hundreds | |
---|---|---|---|
1 | Un | N Deci | NX Centi |
2 | Duo | MS Viginti | N Ducenti |
3 | Tre (*) | NS Triginta | NS Trecenti |
4 | Quattuor | NS Quadraginta | NS Quadringenti |
5 | Quinqua | NS Quinquaginta | NS Quingenti |
6 | Se (*) | N Sexaginta | N Sescenti |
7 | Septe (*) | N Septuaginta | N Septingenti |
8 | Octo | MX Octoginta | MX Octingenti |
9 | Nove (*) | Nonaginta | Nongenti |
- (*) ^ When preceding a component marked S or X, «tre» changes to «tres» and «se» to «ses» or «sex»; similarly, when preceding a component marked M or N, «septe» and «nove» change to «septem» and «novem» or «septen» and «noven».
Since the system of using Latin prefixes will become ambiguous for numbers with exponents of a size which the Romans rarely counted to, like 106,000,258, Conway and Guy co-devised with Allan Wechsler the following set of consistent conventions that permit, in principle, the extension of this system indefinitely to provide English short-scale names for any integer whatsoever.[15] The name of a number 103n+3, where n is greater than or equal to 1000, is formed by concatenating the names of the numbers of the form 103m+3, where m represents each group of comma-separated digits of n, with each but the last «-illion» trimmed to «-illi-«, or, in the case of m = 0, either «-nilli-» or «-nillion».[15] For example, 103,000,012, the 1,000,003rd «-illion» number, equals one «millinillitrillion»; 1033,002,010,111, the 11,000,670,036th «-illion» number, equals one «undecillinilliseptuagintasescentillisestrigintillion»; and 1029,629,629,633, the 9,876,543,210th «-illion» number, equals one «nonilliseseptuagintaoctingentillitresquadragintaquingentillideciducentillion».[15]
The following table shows number names generated by the system described by Conway and Guy for the short and long scales.
Base -illion (short scale) |
Base -illion (long scale) |
Value | US, Canada and modern British (short scale) |
Traditional British (long scale) |
Traditional European (Peletier) (long scale) |
SI Symbol |
SI Prefix |
---|---|---|---|---|---|---|---|
1 | 1 | 106 | Million | Million | Million | M | Mega- |
2 | 1 | 109 | Billion | Thousand million | Milliard | G | Giga- |
3 | 2 | 1012 | Trillion | Billion | Billion | T | Tera- |
4 | 2 | 1015 | Quadrillion | Thousand billion | Billiard | P | Peta- |
5 | 3 | 1018 | Quintillion | Trillion | Trillion | E | Exa- |
6 | 3 | 1021 | Sextillion | Thousand trillion | Trilliard | Z | Zetta- |
7 | 4 | 1024 | Septillion | Quadrillion | Quadrillion | Y | Yotta- |
8 | 4 | 1027 | Octillion | Thousand quadrillion | Quadrilliard | R | Ronna- |
9 | 5 | 1030 | Nonillion | Quintillion | Quintillion | Q | Quetta- |
10 | 5 | 1033 | Decillion | Thousand quintillion | Quintilliard | ||
11 | 6 | 1036 | Undecillion | Sextillion | Sextillion | ||
12 | 6 | 1039 | Duodecillion | Thousand sextillion | Sextilliard | ||
13 | 7 | 1042 | Tredecillion | Septillion | Septillion | ||
14 | 7 | 1045 | Quattuordecillion | Thousand septillion | Septilliard | ||
15 | 8 | 1048 | Quindecillion | Octillion | Octillion | ||
16 | 8 | 1051 | Sedecillion | Thousand octillion | Octilliard | ||
17 | 9 | 1054 | Septendecillion | Nonillion | Nonillion | ||
18 | 9 | 1057 | Octodecillion | Thousand nonillion | Nonilliard | ||
19 | 10 | 1060 | Novendecillion | Decillion | Decillion | ||
20 | 10 | 1063 | Vigintillion | Thousand decillion | Decilliard | ||
21 | 11 | 1066 | Unvigintillion | Undecillion | Undecillion | ||
22 | 11 | 1069 | Duovigintillion | Thousand undecillion | Undecilliard | ||
23 | 12 | 1072 | Tresvigintillion | Duodecillion | Duodecillion | ||
24 | 12 | 1075 | Quattuorvigintillion | Thousand duodecillion | Duodecilliard | ||
25 | 13 | 1078 | Quinvigintillion | Tredecillion | Tredecillion | ||
26 | 13 | 1081 | Sesvigintillion | Thousand tredecillion | Tredecilliard | ||
27 | 14 | 1084 | Septemvigintillion | Quattuordecillion | Quattuordecillion | ||
28 | 14 | 1087 | Octovigintillion | Thousand quattuordecillion | Quattuordecilliard | ||
29 | 15 | 1090 | Novemvigintillion | Quindecillion | Quindecillion | ||
30 | 15 | 1093 | Trigintillion | Thousand quindecillion | Quindecilliard | ||
31 | 16 | 1096 | Untrigintillion | Sedecillion | Sedecillion | ||
32 | 16 | 1099 | Duotrigintillion | Thousand sedecillion | Sedecilliard | ||
33 | 17 | 10102 | Trestrigintillion | Septendecillion | Septendecillion | ||
34 | 17 | 10105 | Quattuortrigintillion | Thousand septendecillion | Septendecilliard | ||
35 | 18 | 10108 | Quintrigintillion | Octodecillion | Octodecillion | ||
36 | 18 | 10111 | Sestrigintillion | Thousand octodecillion | Octodecilliard | ||
37 | 19 | 10114 | Septentrigintillion | Novendecillion | Novendecillion | ||
38 | 19 | 10117 | Octotrigintillion | Thousand novendecillion | Novendecilliard | ||
39 | 20 | 10120 | Noventrigintillion | Vigintillion | Vigintillion | ||
40 | 20 | 10123 | Quadragintillion | Thousand vigintillion | Vigintilliard | ||
50 | 25 | 10153 | Quinquagintillion | Thousand quinvigintillion | Quinvigintilliard | ||
60 | 30 | 10183 | Sexagintillion | Thousand trigintillion | Trigintilliard | ||
70 | 35 | 10213 | Septuagintillion | Thousand quintrigintillion | Quintrigintilliard | ||
80 | 40 | 10243 | Octogintillion | Thousand quadragintillion | Quadragintilliard | ||
90 | 45 | 10273 | Nonagintillion | Thousand quinquadragintillion | Quinquadragintilliard | ||
100 | 50 | 10303 | Centillion | Thousand quinquagintillion | Quinquagintilliard | ||
101 | 51 | 10306 | Uncentillion | Unquinquagintillion | Unquinquagintillion | ||
110 | 55 | 10333 | Decicentillion | Thousand quinquinquagintillion | Quinquinquagintilliard | ||
111 | 56 | 10336 | Undecicentillion | Sesquinquagintillion | Sesquinquagintillion | ||
120 | 60 | 10363 | Viginticentillion | Thousand sexagintillion | Sexagintilliard | ||
121 | 61 | 10366 | Unviginticentillion | Unsexagintillion | Unsexagintillion | ||
130 | 65 | 10393 | Trigintacentillion | Thousand quinsexagintillion | Quinsexagintilliard | ||
140 | 70 | 10423 | Quadragintacentillion | Thousand septuagintillion | Septuagintilliard | ||
150 | 75 | 10453 | Quinquagintacentillion | Thousand quinseptuagintillion | Quinseptuagintilliard | ||
160 | 80 | 10483 | Sexagintacentillion | Thousand octogintillion | Octogintilliard | ||
170 | 85 | 10513 | Septuagintacentillion | Thousand quinoctogintillion | Quinoctogintilliard | ||
180 | 90 | 10543 | Octogintacentillion | Thousand nonagintillion | Nonagintilliard | ||
190 | 95 | 10573 | Nonagintacentillion | Thousand quinnonagintillion | Quinnonagintilliard | ||
200 | 100 | 10603 | Ducentillion | Thousand centillion | Centilliard | ||
300 | 150 | 10903 | Trecentillion | Thousand quinquagintacentillion | Quinquagintacentilliard | ||
400 | 200 | 101203 | Quadringentillion | Thousand ducentillion | Ducentilliard | ||
500 | 250 | 101503 | Quingentillion | Thousand quinquagintaducentillion | Quinquagintaducentilliard | ||
600 | 300 | 101803 | Sescentillion | Thousand trecentillion | Trecentilliard | ||
700 | 350 | 102103 | Septingentillion | Thousand quinquagintatrecentillion | Quinquagintatrecentilliard | ||
800 | 400 | 102403 | Octingentillion | Thousand quadringentillion | Quadringentilliard | ||
900 | 450 | 102703 | Nongentillion | Thousand quinquagintaquadringentillion | Quinquagintaquadringentilliard | ||
1000 | 500 | 103003 | Millinillion[16] | Thousand quingentillion | Quingentilliard |
Value | Name | Equivalent | ||
---|---|---|---|---|
US, Canadian and modern British (short scale) |
Traditional British (long scale) |
Traditional European (Peletier) (long scale) |
||
10100 | Googol | Ten duotrigintillion | Ten thousand sedecillion | Ten sedecilliard |
1010100 | Googolplex | [1] Ten trillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentillitrestrigintatrecentilliduotrigintatrecentillion | [2] Ten thousand millisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillion | [2] Ten millisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentillisesexagintasescentilliard |
- ^[1] Googolplex’s short scale name is derived from it equal to ten of the 3,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,333,332nd «-illion»s (This is the value of n when 10 X 10(3n + 3) = 1010100)
- ^[2] Googolplex’s long scale name (both traditional British and traditional European) is derived from it being equal to ten thousand of the 1,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666,666th «-illion»s (This is the value of n when 10,000 X 106n = 1010100).
Binary prefixes
The International System of Quantities (ISQ) defines a series of prefixes denoting integer powers of 1024 between 10241 and 10248.[17]
Power | Value | ISQ symbol |
ISQ prefix |
---|---|---|---|
1 | 10241 | Ki | Kibi- |
2 | 10242 | Mi | Mebi- |
3 | 10243 | Gi | Gibi- |
4 | 10244 | Ti | Tebi- |
5 | 10245 | Pi | Pebi- |
6 | 10246 | Ei | Exbi- |
7 | 10247 | Zi | Zebi- |
8 | 10248 | Yi | Yobi- |
Other large numbers used in mathematics and physics
- Avogadro number
- Graham’s number
- Skewes’ number
- Steinhaus–Moser notation
- TREE(3)
- Rayo’s number
See also
- -yllion
- Asaṃkhyeya
- Chinese numerals
- History of large numbers
- Indefinite and fictitious numbers
- Indian numbering system
- Knuth’s up-arrow notation
- Law of large numbers
- List of numbers
- Long and short scale
- Metric prefix
- Names of small numbers
- Number names
- Number prefix
- Orders of magnitude
- Orders of magnitude (data)
- Orders of magnitude (numbers)
- Power of 10
References
- ^
Bellos, Alex (2011). Alex’s Adventures in Numberland. A&C Black. p. 114. ISBN 978-1-4088-0959-4. - ^
The American Heritage Dictionary of the English Language (4th ed.). Houghton Mifflin. 2000. ISBN 0-395-82517-2. - ^
«Collins English Dictionary». HarperCollins. - ^
«Cambridge Dictionaries Online». Cambridge University Press. - ^
The Oxford English Dictionary (2nd ed.). Clarendon Press. 1991. ISBN 0-19-861186-2. - ^
«Oxford English Dictionary». Oxford University Press. - ^
The Random House Dictionary of the English Language (2nd ed.). Random House. 1987. - ^
Brown, Lesley; Little, William (1993). The New Shorter Oxford English Dictionary. Oxford University Press. ISBN 0198612710. - ^
Webster, Noah (1981). Webster’s Third New International Dictionary of the English Language, Unabridged. Merriam-Webster. ISBN 0877792011. - ^
Rowlett, Russ. «How Many? A Dictionary of Units of Measures». Russ Rowlett and the University of North Carolina at Chapel Hill. Archived from the original on 1 March 2000. Retrieved 25 September 2022. - ^
Emerson, Oliver Farrar (1894). The History of the English Language. Macmillan and Co. p. 316. - ^
«Entry for centillion in dictionary.com». dictionary.com. Retrieved 25 September 2022. - ^
«Zimbabwe rolls out Z$100tr note». BBC News. 16 January 2009. Retrieved 25 September 2022. - ^
Kasner, Edward; Newman, James (1940). Mathematics and the Imagination. Simon and Schuster. ISBN 0-486-41703-4. - ^ a b c d e f
Conway, J. H.; Guy, R. K. (1998). The Book of Numbers. Springer Science & Business Media. pp. 15–16. ISBN 0-387-97993-X. - ^
Stewart, Ian (2017). Infinity: A Very Short Introduction. Oxford University Press. p. 20. ISBN 978-0-19-875523-4. - ^
«IEC 80000-13:2008». International Organization for Standardization. Retrieved 25 September 2022.
Названия больших чисел
- Таблица больших чисел с указанием количества нулей и названиями на русском и английском
- Как называется самое большое простое число
- Принципы построения названий и список больших чисел
Существует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Числа состоят из цифр. Число 52 состоит из двух цифр: 5 и 2. Числа с 1 впереди и последующими нулями имеют названия.
Всем известны:
- 10 — десять,
- 100 — сто,
- 1000 — тысяча,
- 1 000 000 — миллион.
Так как большие числа с большим числом нулей записывать неудобно, используют сокращения в виде степеней: запись 1011 означает число с 11-ю нулями, запись 1052 означает число с 52-мя нулями и т.д. Приведем названия чисел с десятками и сотнями нулей.
Таблица больших чисел с указанием количества нулей и названиями на русском и английском
Названия «круглых» чисел, которые можно встретить в школьной программе:
- 1 000 000 — миллион (6 нулей)
- 1 000 000 000 — миллиард или биллион (9 нулей)
- 1 000 000 000 000 — триллион (12 нулей)
- 1 000 000 000 000 000 — квадриллион (15 нулей)
- 1 000 000 000 000 000 000 — квинтиллион (18 нулей)
- 1 000 000 000 000 000 000 000 — секстиллион (21 нуль)
- 1 000 000 000 000 000 000 000 000 — септиллион (24 нуля)
- 1 000 000 000 000 000 000 000 000 000 — октиллион (27 нулей)
- 1 000 000 000 000 000 000 000 000 000 000 — нониллион (30 нулей)
- 1 000 000 000 000 000 000 000 000 000 000 000 — дециллион (33 нуля)
Еще некоторые примеры интересных названий:
- 10100 — гугол, googol (100 нулей)
- 1010100 — гуголплекс, googolplex (десять в степени гугол)
- 10140 — асанкхейя, asankhyeya или сто квинквадрагинтиллионов
- 10303 — центиллион, centillion
- 103003 — миллиллион, millillion
- 103000003 — милли-миллиллион, milli-millillion
Самого большого числа в мире не существует, так как любое большое число всегда можно увеличить, умножить, возвести в степень, и получится другое большее число. Бесконечность не является числом.
Из известных самых больших чисел, имеющих название (математическое доказательство) можно выделить: число TREE(3), число SCG(13), число Лоудера, число Мозера, число Скьюза, число Райо, число Грэма, инфитеиплеон.
Таблица больших чисел с указанием количества нулей и названиями на русском и английском.
Число нулей | Краткая запись | Название | Название на английском |
---|---|---|---|
3 | 103 | тысяча | thousand |
6 | 106 | миллион | million |
9 | 109 | миллиард (биллион) | billion |
12 | 1012 | триллион | trillion |
15 | 1015 | квадриллион | quadrillion |
18 | 1018 | квинтиллион | quintillion |
21 | 1021 | секстиллион | sextillion |
24 | 1024 | септиллион | septillion |
27 | 1027 | октиллион | octillion |
30 | 1030 | нониллион | nonillion |
33 | 1033 | дециллион | decillion |
36 | 1036 | ундециллион | undecillion |
39 | 1039 | дуодециллион | duodecillion |
42 | 1042 | тредециллион | tredecillion |
45 | 1045 | кватуордециллион | quattuordecillion |
48 | 1048 | квиндециллион | quindecillion |
51 | 1051 | сексдециллион | sexdecillion |
54 | 1054 | септендециллион | septendecillion |
57 | 1057 | октодециллион | octodecillion |
60 | 1060 | новемдециллион | novemdecillion |
63 | 1063 | вигинтиллион | vigintillion |
66 | 1066 | унвигинтиллион | unvigintillion |
69 | 1069 | дуовигинтиллион | duovigintillion |
72 | 1072 | тревигинтиллион | trevigintillion |
75 | 1075 | кватуорвигинтиллион | quattuorvigintillion |
78 | 1078 | квинвигинтиллион | quinvigintillion |
81 | 1081 | сексвигинтиллион | sexvigintillion |
84 | 1084 | септенвигинтиллион | septenvigintillion |
87 | 1087 | октовигинтиллион | octovigintillion |
90 | 1090 | новемвигинтиллион | novemvigintillion |
93 | 1093 | тригинтиллион | trigintillion |
96 | 1096 | унтригинтиллион | untrigintillion |
99 | 1099 | дуотригинтиллион | duotrigintillion |
102 | 10102 | третригинтиллион | trestrigintillion |
105 | 10105 | кватортригинтиллион | quattuortrigintillion |
108 | 10108 | квинтригинтиллион | quintrigintillion |
111 | 10111 | секстригинтиллион | sextrigintillion |
114 | 10114 | септентригинтиллион | septentrigintillion |
117 | 10117 | октотригинтиллион | octotrigintillion |
120 | 10120 | новемтригинтиллион | novemtrigintillion |
123 | 10123 | квадрагинтиллион | quadragintillion |
126 | 10126 | унквадрагинтиллион | unquadragintillion |
129 | 10129 | дуоквадрагинтиллион | duoquadragintillion |
132 | 10132 | треквадрагинтиллион | trequadragintillion |
135 | 10135 | кваторквадрагинтиллион | quattuorquadragintillion |
138 | 10138 | квинквадрагинтиллион | quinquadragintillion |
141 | 10141 | сексквадрагинтиллион | sexquadragintillion |
144 | 10144 | септенквадрагинтиллион | septenquadragintillion |
147 | 10147 | октоквадрагинтиллион | octoquadragintillion |
150 | 10150 | новемквадрагинтиллион | novemquadragintillion |
153 | 10153 | квинквагинтиллион | quinquagintillion |
156 | 10156 | унквинкагинтиллион | unquinquagintillion |
159 | 10159 | дуоквинкагинтиллион | duoquinquagintillion |
162 | 10162 | треквинкагинтиллион | trequinquagintillion |
165 | 10165 | кваторквинкагинтиллион | quattuorquinquagintillion |
168 | 10168 | квинквинкагинтиллион | quinquinquagintillion |
171 | 10171 | сексквинкагинтиллион | sexquinquagintillion |
174 | 10174 | септенквинкагинтиллион | septenquinquagintillion |
177 | 10177 | октоквинкагинтиллион | octoquinquagintillion |
180 | 10180 | новемквинкагинтиллион | novemquinquagintillion |
183 | 10183 | сексагинтиллион | sexagintillion |
186 | 10186 | унсексагинтиллион | unsexagintillion |
189 | 10189 | дуосексагинтиллион | duosexagintillion |
192 | 10192 | тресексагинтиллион | tresexagintillion |
195 | 10195 | кваторсексагинтиллион | quattuorsexagintillion |
198 | 10198 | квинсексагинтиллион | quinsexagintillion |
201 | 10201 | секссексагинтиллион | sexsexagintillion |
204 | 10204 | септенсексагинтиллион | septensexagintillion |
207 | 10207 | октосексагинтиллион | octosexagintillion |
210 | 10210 | новемсексагинтиллион | novemsexagintillion |
213 | 10213 | септагинтиллион | septuagintillion |
216 | 10216 | унсептагинтиллион | unseptuagintillion |
219 | 10219 | дуосептагинтиллион | duoseptuagintillion |
222 | 10222 | тресептагинтиллион | treseptuagintillion |
225 | 10225 | кваторсептагинтиллион | quattuorseptuagintillion |
228 | 10228 | квинсептагинтиллион | quinseptuagintillion |
231 | 10231 | секссептагинтиллион | sexseptuagintillion |
234 | 10234 | септенсептагинтиллион | septenseptuagintillion |
237 | 10237 | октосептагинтиллион | octoseptuagintillion |
240 | 10240 | новемсептагинтиллион | novemseptuagintillion |
243 | 10243 | октогинтиллион | octogintillion |
246 | 10246 | уноктогинтиллион | unoctogintillion |
249 | 10249 | дуооктогинтиллион | duooctogintillion |
252 | 10252 | треоктогинтиллион | treoctogintillion |
255 | 10255 | кватороктогинтиллион | quattuoroctogintillion |
258 | 10258 | квиноктогинтиллион | quinoctogintillion |
261 | 10261 | сексоктогинтиллион | sexoctogintillion |
264 | 10264 | септоктогинтиллион | septoctogintillion |
267 | 10267 | октооктогинтиллион | octooctogintillion |
270 | 10270 | новемоктогинтиллион | novemoctogintillion |
273 | 10273 | нонагинтиллион | nonagintillion |
276 | 10276 | уннонагинтиллион | unnonagintillion |
279 | 10279 | дуононагинтиллион | duononagintillion |
282 | 10282 | тренонагинтиллион | trenonagintillion |
285 | 10285 | кваторнонагинтиллион | quattuornonagintillion |
288 | 10288 | квиннонагинтиллион | quinnonagintillion |
291 | 10291 | секснонагинтиллион | sexnonagintillion |
294 | 10294 | септеннонагинтиллион | septennonagintillion |
297 | 10297 | октононагинтиллион | octononagintillion |
300 | 10300 | новемнонагинтиллион | novemnonagintillion |
303 | 10303 | центиллион | centillion |
Как называется самое большое простое число
Простое число — то, которое делится только на себя и на единицу. В конце 2018 года американец Патрик Лярош представил научному миру самое большое простое число.
- Длина его — 24 862 048 символов. Для сравнения: в эпохальном произведении Л.Н. Толстого «Война и мир» около 6-7 миллионов символов, если учитывать знаки препинания и пробелы.
- Это число можно записать следующим образом: 282589933-1
- А читается оно так: два в степени 82589933 минус один.
- Существует целый онлайн-проект GIMPS, нацеленный как раз на поиск самых больших простых чисел.
Принципы построения названий и список больших чисел
Все названия больших чисел построены довольно простым образом: в начале идет латинское порядковое числительное, а в конце к нему добавляется суффикс —иллион. Исключение составляет название «миллион» которое является названием числа тысяча (mille) и увеличительного суффикса —иллион. В мире существует два основных типа названий больших чисел:
- система 3х+3 (где х — латинское порядковое числительное) — эта система используется в России, Франции, США, Канаде, Италии, Турции, Бразилии, Греции
- система 6х (где х — латинское порядковое числительное) — эта система наиболее распространена в мире (например: Испания, Германия, Венгрия, Португалия, Польша, Чехия, Швеция, Дания, Финляндия). В ней отсутствующие промежуточные 6х+3 заканчиваются суффиксом -иллиард (из нее мы заимствовали миллиард, который еще называется биллион).
Общий список чисел используемых в России:
Число | Название | Латинское числительное | Увеличивающая приставка СИ | Уменьшаяющая приставка СИ | Практическое значение |
101 | десять | дека- | деци- | Число пальцев на 2 руках | |
102 | сто | гекто- | санти- | Примерно половина числа всех государств на Земле | |
103 | тысяча | кило- | милли- | Примерное число дней в 3 годах | |
106 | миллион | unus (I) | мега- | микро- | В 5 раз больше числа капель в 10-литровом ведере воды |
109 | миллиард (биллион) | duo (II) | гига- | нано- | Примерная численность населения Индии |
1012 | триллион | tres (III) | тера- | пико- | 1/13 внутреннего валового продукта России в рублях за 2003 год |
1015 | квадриллион | quattor (IV) | пета- | фемто- | 1/30 длины парсека в метрах |
1018 | квинтиллион | quinque (V) | экса- | атто- | 1/18 числа зерен из легендарной награды изобретателю шахмат |
1021 | секстиллион | sex (VI) | зетта- | цепто- | 1/6 массы планеты Земля в тоннах |
1024 | септиллион | septem (VII) | йотта- | йокто- | Число молекул в 37,2 л воздуха |
1027 | октиллион | octo (VIII) | неа- | сито- | Половина массы Юпитера в килограммах |
1030 | нониллион | novem (IX) | деа- | тредо- | 1/5 числа всех микроорганизмов на планете |
1033 | дециллион | decem (X) | уна- | рево- | Половина массы Солнца в граммах |
Произношение чисел, идущих далее, часто различается.
Число | Название | Латинское числительное | Практическое значение |
1036 | андециллион | undecim (XI) | |
1039 | дуодециллион | duodecim (XII) | |
1042 | тредециллион | tredecim (XIII) | 1/100 от количества молекул воздуха на Земле |
1045 | кваттордециллион | quattuordecim (XIV) | |
1048 | квиндециллион | quindecim (XV) | |
1051 | сексдециллион | sedecim (XVI) | |
1054 | септемдециллион | septendecim (XVII) | |
1057 | октодециллион | Столько элементарных частиц на Солнце | |
1060 | новемдециллион | ||
1063 | вигинтиллион | viginti (XX) | |
1066 | анвигинтиллион | unus et viginti (XXI) | |
1069 | дуовигинтиллион | duo et viginti (XXII) | |
1072 | тревигинтиллион | tres et viginti (XXIII) | |
1075 | кватторвигинтиллион | ||
1078 | квинвигинтиллион | ||
1081 | сексвигинтиллион | Столько элементарных частиц во вселенной | |
1084 | септемвигинтиллион | ||
1087 | октовигинтиллион | ||
1090 | новемвигинтиллион | ||
1093 | тригинтиллион | triginta (XXX) | |
1096 | антригинтиллион |
- 10100 — гугол (число придумал 9-летний племянник американского математика Эдварда Каснера)
- 10123 — квадрагинтиллион (quadraginta, XL)
- 10153 — квинквагинтиллион (quinquaginta, L)
- 10183 — сексагинтиллион (sexaginta, LX)
- 10213 — септуагинтиллион (septuaginta, LXX)
- 10243 — октогинтиллион (octoginta, LXXX)
- 10273 — нонагинтиллион (nonaginta, XC)
- 10303 — центиллион (Centum, C)
Дальнейшие названия могут быть получены либо прямым, либо обратным порядком латинских числительных (как правильно, не известно):
- 10306 — анцентиллион или центуниллион
- 10309 — дуоцентиллион или центдуоллион
- 10312 — трецентиллион или центтриллион
- 10315 — кватторцентиллион или центквадриллион
- 10402 — третригинтацентиллион или центтретригинтиллион
Оказывается, существуют две системы наименования чисел. Но не арабская, египетская, или любых других древних цивилизаций, а — американская и английская.
В американской системе числа называются так: берется латинское числительное + — иллион (суффикс). Таким образом, получаются числа:
- Триллион — 1 000 000 000 000 (12 нулей)
- Квадриллион — 1 000 000 000 000 000 (15 нулей)
- Квинтиллион — 1 и 18 нулей
- Секстиллион — 1 и 21 нуль
- Септиллион — 1 и 24 нуля
- октиллион — 1 и 27 нулей
- Нониллион — 1 и 30 нулей
- Дециллион — 1 и 33 нуля
Формула проста: 3·x+3 (х — латинское числительное)
По идее должны быть еще числа анилион (unus в латинском языке — один) и дуолион (duo — два), но, по-моему, такие названия вообще не используются.
Английская система наименования чисел распространена в большей степени.
Здесь тоже берется латинское числительное и к нему добавляется суффикс -иллион. Однако название следующего числа, которое больше предыдущего в 1 000 раз, образуется с помощью того же латинского числа и суффикса — иллиард. То бишь:
- Триллион — 1 и 21 нуль (в американской системе — секстиллион!)
- Триллиард — 1 и 24 нуля (в американской системе — септиллион)
- Квадриллион — 1 и 27 нулей
- Квадриллиард — 1 и 30 нулей
- Квинтиллион — 1 и 33 нуля
- Квиниллиард — 1 и 36 нулей
- Секстиллион — 1 и 39 нулей
- Секстиллиард — 1 и 42 нуля
Формулы для подсчета количества нулей, таковы:
- Для чисел, оканчивающихся на — иллион — 6·x+3
- Для чисел, оканчивающихся на — иллиард — 6·x+6
В России принята американская система наименования чисел.
Из английской системы мы позаимствовали название числа «миллиард» — 1 000 000 000 = 109
А где же «заветный» биллион? — Да ведь биллион — это и есть миллиард! По-американски. А мы, хоть и пользуемся американской системой, а «миллиард» взяли из английской.
Пользуясь латинскими наименованиями чисел и американской системой назовем числа:
— вигинтиллион — 1 и 63 нуля
— центиллион — 1 и 303 нуля
— миллеиллион — единица и 3003 нуля! О-го-го…
Но и это, оказывается, не все. Есть еще числа внесистемные.
И первое из них, наверное, мириада — сотня сотен = 10000
Гугол (именно в честь него названа известная поисковая система) — единица и сто нулей
В одном из буддийских трактатов названо число асанкхейя — единица и сто сорок нулей!
Какие же самые большие числа имеют практическое применение?
Наибольшее известное простое число — 282 589 933 − 1. Оно было найдено в рамках масштабного проекта по поиску простых чисел GIMPS в 2018 году и содержит 24 862 048 десятичных цифр.
1080 – примерное число элементарных частиц в известной Вселенной.
10100 – гугол. В честь этого числа назвали известную поисковую систему – мол, она знает 10100 разных фактов. Скажем так, это преувеличение. Для чего такое число может понадобиться? Например, наша Вселенная, по разным прогнозам, просуществует от 10100 до 1,5*10100 лет.
8,5*10185 – объем известной Вселенной, вычисленный в кубиках, со стороной, равной длине Планка. Длина Планка — это 1,616199 *10-35 метра. Это примерно в 1020 раз меньше диаметра протона. Предполагается, что на этом уровне формируется «пена» пространства-времени.
А какое же число все-таки рекордное? Книга Рекодов Гиннесса утверждает, что самое большое число в математике — это число Грэма. Это гигантское число, которое, будучи записано десятичными цифрами, просто не поместилось бы во Вселенной. Поэтому его записывают так: G=g64. Это специальная запись для невообразимо больших чисел. Что она означает?
Число Грэма, названное в честь математика Рональда Грэма, было придумано им для решения теоремы Рамсея в многомерном пространстве. Оно обозначает верхний предел пространственных измерений, за которым решение теоремы Рамсея уже наверняка невозможно. Для справки: число пространственных измерений нашего мира – три, но математики проводят вычисления в абстрактных моделях, где измерений может быть множество.
Число Грэма — это 3 в очень большой степени. Чтобы прикинуть, насколько это огромная степень, можно попробовать представить начало вычислений. Итак, по методу стрелочной нотации Кнута (особый способ представления больших чисел) 33 можно записать как 3^3, а 33^3 как 3^3^3. Еще более сокращенная форма записи будет выглядеть как 3^2. Соответственно 3^3^3^3^3 = 3^4. Обозначи 3^4 как g1. Это был первый шаг вычислений.
Так вот, запись G=g64 означает 64 шага. Они разворачиваются вверх, как огромная башня. На первом шаге мы вычисляем g1. На втором шаге – g2 = 3(^g1). На третьем шаге g3 = 3(^g2). И так далее, вплоть до g64 = 3(^g63). Это и есть число Грэма. На сегодняшний день это самое большое число, когда-либо использованное в математическом доказательстве.
Уровень8 класс ПредметМатематика СложностьСложная
Самые длинные десятичные дроби
Первое место здесь удерживает число Пи, вычисленное с точностью до 31415926535897 знаков после запятой, или, для большей наглядности, 3,1415926535897*1013 знаков. Число π = 3,141592653589793… — это соотношение длины окружности к ее диаметру. Набрать его на клавиатуре можно так же, как и ∞, только вместо 8734 нужно напечатать 960.
На втором месте, сильно уступая π, находится число е=2,718281828459045 – основание натурального логарифма. Оно вычислено с точностью до 2 миллионов знаков.
Оба достижения являются чисто спортивными. Отсюда и совпадение числа вычисленных знаков после запятой с π. На практике, даже ведущие научные центры, такие, как NASA, расчеты которых требуют высочайшей точности, не используют более 15 знаков после запятой для этих чисел.
Впрочем, игры с числами — отдельная тема. Есть очень много интересных цифровых последовательностей с глубоким смыслом, заложенным в них. К примеру, числа Фибоначчи.
Уровень8 класс ПредметМатематика СложностьСложная
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
-
Числа 1, 2, 3, 4, 5, …, использующиеся для счета предметов или для указания порядкового номера того или иного предмета среди однородных предметов, называют натуральными.
-
Рациональное число — число, которое можно представить в виде обыкновенной дроби, где числитель является целым числом, а знаменатель — натуральным.
-
К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным. Натуральные числа — это положительные целые числа.
-
Парциальное давление каждого газа, входящего в состав смеси, это давление, которое создавалось бы той же массой данного газа, если он будет занимать весь объем смеси при той же температуре.
-
Суммой двух векторов a и b называется третий вектор c, проведенный из начала a к концу b, если начало вектора b совпадает с концом вектора a. Разностью двух векторов a и b называется вектор c при условии: c = a − b, если c + b =a.
-
Обзор веса нескольких животных
-
Воздух – это смесь газов, и которых состоит атмосфера нашей планеты Земля. Воздух состоит из азота (около 80% объема) , кислорода, благородных газов, даже углекислого газа.
-
Современный русский алфавит состоит из 33 букв.
10 комментариев
22 279
6 августа 2018
Так нужен ли пробел?
Наткнулся недавно на картинку, в которой один дизайнер пишет заказчику, что тот неправильно написал «2500». Мол, нужно с пробелом: 2 500.
Я долгое время раскидывался пробелами точно также. На самом деле, автор изображения заблуждается сам и других подталкивает к неверным записям.
Разберемся!
Грамота.ру
Помню времена, когда этот сайт был очень популярен для поиска ответа на подобные вопросы. Вот что пишут:
Если цифр в числе пять и больше, то, как правило, используются пробелы, отделяющие по три цифры справа: 89 645, 4 028 880.
gramota.ru:
+1 в копилку «1000»
Гуглим «1000 или 1 000»
В поиске получим всего один ответ из далекого 2005 года.
Некий корректор утверждает, что наш вопрос — «это правило из числа элементарных для хорошего корректора» и правильно, конечно же, без пробела!
Еще +1 в копилку «1000»
До нашей эры?
Уверен, не нужно гуглить или указывать какие-то авторитетные источники, все и так прекрасно знают, что года пишутся слитно: 2018 год. И они попадают в диапазон нашего ответа. К сожалению, мы не дождемся 10 000 год, чтобы проверить будут ли в нем ставить пробел.
Но! Мы можем посмотреть в обратную сторону: до нашей эры! А там 5 знаков и больше — с пробелами: 10 000 лет до н.э. Значит, и в «нашу» сторону писать будут так же: 1000 год, 2018 год и 10 000 год. Получается, есть правило, согласно которому пишутся года: четыре цифры — без пробела, а вот пять и более — отделяем по три знака. И оно неплохо выступает в роли ответа на наш вопрос!
К слову, есть одноименный фильм: 10 000 лет до н.э.
Я заменил постер на оригинальный, потому что доверия к локализаторам нет никакого, в отличие от сайта! Он как раз-таки доверие вызывает. Не просто так же на всех ресурсах с фильмами дают ссылку на рейтинг Кинопоиска. Поэтому заодно давайте посмотрим, как к пробелам относится и сам Кинопоиск: 1272, 9959, 10 000, 8 809 289 и т. д. А значит…
Снова +1 в копилку «1000»
Давайте продолжим с веб-дизайном. Есть интересное предложение: глянем, ставят ли в тысячах пробелы известные студии? Думаю, это будет более наглядно!
Студия Лебедева
Наверное, самая распиаренная студия, у всех на слуху. Интересно, что они думают по этому поводу. У них есть Магазинус, поэтому найти цены не составило труда:
Да, у вас со зрением все в порядке!
Они сверстали оба варианта в одном экране! Ну, а че? 🙂
Это же «самая-самая» студия, как ни как. Им и такое можно…
В самом же Магазинусе используют вариант «5 и более цифр с пробелом»:
Учитывая фичу в верстке, оба варианта получают по очку:
+1 в копилку «1000» и «1 000»
Оффтоп:
Артемий, блиаха, ну как так? А?!
Бюро Горбунова
Не менее известные ребята, которые проводят курс в том числе и по типографике.
К сожалению, поиск разрядности в их ежедневных советах показал только одну запись от 2012 года:
И в ней нет ответа на наш вопрос 🙁
Поэтому поищем числа у них на сайте.
4900
Как видим, они ставят пробел в случае 5 и более знаков. Поэтому
Еще +1 в копилку «1000»
Итак. Вариант «1000» разгромил своего соперника со счетом 5:1! Поэтому можно смело утверждать, что
Четыре цифры пишутся без пробела: 1000
а пять и более надо разделять: 10 000
Еще по теме «Типографика»
Приветствую вас! Это Юлия. Сегодня речь пойдет о числах в тексте. Они сигнализируют: тут есть точная информация, все конкретно и по делу. Чтобы вас сразу правильно поняли и не “спотыкались” при прочтении, нужно выбрать: писать число цифрами или словами.
Когда ставить сокращение рядом? А пробел? Я собрала все, что может быть полезным на эту тему, чтобы вы с чистой совестью отправили статью в закладки и использовали как памятку. Итак.
Цифра или слово: общее правило
Для упрощения восприятия текста двузначные и многозначные числа пишутся цифрами.
Нежелательно ? | Лучше ✅ |
Купили двадцать бутылок вина | Купили 20 бутылок вина |
Было сто пять попыток бегства | Было 105 попыток бегства |
А числа от одного до девяти пишем словом, если они не в именительном падеже. Тогда мы не проделываем в уме путь “прочитал цифру – не согласовал со словом – перечитал, чтобы поставить в правильный падеж”.
Нежелательно ? | Лучше ✅ |
Не вижу всех 5 берез | Не вижу всех пяти берез |
После 8 попыток | После восьми попыток |
А в именительном падеже можно и так, и так:
Норма ? | Норма ? |
Мои 4 окна | Мои четыре окна |
Ребенку 2 года | Ребенку два года |
В начале предложения, пункта списка пишется слово.
Неправильно ? | Правильно ✅ |
Возмущен. 12 раз звонил, не дозвонился | Возмущен. Звонил 12 раз, не дозвонился |
Нужно предоставить: 1. Ксерокс паспорта. 2. 2 фотографии. |
Нужно предоставить: 1. Ксерокс паспорта. 2. Две фотографии. |
О начале предложения читателю говорит заглавная буква. Одной точки мало, это сбивает.
То же и с пунктами списка, об оформлении которых мы говорили уже довольно давно. Если список нумерованный или каждый пункт начинается заглавной буквой и оканчивается точкой, то начинать подпункты нужно словом.
Начинать предложение цифрой можно в заголовках и подзаголовках. Например, как в нашей статье: 15 слов, во множественном числе которых мы то и дело путаемся.
Если в тексте встречаются подряд два числа, одно из них нужно заменить словом или перестроить предложение.
Нежелательно ? | Лучше ✅ |
Закупили 5 3-литровых бочек | Закупили пять 3-литровых бочек. Закупили 5 трехлитровых бочек. |
В закупке стоит 30 20-тонных грузовиков | В закупке стоит 30 двадцатитонных грузовиков. В закупке стоит 30 грузовиков грузоподъемностью 20 тонн. |
Подробнее о написании однозначных цифр
От общего правила переходим к уточнениям.
Однозначное число стоит рядом с многозначными при перечислении? Пишите цифрой.
Нежелательно ? | Лучше ✅ |
Я готова объяснять три, десять, пятнадцать раз | Я готова объяснять 3, 10, 15 раз |
Книги из двух, трех, 13 томов меня не привлекают. | Книги из 2, 3, 13 томов меня не привлекают. |
Однозначное число обозначает физическую величину, денежную единицу? Пишите цифрой.
Нежелательно ? | Лучше ✅ |
В мешке было пять кг картошки. В мешке было пять килограммов картошки. |
В мешке было 5 кг картошки |
Скидка всего восемь руб. Скидка всего восемь рублей. |
Скидка всего 8 руб. |
Но! Если физическая величина обозначается буквами, а не сокращением, то оставляем словесную форму: два джоуля.
Подробнее о написании многозначных цифр
Числа от 10 почти всегда предпочтительно писать цифрами. Цифровая форма лучше воспринимается и запоминается читателю, она заметнее в тексте.
Когда числа нужно разбивать пробелами
Технические правила набора рекомендуют разбивать пробелами цифры, начиная с 5-значных. Допустимо разбивать и 4-значные математические значения.
Нежелательно ? | Рекомендуется ✅ |
6132 | 6 132 |
35728 | 35 728 |
1120300 | 1 120 300 |
Отбиваем пробелом с конца по три цифры. И читателю уже не нужно проделывать это мысленно. Это правило действует только для цифровых величин.
Не разбиваются пробелами: годы, номера после знака №, номера документов, номера марок машин и т.п.
Рекомендуется ✅ |
Родился в 1974 году. |
В соответствии с ГОСТ 210586 |
Дело № 6666 |
Точка в пробелах между цифрами не ставится:
Неправильно ? | Рекомендуется ✅ |
35. 728 | 35 728 |
Знаки сокращения после цифр
Для обозначения крупных круглых чисел (от 1 000) предпочтительно использовать знаки сокращения.
Нежелательно ? | Рекомендуется ✅ |
12 000 руб. | 12 тыс. руб. |
1 000 000 руб. | 1 млн руб. |
$ 20 000 000 000 | $ 20 млрд. |
Слова, обозначающие сокращения, отбиваются от цифр пробелами.
Обозначения физических величин тоже отбиваются от цифр пробелами.
Неправильно ? | Правильно ✅ |
20кг | 20 кг |
15% | 15 % |
45 ° С | 45 °С |
В перечислениях символы ставятся один раз:
№, § – в начале перечисления: № 3, 5, 10, 23.
%, ° (без Цельсия) – после перечисления: 10, 20, 80 %.
Не ставятся точки после сокращений:
- кг (килограмм);
- г (грамм);
- ц (центнер);
- т (тонна);
- мм (миллиметр);
- см (сантиметр);
- м (метр);
- км (километр);
- га (гектар);
- млн (миллион);
- млрд (миллиард).
После остальных сокращений точка ставится (г. (год), мес., мин., руб., тыс. и т. д.).
Дробные числа: какой ставить падеж
Дробное число управляет существительным при нем. Существительное ставят в родительный падеж единственного числа (вопрос: кого? чего?). Например:
- ⅕ метра;
- 0,3 литра;
- 2,5 тысячи;
- 10,5 миллиона.
Обозначение числовых интервалов
Для обозначения интервала значений можно ставить:
- тире;
- многоточие;
- слова “от” и “до”.
Не рекомендуется ставить тире как знак интервала значения, когда одно значение положительное, а второе – отрицательное, или оба отрицательные.
Нежелательно ? | Рекомендуется ✅ |
Температура –5 – –10 градусов Цельсия. | Температура –5…–10 градусов Цельсия. |
Летом –1 – +3 градусов Цельсия. | Летом от –1 до +3 градусов Цельсия. |
Читайте также: Это вам не просто черточки! Разбираемся в дефисах, тире и минусах.
При обозначении крупных круглых чисел в цифровой форме нули не сокращаются:
Нежелательно ? | Рекомендуется ✅ |
15–20 000 руб. | 15 000–20 000 руб. |
При словесно-цифровой форме рекомендуется сокращения тыс., млн, млрд не повторять.
Нежелательно ? | Рекомендуется ✅ |
2 млн – 5 млн рублей. | 2–5 млн рублей. |
Не забудьте освежить в памяти правила буквенных наращений после цифр.
Надеюсь, статья была полезной. Если что-то осталось незатронутым – давайте разбирать в комментариях!
Числа в тексте: что можно, что нельзя, что нежелательно