Техническое оформление текста
Как правильно сокращать слова?
Какие требования предъявляются к сокращениям?
-
Сокращения должны быть понятны читателю. Большое число необщепринятых сокращений затрудняет чтение текста. При усечении слова оставшаяся часть должна позволять легко и безошибочно восстанавливать полное слово, например: филос., филол., не фил.
-
Нежелательны сокращения, совпадающие по написанию с другими. Такие сокращения допустимы только в том случае, если контекст подсказывает, какое именно слово или словосочетание сокращено.
-
Сокращения должны быть единообразными. Принцип единообразия выдерживается, когда сокращаются (или не сокращаются) все однотипные слова. Форма сокращения при этом должна быть одинаковой.
Где найти правила сокращения слов?
-
Выдержки из «ГОСТ Р 7.0.12-2011 СИБИД. Библиографическая запись. Сокращение слов и словосочетаний». Общие требования и правила (правила сокращения слов и список наиболее употребительных сокращений) в рубрике «Официальные документы» на нашем портале.
-
Правила сокращения слов приводятся в книге А. Э. Мильчина и Л. К. Чельцовой «Справочник издателя и автора» (2-е изд., М., 2003).
Здесь можно найти многие общеупотребительные сокращения:
-
Н. Н. Новичков. Словарь современных русских сокращений и аббревиатур. Париж-Москва, 1995;
-
Русский орфографический словарь / Под ред. В. В. Лопатина, О. Е. Ивановой. 4-е изд., М., 2012;
-
www.sokr.ru — сайт, посвященный сокращениям и аббревиатурам.
Приводим список некоторых общепринятых сокращений:
адм.-терр. административно-территориальный
акад. академик, академия
а. л. и авт. л. авторский лист
а/о акционерное общество, автономный округ, автономная область
б байт
б-ка библиотека
в. век, вв. века
вкз. вокзал
в/о вечернее отделение
вост.-европ. восточноевропейский
г. год; гора
гг. годы; горы
г грамм
г. и г-н господин
гг. и г-да господа
г. и г-жа госпожа
г. и гор. город
гг. города
гос. государственный
гос-во государство
гр. и гр-ка гражданка
гр. и гр-н гражданин
гр-не граждане
деп. департамент; депутат
дисс. диссертация
д. о. и д/о дом отдыха
д/о дневное отделение
дол. долина
долл. доллар
ежедн. ежедневный
ж. и жен. женский
ж. д. и ж/д железная дорога
ж.-д. и ж/д железнодорожный
зап. и з. западный
зап.-европ. западноевропейский
заруб. зарубежный
з. к. и з/к заключенный
з/о заочное отделение
изд-во издательство
ин. и иностр. иностранный
ин-т и инст. институт
и. о. исполняющий обязанности; имя и отчество
и т. д. и так далее
и т. п. и тому подобное, и тому подобные
и т. д. и т. п. и так далее и тому подобное
канд. и к. кандидат
кг килограмм
кг. кегль
м. и муж. мужской
м метр
Мб и Мбайт мегабайт
мб миллибар
мин. министр
мин-во и мин. министерство
мин. и м. минута (Написание этого сокращения с точкой зафиксировано в «Русском орфографическом словаре» РАН; согласно ГОСТу, это сокращение должно быть написано без точки. – Прим. ред.)
мин. и миним. минимальный
мм миллиметр
моск. московский
нед. неделя
п. параграф, пункт
пп. параграфы, пункты
пер. и п. переулок
п/я почтовый ящик
просп., пр. и пр-т проспект
р. и руб. рубль
с. и сек. секунда
с. и стр. страница
см сантиметр
см. смотри
СПб. Санкт-Петербург
т. том, тт. тома
т. и тел. телефон
т. и тов. товарищ
т. и тыс. тысяча
т/к телеканал
ул. улица
Ф. И. О. и ф. и. о. фамилия, имя, отчество
ч. час (Написание этого сокращения с точкой зафиксировано в «Русском орфографическом словаре» РАН; согласно ГОСТу, это сокращение должно быть написано без точки. – Прим. ред.)
Основные общепринятые графические сокращения: как правильно их писать
Список сокращений процитирован по приложению 1 к «Русскому орфографическому словарю» под редакцией В. В. Лопатина, О. Е. Ивановой. Издание 4-е, исправленное и дополненное, М., 2013. Сверен редакторским бюро «По правилам».
А
Б
В
Г
Д
Е
Ж
З
И
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Щ
Э
Ю
Я
А
А ампер
а ар; атто…
абл. аблатив
абс. абсолютный
абх. абхазский
авар. аварский
а · в ампер-виток
авг. август, августовский
а-во агентство
австр. австрийский
австрал. австралийский
авт. автономный
авт. л. и а. л. авторский лист
агр. агроном, агрономический; аграрный
адж. аджарский
адм. адмирал; административный
адм.-терр. административно-территориальный
адыг. адыгейский, адыгский
а. е. астрономическая единица
а. е. д. астрономическая единица длины
а. е. м. атомная единица массы
азерб. азербайджанский
азиат. азиатский
акад. академик, академия
акк. аккузатив
акц. акционерный
а/л атомный ледокол
а. л. и авт. л. авторский лист
алб. албанский
алг. алгебра
алг. и алгебр. алгебраический
алж. алжирский
алт. алтайский
алф. алфавитный
альм. альманах
альп. альпийский
ам аттометр
а/м автомашина
амер. американский
анат. анатомический
англ. английский
ангол. ангольский
аннот. аннотация, аннотированный
антич. античный
а/о акционерное общество; автономный округ, автономная область
ап. апостол; апп. апостолы
а/п аэропорт
апр. апрель, апрельский
ар. и араб. арабский
арам. арамейский
аргент. аргентинский
арифм. арифметика, арифметический
арм. армянский
арт. артиллерия, артиллерийский; артист
арх. архив, архивный
арх. и археол. археология, археологический
арх. и архип. архипелаг
арх. и архит. архитектор, архитектурный
архиеп архиепископ
архим. архимандрит
а/с административная служба
асб апостильб
а · сек ампер-секунда
асс. ассистент
ассир. ассирийский
астр. астрономический
ат атмосфера техническая
ат. атомный
а/т автотранспорт
ата атмосфера абсолютная
ати атмосфера избыточная
атм атмосфера физическая
атм. атмосферный
ат. м. атомная масса
афг. афганский
афр. африканский
ацет. ч. ацетильное число
а · ч ампер-час
а/я абонентный ящик
Б
Б бел
Б. Большой
б байт
б. и бал. балка
б. и больн. больной
б. и бух. бухта
б. и быв. бывший
бал. балет
бал. и б. балка
балк. балкарский
балт. балтийский
бар. барак
барр. баррель
басс. бассейн
бат-н и б-н батальон
башк. башкирский
б. г. без указания года
безв. безводный
безл. безличный
белорус. и блр. белорусский
бельг. бельгийский
бер. берег
бесср. бессребреник; бессрр. бессребреники
бзн бензин
б. и. без указания издательства
библ. библейский; библиографический, библиография; библиотечный
б. или м. более или менее
биогр. биографический
биол. биологический
бирм. бирманский
бит/с. бит в секунду
Бк беккерель
б-ка библиотека
Бл. В. и Бл. Восток Ближний Восток
блгв. благоверный; блгвв. благоверные
блж. блаженный
блр. и белорус. белорусский
б. м. без указания места
б. м. и г. без указания места и года
б-н и бат-н батальон
бол. болото
болг. болгарский
болив. боливийский
больн. и б. больной
больн. и б-ца больница
бот. ботаника, ботанический
б/п без переплета; беспартийный
бр. братья (при фамилии); брутто
браз. бразильский
брет. бретонский
брит. британский
б/у бывший в употреблении
буд. будущее время
букв. буквально, буквальный
бул. бульвар
бум. бумажный
бум. л. бумажный лист
бурж. буржуазный
бурят. бурятский
бут. бутылка
бух. и б. бухта
б. ц. без указания цены
б-ца и больн. больница
б. ч. большая часть, большей частью
б-чка библиотечка
быв. и б. бывший
бюдж. бюджетный
бюлл. бюллетень
В
В вольт
В. Верхний
В. и в. восток
в. верста; вид (глагола)
в. век; вв. века
в. (В.) и вел. (Вел.) великий (Великий)
в. и веч. вечер
В., в., вин. винительный падеж
в. и вост. восточный
в. и вып. выпуск
В · А вольт-ампер
вал. валентность
Вб вебер
Вб · м вебер-метр
вв. века; в. век
в-во вещество
в. д. восточная долгота
вдп. водопад
вдхр. водохранилище
вед. ведомственный; ведущий
вел. (Вел.) и в. (В.) великий (Великий)
венг. венгерский
венесуэл. венесуэльский
верх. верхний
вес. ч. и в. ч. весовая часть
вет. ветеринарный
веч. вечерний; вечерня
веч. и в. вечер
визант. византийский
вин., В., в. винительный падеж
вкз. вокзал
вкл. вкладка; вклейка; включение
вкл. и включ. включая, включительно
вкл. л. вкладной лист
включ. и вкл. включая, включительно
в. к. т. верхняя критическая температура
вл. владение (здание)
влк. вулкан
в.-луж. верхнелужицкий
вм. вместо
вмц. великомученица; вмцц. великомученицы
вмч. великомученик; вмчч. великомученики
внеш. внешний
в. н. с. ведущий научный сотрудник
внутр. внутренний
в/о вечернее отделение
вод. ст. водяной столб
воен. военный
возв. возвышенность
возд. воздушный
вок. вокальный
вол. волость
воскр. и вс. воскресенье
в осн. в основном
вост. и в. восточный
вост.-европ. восточноевропейский
восх. восход
вп. впадина
в/п в переплете
вр. врач; время
В · с вольт-секунда
в/с высший сорт
вс. и воскр. воскресенье
в ср. в среднем
вступ. вступительный
Вт ватт
вт. вторник
Вт · с ватт-секунда
Вт · ч ватт-час
в т. ч. в том числе
в. ч. и вес. ч. весовая часть
в. ч. и в/ч войсковая часть
выкл. выключение
вып. и в. выпуск
вып. дан. выпускные данные
выс. выселки; высота
вых. дан. выходные данные
вьетн. вьетнамский
Г
Г грамм-сила; генри
г грамм
г. год; гора; гг. годы; горы
г. и г-жа госпожа
г. и г-н господин; гг. и г-да господа
г. и гор. город; гг. города
га гектар
гав. гавань
газ. газета, газетный; газовый
гал. галантерейный
гар. гараж
Гб гильберт
Гб и Гбайт гигабайт
Гбайт/с. гигабайт в секунду
Гбит гигабит
Гбит/с. гигабит в секунду
ГВ гировертикаль; горизонт воды
гв. гвардия, гвардейский
гватем. гватемальский
гвин. гвинейский
гВт гектоватт
гВт · ч гектоватт-час
гг гектограмм
гг. годы; горы; г. год; гора
гг. города; г. и гор. город
гг. и г-да господа; г. и г-н господин
ГГц генри-герц
г-да и гг. господа; г. и г-н господин
ген. генерал; генеральный; генитив
ген. л. и ген.-лейт. генерал-лейтенант
ген. м. генерал-майор
ген. п. и ген.-полк. генерал-полковник
геогр. география, географический
геод. геодезия, геодезический
геол. геология, геологический
геом. геометрия, геометрический
герм. германский
г-жа и г. госпожа
г · К грамм-кельвин
гл гектолитр
гл. глава; главный; глагол; глубина
гл. обр. главным образом
гм гектометр
г · моль грамм-моль
г-н и г. господин; гг. и г-да господа
г. н. с. главный научный сотрудник
г/о городское отделение
год. годовой, годичный
голл. голландский
гор. городской; горячий
гор. и г. город; гг. города
гос. государственный
гос-во государство
госп. и гсп. госпиталь
ГПа генри-паскаль
гпз гектопьеза
г. прох. горный проход
г · Р грамм-рентген
гр. граф; графа; группа
г-р генератор
гр. и град. градус
гр. и греч. греческий
гр. и гр-ка гражданка
гр. и гр-н гражданин; гр-не граждане
грав. гравюра
град. и гр. градус
гражд. гражданский
грамм. граммофонный; грамматика, грамматический
греч. и гр. греческий
гр-ка и гр. гражданка
гр-н и гр. гражданин; гр-не граждане
гр-не граждане; гр. и гр-н гражданин
груз. грузинский
Гс гаусс
гс грамм-сила
г · см грамм-сантиметр
гс · см грамм-сила-сантиметр
гсп. и госп. госпиталь
Гс · Э гаусс-эрстед
губ. губерния, губернский
г/х газоход
Гц герц
г-ца гостиница
ГэВ гигаэлектронвольт
г · экв грамм-эквивалент
Д
д деци…
Д., д., дат. дательный падеж
Д и дптр диоптрия
д. действие (при цифре); день; долгота; доля; дом
д. и дер. деревня
д и дм дюйм
даг. дагестанский
дат. датский
дат., Д., д. дательный падеж
дБ децибел
д. б. н. доктор биологических наук
Д. В. и Д. Восток Дальний Восток
дв. ч. двойственное число
дг дециграмм
д. г.-м. н. доктор геолого-минералогических наук
д. г. н. доктор географических наук
деепр. деепричастие
деж. дежурный
действ. действительный
дек. декабрь, декабрьский; декада
ден. денежный
деп. департамент; депутат
дер. и д. деревня
дес. десант; десятина; десяток; десятичный
дес. л. десертная ложка
дет. деталь
Дж джоуль
Дж · с джоуль-секунда
д-з диагноз
диак. диакон
диал. диалектный
диам. диаметр
див. дивизия
див-н и дн дивизион
диз. дизель
дин и дн дина
д. и. н. доктор исторических наук
дин · см дин-сантиметр
дир. и д-р директор; дирижер
д. иск. доктор искусствоведения
дисс. диссертация
дист. дистанция; дистиллированный
дифф. дифференциал, дифференциальный
Д/к Дворец культуры, Дом культуры
дкг декаграмм
дкл декалитр
дкм декаметр
дл децилитр
дл. длина
дм дециметр
дм и д дюйм
д. м. н. доктор медицинских наук
дн и див-н дивизион
дн и дин дина
д. н. доктор наук
д. о. и д/о дом отдыха
д/о дневное отделение
доб. добавление, добавочный
добр. добровольный
док. документальный
док. и док-т документ
докт. и д-р доктор
дол. долина
долл. доллар
доп. дополнение, дополненный, дополнительный; допустимый
доц. доцент
д. п. дачный поселок
дптр и Д диоптрия
др. древний; другой; дробь
д-р дебаркадер
д-р и дир. директор; дирижер
д-р и докт. доктор
драм. драматический
др.-англ. древнеанглийский
др.-в.-н. и др.-в.-нем. древневерхненемецкий
др.-герм. древнегерманский
др.-гр. и др.-греч. древнегреческий
др.-евр. древнееврейский
др.-инд. древнеиндийский
др.-н.-нем. древненижненемецкий
др.-рус. древнерусский
д/с детский сад
д. т. н. доктор технических наук
дубл. дубликат, дублированный
д/ф документальный фильм
д. ф.-м. н. доктор физико-математических наук
д. ф. н. доктор филологических наук, доктор философских наук
д. х. н. доктор химических наук
д. ч. действительный член
д/э и д/эх дизель-электроход
д/я детские ясли; для ясности
Е
евр. еврейский
евр. и европ. европейский
егип. египетский
ед. единица
ед. и ед. ч. единственное число
ед. изм. и ед. измер. единица измерения
ед. хр. единица хранения
ед. ч. и ед. единственное число
ежедн. ежедневный
ежемес. ежемесячный
еженед. еженедельный
Е. И. В. Его (Ее) Императорское Величество (в старых текстах)
емк. емкость
еп. епископ; епп. епископы
ефр. ефрейтор
Ж
ж. жидкость, жидкий
ж. и жен. женский
ж. и жит. жители
ж. д. и ж/д железная дорога
ж.-д. и ж/д железнодорожный
жен. и ж. женский
жит. и ж. жители
журн. журнал
З
З. и з. запад
з. и зап. западный
з. и зол. золотник
з. а. и засл. арт. заслуженный артист
зав. заведующий
загл. заглавие
заимств. заимствованный
зак. заказ
зал. залив
зам. заместитель
зап. записки
зап. и з. западный
зап.-европ. западноевропейский
заруб. зарубежный
засл. заслуженный
засл. арт. и з. а. заслуженный артист
заст. застава
зат. затон
зах. заход
зач. зачет, зачтено (оценка)
зв. звезда, звездный; звонок
зв. и зват. звательный падеж, звательная форма
з-д завод
з. д. западная долгота
з. д. и. заслуженный деятель искусств
з. д. н. заслуженный деятель науки
зем. земельный
зен. зенитный
з. к. и з/к заключенный (первоначально: заключенный каналоармеец)
з. м. с. заслуженный мастер спорта
зн. знак
зн. и знач. значение
з/о заочное отделение
зол. золото, золотой
зол. и з. золотник
з/п здравпункт
зпт запятая (в телеграммах)
И
и инерта
И., и., им. именительный падеж
игум. игумен
и др. и другие
и.-е. индоевропейский
иером. иеромонах
изб. избыточный
избр. избранное, избранные
Изв. Известия
изв. известен
изд. издание, издатель, изданный, издавать(ся)
изд-во издательство
изм. изменение, измененный
изр. израильский
икс-ед. икс-единица
илл. иллюстрация, иллюстратор
и. л. с. индикаторная лошадиная сила
им. имени
им., И., и. именительный падеж
имп. император, императрица, императорский; импульс, импульсный
ин. и иностр. иностранный
инв. инвентарный
ингуш. ингушский
инд. индийский
индонез. индонезийский
инж. инженер, инженерный
иностр. и ин. иностранный
инст. и ин-т институт
инстр. инструмент, инструментальный
инсц. инсценировка
инт. интеграл, интегральный; интендант, интендантский
ин-т и инст. институт
инф. инфекционный; инфинитив
ин. ч. иностранный член
и. о. исполняющий обязанности; имя и отчество
и пр., и проч. и прочие, и прочее
ирак. иракский
иран. иранский
ирл. ирландский
ирон. иронический
иск-во искусство
исл. исландский
исп. испанский; исповедник
испр. исправление, исправленный
иссл. исследование, исследовал
ист. источник
ист. и истор. исторический
исх. исходный
ит. и итал. итальянский
и т. д. и так далее
и т. д. и т. п. и так далее и тому подобное
и т. п. и тому подобное, и тому подобные
К
к кило…
К кельвин; кулон
к. колодец; кишлак
к. и канд. кандидат
к. и комн. комната
к. и коп. копейка
к. и корп. корпус
к. и к-та кислота
каб. и кабард. кабардинский
каб.-балк. кабардино-балкарский
кав. кавалерия, кавалерийский
кавк. кавказский
каз. казарма; казахский; казачий
кал калория
калм. калмыцкий
кан. канал
кан. и канад. канадский
канд. и к. кандидат
кап. капитан
кар карат
кар. и карел. карельский
каракалп. каракалпакский
карел. и кар. карельский
кат. катализатор, каталитический
кат. и катол. католический
кб кабельтов
Кб и Кбайт килобайт
Кбайт/с. килобайт в секунду
Кбар килобар
Кбит килобит
Кбит/с. килобит в секунду
кб. и куб. кубический
к. б. н. кандидат биологических наук
Кбод килобод
кВ киловольт
кв. квадрат, квадратный; квартал; квартира
кВА киловольт-ампер
кВт киловатт
кВт · ч киловатт-час
кг килограмм
кг. кегль
кг · К килограмм-кельвин
кг · м килограмм-метр
к. г.-м. н. кандидат геолого-минералогических наук
кг · моль килограмм-моль
кг · м/с килограмм-метр в секунду
к. г. н. кандидат географических наук
кгс килограмм-сила
кгс · м килограмм-сила-метр
кгс · с килограмм-сила-секунда
кГц килогерц
кд кандела
кДж килоджоуль
кд/лк кандела на люкс
кд · с кандела-секунда
к.-ж. и к/ж киножурнал
к-з и клх колхоз
Ки кюри
к. и. н. кандидат исторических наук
кирг. киргизский
к. иск. кандидат искусствоведения
кит. китайский
ккал килокалория
Кл кулон
кл килолитр
кл. класс; ключ
к.-л. какой-либо
клк килолюкс
клк · с килолюкс-секунда
Кл · м кулон-метр
клм килолюмен
клм · ч килолюмен-час
клх и к-з колхоз
км километр
к/м короткометражный
к. м. н. кандидат медицинских наук
кмоль киломоль
км/с километр в секунду
км/ч километр в час
кН килоньютон
кн. книга; князь
к. н. кандидат наук
к.-н. какой-нибудь
кн-во княжество
книжн. книжное
кол колебание
кол-во количество
колич. количественный
колон. колониальный
кОм килоом
ком. и к-р командир
комм. коммутатор
комн. и к. комната
комп. композитор, композиция
кон. конец (при дате)
конгр. конгресс
конф. конференция
конц. концентрированный
кооп. кооператив, кооперативный
коп. и к. копейка
кор. корейский
кор-во королевство
корп. и к. корпус
корр. корреспондент, корреспондентский
корр/сч и к/сч корреспондентский счет
котл. котловина
коэфф. коэффициент
кПа килопаскаль
кр. край; критический; краткий; крупный
к-р и ком. командир
к-ра контора
креп. крепость
крест. крестьянский
крест-во крестьянство
крист. кристаллический
кр. ф. краткая форма
к-рый который
к/ст киностудия
к/сч и корр/сч корреспондентский счет
кт килотонна
к. т. комнатная температура, критическая температура
к-т комбинат; комитет; концерт
к/т кинотеатр
к-та и к. кислота; к-ты кислоты
к. т. н. кандидат технических наук
куб. и кб. кубический
культ. культура
кур. курорт
кург. курган(ы)
курс. курсив
к/ф кинофильм
к. ф.-м. н. кандидат физико-математических наук
к. ф. н. кандидат филологических наук, кандидат философских наук
к. х. н. кандидат химических наук
к-ция концентрация
кэВ килоэлектронвольт
Л
л литр
л. лицо
л. лист; лл. листы
лаб. лаборатория, лабораторный
лаг. лагуна; лагерь
лат. латинский
лат., лтш. и латыш. латышский
лат.-амер. латиноамериканский
латв. латвийский
л · атм. литр-атмосфера
латыш., лат. и лтш. латышский
Лб ламберт
л.-гв. лейб-гвардия
л. д. лист(ы) дела
лев. левый
ледн. ледник(и)
лейт. и л-т лейтенант
лек. лекарственный
ленингр. ленинградский
леч. лечебный
либер. либерийский
либр. либретто
лингв. лингвистический
лит. литературный; литовский; литургия
лит-ведение литературоведение
лит-ра литература
лк люкс
л/к ледокол
лк · с люкс-секунда
лл. листы; л. лист
лм люмен
лм · с люмен-секунда
лм · ч люмен-час
лок. локатив
л. р. левая рука
л. с. лошадиная сила
л/с личный состав
л. с. ч. лошадиная сила — час
л-т и лейт. лейтенант
Лтд. (англ. Limited) общество с ограниченной ответственностью
лтш., лат. и латыш. латышский
луж. лужицкий
М
м метр
м милли…
М. Малый; Москва
м. местечко; метро; море; мост; мыс
м. и м-б масштаб
м. и мин. минута
м. и муж. мужской
м. и м-р майор
мА миллиампер
маг. магазин; магистр
магн. магнитный
макед. македонский
макс. и максим. максимальный
маньч. маньчжурский
мар. марийский
марок. марокканский
мат. и матем. математика, математический
мат. и матер. материальный
маш. машинный, машиностроительный
мб миллибар
Мб и Мбайт мегабайт
м-б и м. масштаб
м. б. может быть
м/б мясной бульон
Мбайт/с. мегабайт в секунду
Мбар мегабар
Мбит мегабит
Мбит/с. мегабит в секунду
Мбод мегабод
МВ милливольт
м. в. молекулярный вес
м-во и мин-во министерство
МВт мегаватт
мВт милливатт
МВт · ч мегаватт-час
мг миллиграмм
Мг мегаграмм
мГ метр-генри; миллигенри
м. г. милостивый государь; мм. гг. милостивые государи (в старых текстах)
мгс миллиграмм-сила
МГц мегагерц
МДж мегаджоуль
Мдс магнитодвижущая сила
МE международная единица
МE и ме массовая единица
мед. медицинский
мед. ч. медное число; медицинская часть
межд. и междом. междометие
междунар. международный
мекс. мексиканский
мес. и м-ц месяц
мест. и местоим. местоимение
мет. металл, металлический
мех. механический
мин. министр
мин. и м. минута
мин. и миним. минимальный
мин-во и мин. министерство
минер. минеральный
миним. и мин. минимальный
мир. мировой
митр. митрополит
миф. и мифол. мифология, мифологический
м · К метр-кельвин
мк микрон
мкА микроампер
Мкал мегакалория
мкВ микровольт
мкВт микроватт
мкГ микрогенри
мкг микрограмм
мккюри микрокюри
мкл микролитр
мкм микрометр
мкмк микромикрон
мкОм микроом
мкОм · м микроом-метр
мкПа микропаскаль
мкР микрорентген
мкр-н микрорайон
Мкс максвелл
мкс микросекунда
мкФ микрофарад
мкюри милликюри
мл миллилитр
мл. младший
млб миллиламберт
Млк мегалюкс
Млк · с мегалюкс-секунда
млн миллион
млрд миллиард
м-ль мадемуазель
Мм мегаметр
мм миллиметр
м-м мадам
мм вод. ст. миллиметр водяного столба
мм. гг. милостивые государи; м. г. милостивый государь (в старых текстах)
м. миля морская миля
ммк миллимикрон
м · мм метр-миллиметр
мм рт. ст. миллиметр ртутного столба
м. н. с. младший научный сотрудник
мн. много, многие
мн. и мн. ч. множественное число
мН миллиньютон
мн-к многоугольник
многокр. многократный глагол
моб. мобилизационный
мокт миллиоктава
мол. молекулярный
мол. в. молекулярный вес
молд. молдавский
мол. м. молекулярная масса
моль · К моль-кельвин
Мом мегаом
мон. монастырь
монг. монгольский
мор. морской
морд. мордовский
моск. московский
м. п. место печати
МПа мегапаскаль
мПа миллипаскаль
м · Па метр-паскаль
Мпк мегапиксел
мпз миллипьеза
мР миллирентген
м. р. малорастворимый
м-р мистер
м-р и м. майор
м · рад метр-радиан
мрг мириаграмм
мрм мириаметр
м. с. мастер спорта
мс и мсек миллисекунда
м/с медицинская сестра, медицинская служба; метр в секунду
м-с миссис
мсб миллистильб
мсек и мс миллисекунда
м. сп. метиловый спирт
м · ср метр-стерадиан
мТВ морской тропический воздух
муж. и м. мужской
муз. музей; музыка, музыкальный
муниц. муниципальный
мусульм. мусульманский
мф миллифот; микрофильм
м/ф мультфильм
мц. мученица; мцц. мученицы
м-ц и мес. месяц
мч. мученик; мчч. мученики
МэВ мегаэлектронвольт
Н
н нано…
Н ньютон
Н. Нижний, Новый
н. а. и нар. арт. народный артист
наб. набережная
наг. нагорье
наз. называемый
назв. название
наиб. наибольший, наиболее
наим. наименьший, наименее; наименование
накл. накладная; наклонение
напр. например
нар. народный
нар. арт. и н. а. народный артист
нас. население
наст. настоящий; настоящее время
науч. научный
нац. национальный
нач. начало, начато (при дате); начальник; начальный
нб и н/б не был (в списках)
н. в. э. нормальный водородный эквивалент
н/Д (Ростов) на-Дону
негр. негритянский
нед. неделя
неизв. неизвестный
неизм. неизменяемое (слово)
нек-рый некоторый
нем. немецкий
неодуш. неодушевленный
неопр. неопределенная форма
непал. непальский
неперех. непереходный (глагол)
нер-во неравенство
неск. несколько
нескл. несклоняемое (слово)
несов. несовершенный вид
не сохр. не сохранился
неуд. неудовлетворительно (оценка)
нидерл. нидерландский
ниж. нижний
низм. низменность
н.-и. научно-исследовательский
н. к. т. нижняя критическая температура
н. к. э. нормальный каломельный электрод
н.-луж. нижнелужицкий
Н · м ньютон-метр
нм нанометр
н. о. национальный округ
н/о и н/об на обороте
нов. новый
новогреч. новогреческий
новозел. новозеландский
норв. норвежский
норм. нормальный
нояб. ноябрь, ноябрьский
Нп непер
Н · с ньютон-секунда
нс наносекунда
н. с. научный сотрудник
н. с. и н. ст. новый стиль
н/с несоленый
н. с. г. нижняя строительная горизонталь
нт нит
н.-т. научно-технический
н. э. наша (новая) эра
NB нотабене
О
о. отец (церк.)
о. и о-в остров; о-ва острова
о. и оз. озеро
об. оборот
об. в. объемный вес
об-во и о-во общество
обл. область, областной; обложка
обл. ц. областной центр
об/мин оборот в минуту
обр. образца; обработка
обстоят. обстоятельство
о-в и о. остров; о-ва острова
о-во и об-во общество
овр. овраг
огл. оглавление
одновр. одновременный
одноим. одноименный
однокр. однократный глагол
одуш. одушевленный
оз. и о. озеро
ок. около; океан
оконч. окончено (при дате)
окр. округ, окружной
окр. ц. окружной центр
окт октава
окт. октябрь, октябрьский
о/м и о. м. отделение милиции
Ом · м ом-метр
оп. опись; опера; опус
оп-та оперетта
оптим. оптимальный
опубл. опубликован
ор. орудие
орг. организационный; органический
орг-ция организация
ориг. оригинал, оригинальный
орк. оркестр
осет. осетинский
осн. основанный; основа, основной
отв. и ответ. ответственный
отд. отдел; отделение; отдельный
отеч. отечественный
отл. отлично (оценка)
отм. отметка
отр. отряд
отт. оттиск
офиц. официальный
офс. офсетный
оч. очень
П
П. пуаз
п. пешка; пико…; полк; пуд
п. параграф; пункт; пп. параграфы; пункты
п. и пад. падеж
п. и пер. переулок
п и пз пьеза
п. и пос. поселок
П., п., предл. предложный падеж
Па паскаль
п. а. почтовый адрес
пад. и п. падеж
пакист. пакистанский
пал. палата
пам. памятник
парагв. парагвайский
парт. партийный
партиз. партизанский
Па · с паскаль-секунда
пас. пасека
пасс. пассажирский
пат. патент
пат. и патол. патологический
патр. патриарх
Пбайт петабайт
пгт и п. г. т. поселок городского типа
пед. педагогический
пенджаб. пенджабский
пер. перевал; перевел, перевод, переводчик; перевоз; переплет; период
пер. и п. переулок
первонач. первоначальный
переим. переименован
перем. переменный
перен. переносное (значение)
перех. переходный (глагол)
пер. зв. переменная звезда
перс. персидский
пес. песок, песчаный
петерб. петербургский
петрогр. петроградский
пех. пехотный
печ. л. и п. л. печатный лист
пещ. пещера
п/ж полужирный (шрифт)
п/з пограничная застава
пз и п пьеза
пищ. пищевой
пк пиксел
пк и пс парсек
п. л. и печ. л. печатный лист
пл. платформа (ж.-д.); площадь
плат. платиновый
плем. племенной
плод. плодовый
плоск. плоскогорье
плотн. плотность
пн. понедельник
п/о почтовое отделение; производственное объединение
п/о и п/отд подотдел
пов. повелительное наклонение; повесть
п-ов полуостров
пог. м погонный метр
погов. поговорка
под. подобный; подъезд
подп. подполковник
пол. половина
полигр. полиграфия, полиграфический
полинез. полинезийский
полит. политика, политический
полк. полковник
полн. полный
пол. ст. полевой стан
польск. польский
пом. помещение; помощник
попер. поперечный
пор. порог, пороги; порошок (лекарство)
португ. португальский
пос. и п. поселок
посв. посвященный, посвящается
посл. пословица
посм. посмертно
пост. постановление; постановка, постановщик; постоянный
п/отд и п/о подотдел
поч. чл. почетный член
пп. параграфы; пункты; п. параграф; пункт
п/п подлинник подписан; полевая почта; по порядку; почтовый перевод; полупроводниковый
пр. премия; проезд; пруд
п. р. правая рука
п/р под руководством
пр. и прав. правый
пр. и прол. пролив
пр., просп. и пр-т проспект
прав. праведный
прав. и пр. правый
правосл. православный
пр-во правительство
пред. и предс. председатель
предисл. предисловие
предл., П., п. предложный падеж
предс. и пред. председатель
предст. представитель
преим. и преимущ. преимущественно
преп. преподаватель
преп. и прп. преподобный; прпп. преподобные
пресв. пресвитер
прибл. приблизительно
прил. прилагательное
прил. и прилож. приложение
прим. и примеч. примечание
прист. приставка; пристань
прич. причастие
прмц. преподобномученица; прмцц. преподобномученицы
прмч. преподобномученик; прмчч. преподобномученики
пров. провинция
прованс. провансальский
прогр. программный
прод. продовольственный; продольный
прож. проживающий (где)
произв. произведение
произв-во производство
происх. происхождение, происходит
прол. и пр. пролив
пром. промышленный
пром-сть промышленность
прор. пророк
просп., пр. и пр-т проспект
прост. просторечный
прот. протоиерей; протока
прот. и протопресв. протопресвитер
противоп. противоположный
проф. профессиональный; профессор; профсоюзный
проч. и пр. прочий
прош. прошедшее время
прп. и преп. преподобный; прпп. преподобные
пр-тие предприятие
пр-т, пр., просп. проспект
прям. прямой (шрифт)
пс и пк парсек
пс. и псевд. псевдоним
п/с паспортный стол
психол. психологический
пт. пятница
п-т пансионат
п/у под управлением
публ. публикация, публичный
пФ пикофарад
п/х пароход
п. ч. потому что
п/ш полушерстяной
п/я почтовый ящик
P. S. постскриптум
Р
Р рентген
р. род (грамматический); рота
р. и род. родился
р. река; р. реки
Р., р., род. родительный падеж
р. и руб. рубль
равн. равнина
равноап. равноапостольный; равноапп. равноапостольные
рад радиан
рад/с радиан в секунду
раз. разъезд (ж.-д.)
разв. разведка; развалины
разг. разговорный
разд. раздел
разл. различный
разр. разряд
распр. и распростр. распространен
раст. растительный
рац. рационализаторский
р-во равенство
рд резерфорд
рев. и револ. революционный
рег. регистр, регистровый
рег. т регистровая тонна
ред. редактор, редакция, редакционный
реж. режиссер
рез. резюме
религ. религиозный
реликт. реликтовый
рем. ремонтный
респ. республика, республиканский
реф. реферат
рец. рецензия
рим. римский
рис. рисунок
рлк радлюкс
р/л русский и латинский (шрифт)
р-н район
р-ние растение
р/о районное отделение
род. родник
род. и р. родился
род., Р., р. родительный падеж
рожд. рожденная (урожденная); рождение
ром. роман; романский
росс. российский
рр. реки; р. река
р-р раствор; р-ры растворы
р/с радиостанция
р/с и р/сч расчетный счет
рт. ст. ртутный столб
руб. и р. рубль
руд. рудник
руж. ружейный
рук. рукав; руководитель, руководство
рукоп. рукопись, рукописный
рум. румынский
рус. русский
руч. ручей
рф радфот
Р. Х. Рождество Христово
р. ц. районный центр
р-ция реакция
С
с санти…
С. и с. север
с. сажень; село; сорт; сын
с. и сев. северный
с и сек. секунда
с. и ср. средний род
с. и стр. страница
сад-во садоводство
сальвад. сальвадорский
сан. санаторий; санитарный
санскр. санскритский
сауд. саудовский
сб стильб
сб. суббота
сб. сборник; сб-ки сборники
с/б с барьерами (бег)
св свеча
св. свыше
св. святой; свв. святые
св-во свойство
св. год световой год
С.-В. и с.-в. северо-восток
с.-в., с.-вост., сев.-вост. северо-восточный
своб. свободный
свт. святитель; свтт. святители
свх. совхоз
свящ. священник
сг сантиграмм
с. г. сего года
с/д сеанс для детей
с.-д. социал-демократ, социал-демократический
сев. и с. северный
сев.-вост., с.-в., с.-вост. северо-восточный
сев.-зап., с.-з., с.-зап. северо-западный
сек. и с секунда
секр. секретарь; секретно
сект. сектантский
сел. селение, сельский
сем. семейство
сент. сентябрь, сентябрьский
сер. серебро, серебряный; середина; серия
серб. сербский
серж. сержант, сержантский
сеч. сечение
С.-З. и с.-з. северо-запад
с.-з., с.-зап., сев.-зап. северо-западный
сиб. сибирский
симм. симметричный
симф. симфония, симфонический
синд. синдикат
синт. синтетический
сист. система
сир. сирийский
ск. скала, скалы; скорость
сказ. сказуемое
сканд. скандинавский
скв. скважина
скл. склад, склады; склонение
сконч. скончался
скр. скрипка, скрипичный
сл сантилитр
сл. слабо; слово, слова
слав. славянский
след. следующий; следовательно
словац. словацкий
словен. словенский
СМ счетная машина
См сименс
см сантиметр
см. смотри
с. м. сего месяца
см · К сантиметр-кельвин
сн стен
соб. корр. собственный корреспондент
собр. собрание
собр. соч. и с/с собрание сочинений
собств. собственно, собственный
сов. совершенный вид; советский
совм. совместно, совместный
совр. современный
сов. секр. совершенно секретно
согл. соглашение; согласен
соед. соединение
сокр. сокращение, сокращенный
соотв. соответственно, соответствующий
соп. сопка
сопр. сопровождение
сост. составитель, составленный
сотр. сотрудник
соц. социалистический; социальный
соч. сочинение, сочинения
СП сантипауза
сп. спирт
СПб. Санкт-Петербург
спец. специальный
спорт. спортивный
спр. спряжение
с/пр с препятствиями (бег)
ср стерадиан
ср. сравни; среда; средний
с.-р. социалист-революционер, эсер
ср. и с. средний род
ср.-азиат. среднеазиатский
Ср. В. и Ср. Восток Средний Восток
ср.-век. средневековый
ср-во средство
ср. вр. среднее время
ср.-год. среднегодовой
средиз. средиземноморский
ср.-стат. среднестатистический
сс. и стр. страницы
с/с и собр. соч. собрание сочинений
Ст стокс
Ст. Старый
ст. стакан; станция; старший; старшина; старый; статья; степень; столетие; ступень
ст. и стб. столбец
стад. стадион
стан. становище
стат. статистика, статистический
стб. и ст. столбец
стих. стихотворение
стихотв. стихотворный
ст. л. и стол. л. столовая ложка
ст. н. с. старший научный сотрудник
стр. строка; строение; строящийся
стр. и с. страница
страд. страдательный
стр-во строительство
ст. с. и ст. ст. старый стиль
ст.-сл. и ст.-слав. старославянский
ст.-фр. старофранцузский
ст-ца станица
сут. сутки
суфф. суффикс
сущ. существительное
сх. схема
с. х. сельское хозяйство
с.-х. сербско-хорватский
с.-х. и с/х сельскохозяйственный
сч. счет
с. ч. сего числа
с/ч санитарная часть, строевая часть
с. ш. северная широта
сщмч. священномученик; сщмчч. священномученики
Т
Т тесла
Т., т., тв. и твор. творительный падеж
т тонна
т. том; тт. тома
т. и тел. телефон
т. и тир. тираж
т. и тов. товарищ; тт. товарищи
т. и тчк точка (в телеграммах)
т. и тыс. тысяча
таб. табачный
табл. таблица, табличный; таблетка
тадж. таджикский
тамил. тамильский
танц. танцевальный
тар. тариф
тат. татарский
Тбайт терабайт
Тбайт/с. терабайт в секунду
тб/х турбоход
тв. твердость, твердый
тв., твор., Т., т. творительный падеж
т-во товарищество
т. г. текущего года
т. е. то есть
театр. театральный
текст. текстильный
тел. и т. телефон
телегр. телеграфный
телеф. телефонный
т. е. м. и ТЕМ техническая единица массы
теор. теоретический
терр. террикон; территория, территориальный
тетр. тетрадь
техн. технический, техник; техникум
теч. течение
тж. также; то же
т. ж. тысяч жителей
т. зр. точка зрения
тибет. тибетский
тип. типография, типографский
тир. и т. тираж
тит. л. титульный лист
т. к. так как
т/к телеканал
т. кип. температура кипения, точка кипения
ткм тонна-километр
тлгр. телеграф
т. н., т. наз. и так наз. так называемый
т. о. и т. обр. таким образом
т/о телевизионное объединение; телеграфное отделение
тов. и т. товарищ; тт. товарищи
толщ. толщина
торг. торговый
т. пл. температура плавления
тр. труды
т-р театр
т-ра температура
трансп. транспортный
триг. тригонометрия, тригонометрический
трил. трилогия
тр-к треугольник
трлн триллион
тс тонна-сила
тс · м тонна-сила-метр
т/сч и т/счет текущий счет
тт. товарищи; т. и тов. товарищ
тт. тома; т. том
тув. тувинский
тум. туманность
тунн. туннель
туп. тупик
тур. турецкий
туркм. туркменский
т/ф телефильм
т/х теплоход
т. ч. тысяча человек
тчк и т. точка (в телеграммах)
тыс. тысячелетие
тыс. и т. тысяча
тюрк. тюркский
У
у. уезд, уездный; утро
ув. увеличение, увеличенный
уг. угол
уд. и удовл. удовлетворительно (оценка)
уд. в. удельный вес
удм. удмуртский
у. е. условная единица (денежная)
уз. узел
узб. узбекский
указ. указанный
укр. украинский
ул. улица
ум. умер; уменьшение, уменьшенный
ун-т университет
упак. упаковка
употр. употребляется, употребляющийся
упр. управляющий
ур. уровень; урочище
ур. и ур-ние уравнение
ур. м. уровень моря
урожд. урожденная
ур-ние и ур. уравнение
уругв. уругвайский
усл. условный
устар. устарелый, устаревший
устр-во устройство
у. т. условное топливо
утр. утренний; утреня
уч. учебный, ученый (прил.)
уч.-изд. л. учетно-издательский лист
уч-к участок
уч-ся учащийся
уч-ще училище
ущ. ущелье
Ф
Ф фарад
ф фемто…; фот
ф. фильм; фонд; форма; фунт, фут
фак., фак-т, ф-т факультет
факс. факсимиле, факсимильный
фам. фамилия
фарм. фармакология, фармакологический, фармацевтический
фаш. фашистский
февр. февраль, февральский
фельдм. фельдмаршал
феод. феодальный
ферм. ферментативный
фиг. фигура
физ. физика, физический
физ. п. л. физический печатный лист
физ-ра физкультура
физ.-хим. физико-химический
фил. филиал
филол. филологический
филос. философский
фин. финансовый; финский
финл. финляндский
Ф. И. О. и ф. и. о. фамилия, имя, отчество
фК фемтокулон
ф-ка фабрика
ф-ла формула
флам. фламандский
Ф/м фарад на метр
ф-но и фп. фортепиано
фон. фонетика, фонетический
фот. и фотогр. фотография, фотографический
фот · с и ф · сек фот-секунда
фот · ч и ф · ч фот-час
фп. фортепианный
фп. и ф-но фортепиано
фр. франк; фруктовый
фр. и франц. французский
ф · сек и фот · с фот-секунда
ф. ст. фунт стерлингов
ф-т, фак., фак-т факультет
ф-ция функция
ф-ч и фот-ч фот-час
Х
х. и хут. хутор
хар-ка характеристика
х/б и хл.-бум. хлопчатобумажный
Х. в. Христос воскресе (как надпись на предметах)
х-во и хоз-во хозяйство
х. е. м. химическая единица массы
хим. химия, химический
хир. хирургия, хирургический
хл.-бум. и х/б хлопчатобумажный
хлф хлороформ
хоз. хозяйственный
хоз-во и х-во хозяйство
хол. холодный
холод. холодильник
хор. хорошо (оценка)
хорв. хорватский
хр. хребет
христ. христианский
хрон. хронический
х. с. ход сообщения
х/с художественный сериал
худ. художник
худ. и худож. художественный
хут. и х. хутор
х/ф художественный фильм
х. ч. химически чистый
х. ч. и х/ч хозяйственная часть
Ц
ц центнер
ц. цена; центр; церковь; цифра, цифровой
цв. цвет, цветной
ц/га центнер на га
целл. целлюлозный
цем. цементный
центр. центральный
церк. церковный
ц. н. с. центральная нервная система
ц.-сл., церк.-сл., церк.-слав. церковнославянский
Ч
ч. час
ч. через; число; чистый
ч. часть; чч. части
ч. и чел. человек
чайн. л. и ч. л. чайная ложка
час. часов (род. п. мн. ч.)
ч/б черно-белый
чел. и ч. человек
черк. черкесский
черногор. черногорский
четв. четверть
чеч. чеченский
чеш. чешский
чил. чилийский
числ. численность
числ. и числит. числительное
ч.-к. и чл.-корр. член-корреспондент
чл. член
ч. л. и чайн. л. чайная ложка
чтв. и чт. четверг
чув. чувашский
чч. части; ч. часть
ч/ш чистая шерсть, чистошерстяной
Ш
ш. широта; шоссе
шах. шахта
шв. и швед. шведский
швейц. швейцарский
шилл. шиллинг
шир. ширина
шк. школа
шл. шлюз
шосс. шоссейный
шотл. шотландский
шт. штат; штольня; штука
Щ
щел. щелочной
Э
Э эрстед
Эбайт экзабайт
ЭВ экваториальный воздух
эВ электронвольт
эВ · см электронвольт-сантиметр
э. д. с. электродвижущая сила
экв. экваториальный
эквив. эквивалентный
экз. экземпляр
экон. экономический
эксп. экспедиция
элев. элеватор
элект. электроника, электронный; электротехника, электротехнический
элем. элемент
эл. подст. электрическая подстанция
э. л. с. эффективная лошадиная сила
эл. ст. электростанция
эск. эскадра, эскадренный; эскадрон
эским. эскимосский
эсп. и эспер. эсперанто
эст. эстонский
эф.-масл. эфирно-масличный
эш. эшелон
Ю
Ю. и ю. юг
ю. и юж. южный
Ю.-В. и ю.-в. юго-восток
ю.-в., ю.-вост., юго-вост. юго-восточный
югосл. югославский
юж. и ю. южный
Ю.-З. и ю.-з. юго-запад
ю.-з., ю.-зап., юго-зап. юго-западный
юр. и юридич. юридический
ю. ш. южная широта
Я
яз. язык
яз-ние языкознание
языч. языческий
як. якутский
янв. январь, январский
яп. и япон. японский
ящ. ящик
Читайте по теме:
- Пробел в сокращениях «Ф. И. О.», «т. е.», «и т. д.», «и т. п.»
- «Замдиректора соцсети» или «зам. директора соц. сети»?
- Эсэмэска от кавээнщика. Как писать слова, образованные от аббревиатур
- Sokr.ru: интернет-словарь сокращений, акронимов, аббревиатур и сложносоставных слов русского языка
Проверим ваш текст
Проверить грамотность вашего текста? Мы знаем, как правильно пишутся сокращения! Закажите оценку стоимости корректуры или редактуры.
Это заметка из блога редакторского бюро «По правилам». Разбираем интересные примеры, частые ошибки и сложные случаи из практики. Чтобы следить за новыми публикациями, подпишитесь: Telegram, Facebook, «ВКонтакте».
«kg» redirects here. For other uses, see KG.
Kilogram | |
---|---|
A Kibble balance is used to measure a kilogram with electricity and magnetism |
|
General information | |
Unit system | SI |
Unit of | mass |
Symbol | kg |
Conversions | |
1 kg in … | … is equal to … |
Avoirdupois | ≈ 2.204623 pounds[Note 1] |
British Gravitational | ≈ 0.0685 slugs |
The kilogram (also kilogramme[1]) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially. It means ‘one thousand grams’.
The kilogram is defined in terms of the second and the metre, both of which are based on fundamental physical constants. This allows a properly equipped metrology laboratory to calibrate a mass measurement instrument such as a Kibble balance as the primary standard to determine an exact kilogram mass.[2][3]
The kilogram was originally defined in 1795 as the mass of one litre of water. The current definition of a kilogram agrees with this original definition to within 30 parts per million. In 1799, the platinum Kilogramme des Archives replaced it as the standard of mass. In 1889, a cylinder of platinum-iridium, the International Prototype of the Kilogram (IPK), became the standard of the unit of mass for the metric system and remained so for 130 years, before the current standard was adopted in 2019.[4]
Definition[edit]
The kilogram is defined in terms of three fundamental physical constants:
- a specific atomic transition frequency ΔνCs, which defines the duration of the second,
- the speed of light c, which when combined with the second, defines the length of the metre,
- and the Planck constant h. which when combined with the metre and second, defines the mass of the kilogram.
The formal definition according to the General Conference on Weights and Measures (CGPM) is:
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015×10−34 when expressed in the unit J⋅s, which is equal to kg⋅m2⋅s−1, where the metre and the second are defined in terms of c and ΔνCs.
— CGPM [5][6]
Defined in term of those units, the kg is formulated as:[7]
- kg = (299792458)2/(6.62607015×10−34)(9192631770)hΔνCs/c2 = 917097121160018/621541050725904751042hΔνCs/c2 ≈ (1.475521399735270×1040)hΔνCs/c2 .
This definition is generally consistent with previous definitions: the mass remains within 30 ppm of the mass of one litre of water.[8]
Timeline of previous definitions[edit]
- 1793: The grave (the precursor of the kilogram) was defined as the mass of 1 litre (dm3) of water, which was determined to be 18841 grains.[9]
- 1795: the gram (1/1000 of a kilogram) was provisionally defined as the mass of one cubic centimetre of water at the melting point of ice.[10]
- 1799: The Kilogramme des Archives was manufactured as a prototype. It had a mass equal to the mass of 1 dm3 of water at the temperature of its maximum density, which is approximately 4 °C.
- 1875–1889: The Metre Convention was signed in 1875, leading to the production of the International Prototype of the Kilogram (IPK) in 1879 and its adoption in 1889.
- 2019: The kilogram was defined in terms of the Planck constant, the speed of light and hyperfine transition frequency of 133Cs as approved by the General Conference on Weights and Measures (CGPM) on November 16, 2018.
Name and terminology[edit]
The kilogram is the only base SI unit with an SI prefix (kilo) as part of its name. The word kilogramme or kilogram is derived from the French kilogramme,[11] which itself was a learned coinage, prefixing the Greek stem of χίλιοι khilioi «a thousand» to gramma, a Late Latin term for «a small weight», itself from Greek γράμμα.[12]
The word kilogramme was written into French law in 1795, in the Decree of 18 Germinal,[13]
which revised the provisional system of units introduced by the French National Convention two years earlier, where the gravet had been defined as weight (poids) of a cubic centimetre of water, equal to 1/1000 of a grave.[14] In the decree of 1795, the term gramme thus replaced gravet, and kilogramme replaced grave.
The French spelling was adopted in Great Britain when the word was used for the first time in English in 1795,[15][11] with the spelling kilogram being adopted in the United States. In the United Kingdom both spellings are used, with «kilogram» having become by far the more common.[1] UK law regulating the units to be used when trading by weight or measure does not prevent the use of either spelling.[16]
In the 19th century the French word kilo, a shortening of kilogramme, was imported into the English language where it has been used to mean both kilogram[17] and kilometre.[18] While kilo as an alternative is acceptable, to The Economist for example,[19] the Canadian government’s Termium Plus system states that «SI (International System of Units) usage, followed in scientific and technical writing» does not allow its usage and it is described as «a common informal name» on Russ Rowlett’s Dictionary of Units of Measurement.[20][21] When the United States Congress gave the metric system legal status in 1866, it permitted the use of the word kilo as an alternative to the word kilogram,[22] but in 1990 revoked the status of the word kilo.[23]
The SI system was introduced in 1960 and in 1970 the BIPM started publishing the SI Brochure, which contains all relevant decisions and recommendations by the CGPM concerning units. The SI Brochure states that «It is not permissible to use abbreviations for unit symbols or unit names …».[24][Note 2]
Kilogram becoming a base unit: the role of units for electromagnetism[edit]
It is primarily because of units for electromagnetism that the kilogram rather than the gram was eventually adopted as the base unit of mass in the SI. The relevant series of discussions and decisions started roughly in the 1850s and effectively concluded in 1946. By the end of the 19th century, the ‘practical units’ for electric and magnetic quantities such as the ampere and the volt were well established in practical use (e.g. for telegraphy). Unfortunately, they were not coherent with the then-prevailing base units for length and mass, the centimetre, and the gram. However, the ‘practical units’ also included some purely mechanical units. In particular, the product of the ampere and the volt gives a purely mechanical unit of power, the watt. It was noticed that the purely mechanical practical units such as the watt would be coherent in a system in which the base unit of length was the metre and the base unit of mass was the kilogram. Because no one wanted to replace the second as the base unit of time, the metre and the kilogram are the only pair of base units of length and mass such that (1) the watt is a coherent unit of power, (2) the base units of length and time are integer-power-of-ten ratios to the metre and the gram (so that the system remains ‘metric’), and (3) the sizes of the base units of length and mass are convenient for practical use.[Note 3] This would still leave out the purely electrical and magnetic units: while the purely mechanical practical units such as the watt are coherent in the metre-kilogram-second system, the explicitly electrical and magnetic units such as the volt, the ampere, etc. are not.[Note 5] The only way to also make those units coherent with the metre-kilogram-second system is to modify that system in a different way: the number of fundamental dimensions must be increased from three (length, mass, and time) to four (the previous three, plus one purely electrical one).[Note 6]
The state of units for electromagnetism at the end of the 19th century[edit]
During the second half of the 19th century, the centimetre–gram–second system of units was becoming widely accepted for scientific work, treating the gram as the fundamental unit of mass and the kilogram as a decimal multiple of the base unit formed by using a metric prefix. However, as the century drew to a close, there was widespread dissatisfaction with the units for electricity and magnetism in the CGS system. There were two obvious choices for absolute units[Note 7] of electromagnetism: the ‘electrostatic’ (CGS-ESU) system and the ‘electromagnetic’ (CGS-EMU) system. But the sizes of coherent electric and magnetic units were not convenient in either of these systems; for example, the ESU unit of electrical resistance, which was later named the statohm, corresponds to about 9×1011 ohm, while the EMU unit, which was later named the abohm, corresponds to 10−9 ohm.[Note 8]
To circumvent this difficulty, a third set of units was introduced: the so-called practical units. The practical units were obtained as decimal multiples of coherent CGS-EMU units, chosen so that the resulting magnitudes were convenient for practical use and so that the practical units were, as far as possible, coherent with each other.[27] The practical units included such units as the volt, the ampere, the ohm, etc.,[28][29] which were later incorporated in the SI system and which are used to this day.[Note 9] The reason the metre and the kilogram were later chosen to be the base units of length and mass was that they are the only combination of reasonably sized decimal multiples or submultiples of the metre and the gram that can be made coherent with the volt, the ampere, etc.
The reason is that electrical quantities cannot be isolated from mechanical and thermal ones: they are connected by relations such as current × electric potential difference = power. For this reason, the practical system also included coherent units for certain mechanical quantities. For example, the previous equation implies that ampere × volt is a coherent derived practical unit of power;[Note 10] this unit was named the watt. The coherent unit of energy is then the watt times the second, which was named the joule. The joule and the watt also have convenient magnitudes and are decimal multiples of CGS coherent units for energy (the erg) and power (the erg per second). The watt is not coherent in the centimetre-gram-second system, but it is coherent in the metre-kilogram-second system—and in no other system whose base units of length and mass are reasonably sized decimal multiples or submultiples of the metre and the gram.
However, unlike the watt and the joule, the explicitly electrical and magnetic units (the volt, the ampere…) are not coherent even in the (absolute three-dimensional) metre-kilogram-second system. Indeed, one can work out what the base units of length and mass have to be in order for all the practical units to be coherent (the watt and the joule as well as the volt, the ampere, etc.). The values are 107 metres (one half of a meridian of the Earth, called a quadrant) and 10−11 grams (called an eleventh-gram[Note 11]).[Note 13]
Therefore, the full absolute system of units in which the practical electrical units are coherent is the quadrant–eleventh-gram–second (QES) system. However, the extremely inconvenient magnitudes of the base units for length and mass made it so that no one seriously considered adopting the QES system. Thus, people working on practical applications of electricity had to use units for electrical quantities and for energy and power that were not coherent with the units they were using for e.g. length, mass, and force.
Meanwhile, scientists developed yet another fully coherent absolute system, which came to be called the Gaussian system, in which the units for purely electrical quantities are taken from CGE-ESU, while the units for magnetic quantities are taken from the CGS-EMU. This system proved very convenient for scientific work and is still widely used. However, the sizes of its units remained either too large or too small—by many orders of magnitude—for practical applications.
Finally, in both CGS-ESU and CGS-EMU as well as in the Gaussian system, Maxwell’s equations are ‘unrationalized’, meaning that they contain various factors of 4π that many workers found awkward. So yet another system was developed to rectify that: the ‘rationalized’ Gaussian system, usually called the Heaviside–Lorentz system. This system is still used in some subfields of physics. However, the units in that system are related to Gaussian units by factors of √4π ≈ 3.5, which means that their magnitudes remained, like those of the Gaussian units, either far too large or far too small for practical applications.
The Giorgi proposal[edit]
In 1901, Giovanni Giorgi proposed a new system of units that would remedy this situation.[30] He noted that the mechanical practical units such as the joule and the watt are coherent not only in the QES system, but also in the metre-kilogram-second (MKS) system.[31][Note 14] It was of course known that adopting the metre and the kilogram as base units—obtaining the three dimensional MKS system—would not solve the problem: while the watt and the joule would be coherent, this would not be so for the volt, the ampere, the ohm, and the rest of the practical units for electric and magnetic quantities (the only three-dimensional absolute system in which all practical units are coherent is the QES system).
But Giorgi pointed out that the volt and the rest could be made coherent if the idea that all physical quantities must be expressible in terms of dimensions of length, mass, and time, is relinquished and a fourth base dimension is added for electric quantities. Any practical electrical unit could be chosen as the new fundamental unit, independent from the metre, kilogram, and second. Likely candidates for the fourth independent unit included the coulomb, the ampere, the volt, and the ohm, but eventually, the ampere proved to be the most convenient for metrology. Moreover, the freedom gained by making an electric unit independent from the mechanical units could be used to rationalize Maxwell’s equations.
The idea that one should give up on having a purely ‘absolute’ system (i.e. one where only length, mass, and time are the base dimensions) was a departure from a viewpoint that seemed to underlie the early breakthroughs by Gauss and Weber (especially their famous ‘absolute measurements’ of Earth’s magnetic field[32]: 54–56 ), and it took some time for the scientific community to accept it—not least because many scientists clung to the notion that the dimensions of a quantity in terms of length, mass, and time somehow specify its ‘fundamental physical nature’.[33]:24, 26[31]
Acceptance of the Giorgi system, leading to the MKSA system and the SI[edit]
By the 1920s, dimensional analysis had become much better understood[31] and it was becoming widely accepted that the choice of both the number and of the identities of the «fundamental» dimensions should be dictated by convenience only and that there is nothing really fundamental about the dimensions of a quantity.[33] In 1935, Giorgi’s proposal was adopted by the IEC as the Giorgi system. It is this system that has since then been called the MKS system,[34]
although ‘MKSA’ appears in careful usage. In 1946 the CIPM approved a proposal to adopt the ampere as the electromagnetic unit of the «MKSA system».[35]: 109, 110 In 1948 the CGPM commissioned the CIPM «to make recommendations for a single practical system of units of measurement, suitable for adoption by all countries adhering to the Metre Convention».[36] This led to the launch of SI in 1960.
To summarize, the ultimate reason that the kilogram was chosen over the gram as the base unit of mass was, in one word, the volt-ampere. Namely, the combination of the metre and the kilogram was the only choice of base units of length and mass such that 1. the volt-ampere—which is also called the watt and which is the unit of power in the practical system of electrical units—is coherent, 2. the base units of length and mass are decimal multiples or submultiples of the metre and the gram, and 3. the base units of length and mass have convenient sizes.
The CGS and MKS systems co-existed during much of the early-to-mid-20th century, but as a result of the decision to adopt the «Giorgi system» as the international system of units in 1960, the kilogram is now the SI base unit for mass, while the definition of the gram is derived.
Redefinition based on fundamental constants[edit]
A Kibble balance, which was originally used to measure the Planck constant in terms of the IPK, can now be used to calibrate secondary standard weights for practical use.
The replacement of the International Prototype of the Kilogram (IPK) as the primary standard was motivated by evidence accumulated over a long period of time that the mass of the IPK and its replicas had been changing; the IPK had diverged from its replicas by approximately 50 micrograms since their manufacture late in the 19th century. This led to several competing efforts to develop measurement technology precise enough to warrant replacing the kilogram artefact with a definition based directly on physical fundamental constants.[4] Physical standard masses such as the IPK and its replicas still serve as secondary standards.
The International Committee for Weights and Measures (CIPM) approved a redefinition of the SI base units in November 2018 that defines the kilogram by defining the Planck constant to be exactly 6.62607015×10−34 kg⋅m2⋅s−1, effectively defining the kilogram in terms of the second and the metre. The new definition took effect on May 20, 2019.[4][5][37]
Prior to the redefinition, the kilogram and several other SI units based on the kilogram were defined by a man-made metal artifact: the Kilogramme des Archives from 1799 to 1889, and the IPK from 1889 to 2019.[4]
In 1960, the metre, previously similarly having been defined with reference to a single platinum-iridium bar with two marks on it, was redefined in terms of an invariant physical constant (the wavelength of a particular emission of light emitted by krypton,[38] and later the speed of light) so that the standard can be independently reproduced in different laboratories by following a written specification.
At the 94th Meeting of the International Committee for Weights and Measures (CIPM) in 2005, it was recommended that the same be done with the kilogram.[39]
In October 2010, the CIPM voted to submit a resolution for consideration at the General Conference on Weights and Measures (CGPM), to «take note of an intention» that the kilogram be defined in terms of the Planck constant, h (which has dimensions of energy times time, thus mass × length2 / time) together with other physical constants.[40][41] This resolution was accepted by the 24th conference of the CGPM[42] in October 2011 and further discussed at the 25th conference in 2014.[43][44] Although the Committee recognised that significant progress had been made, they concluded that the data did not yet appear sufficiently robust to adopt the revised definition, and that work should continue to enable the adoption at the 26th meeting, scheduled for 2018.[43] Such a definition would theoretically permit any apparatus that was capable of delineating the kilogram in terms of the Planck constant to be used as long as it possessed sufficient precision, accuracy and stability. The Kibble balance is one way to do this.
As part of this project, a variety of very different technologies and approaches were considered and explored over many years. Some of these approaches were based on equipment and procedures that would enable the reproducible production of new, kilogram-mass prototypes on demand (albeit with extraordinary effort) using measurement techniques and material properties that are ultimately based on, or traceable to, physical constants. Others were based on devices that measured either the acceleration or weight of hand-tuned kilogram test masses and which expressed their magnitudes in electrical terms via special components that permit traceability to physical constants. All approaches depend on converting a weight measurement to a mass and therefore require the precise measurement of the strength of gravity in laboratories. All approaches would have precisely fixed one or more constants of nature at a defined value.
SI multiples[edit]
Because an SI unit may not have multiple prefixes (see SI prefix), prefixes are added to gram, rather than the base unit kilogram, which already has a prefix as part of its name.[45] For instance, one-millionth of a kilogram is 1 mg (one milligram), not 1 μkg (one microkilogram).
Submultiples | Multiples | ||||
---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name |
10−1 g | dg | decigram | 101 g | dag | decagram |
10−2 g | cg | centigram | 102 g | hg | hectogram |
10−3 g | mg | milligram | 103 g | kg | kilogram |
10−6 g | µg | microgram | 106 g | Mg | megagram (tonne) |
10−9 g | ng | nanogram | 109 g | Gg | gigagram |
10−12 g | pg | picogram | 1012 g | Tg | teragram |
10−15 g | fg | femtogram | 1015 g | Pg | petagram |
10−18 g | ag | attogram | 1018 g | Eg | exagram |
10−21 g | zg | zeptogram | 1021 g | Zg | zettagram |
10−24 g | yg | yoctogram | 1024 g | Yg | yottagram |
10−27 g | rg | rontogram | 1027 g | Rg | ronnagram |
10−30 g | qg | quectogram | 1030 g | Qg | quettagram |
Common prefixed units are in bold face.[Note 15] |
- The microgram is typically abbreviated «mcg» in pharmaceutical and nutritional supplement labelling, to avoid confusion, since the «μ» prefix is not always well recognised outside of technical disciplines.[Note 16] (The expression «mcg» is also the symbol for an obsolete CGS unit of measure known as the «millicentigram», which is equal to 10 μg.)
- In the United Kingdom, because serious medication errors have been made from the confusion between milligrams and micrograms when micrograms has been abbreviated, the recommendation given in the Scottish Palliative Care Guidelines is that doses of less than one milligram must be expressed in micrograms and that the word microgram must be written in full, and that it is never acceptable to use «mcg» or «μg».[46]
- The hectogram (100 g) (Italian: ettogrammo or etto) is a very commonly used unit in the retail food trade in Italy.[47][48][49]
- The former standard spelling and abbreviation «deka-» and «dk» produced abbreviations such as «dkm» (dekametre) and «dkg» (dekagram).[50] As of 2020, the abbreviation «dkg» (10 g) is still used in parts of central Europe in retail for some foods such as cheese and meat.[51][52][53][55]
- The unit name megagram is rarely used, and even then typically only in technical fields in contexts where especially rigorous consistency with the SI standard is desired. For most purposes, the name tonne is instead used. The tonne and its symbol, «t», were adopted by the CIPM in 1879. It is a non-SI unit accepted by the BIPM for use with the SI. According to the BIPM, «This unit is sometimes referred to as ‘metric ton’ in some English-speaking countries.»[56] The unit name megatonne or megaton (Mt) is often used in general-interest literature on greenhouse gas emissions and nuclear weapons yields, whereas the equivalent unit in scientific papers on the subject is often the teragram (Tg).
See also[edit]
- 1795 in science
- 1799 in science
- General Conference on Weights and Measures (CGPM)
- Gram
- Grave (original name of the kilogram, its history)
- Gravimetry
- Inertia
- International Bureau of Weights and Measures (BIPM)
- International Committee for Weights and Measures (CIPM)
- International System of Units (SI)
- Kibble balance
- Kilogram-force
- Litre
- Mass
- Mass versus weight
- Metric system
- Metric ton
- Milligram per cent
- National Institute of Standards and Technology (NIST)
- Newton
- SI base units
- Standard gravity
- Weight
Notes[edit]
- ^ The avoirdupois pound is part of both United States customary system of units and the Imperial system of units. It is defined as exactly 0.45359237 kilograms.
- ^ The French text (which is the authoritative text) states «Il n’est pas autorisé d’utiliser des abréviations pour les symboles et noms d’unités …«
- ^ If it is known that the metre and the kilogram satisfy all three conditions, then no other choice does: The coherent unit of power, when written out in terms of the base units of length, mass, and time, is (base unit of mass) × (base unit of length)2/(base unit of time)3. It is stated that the watt is coherent in the metre-kilogram-second system; thus, 1 watt = (1 kg) × (1 m)2/(1 s)3. The second is left as it is and it is noted that if the base unit of length is changed to L m and the base unit of mass to M kg, then the coherent unit of power is (M kg) × (L m)2/(1 s)3 = ML2 × (1 kg) × (1 m)2/(1 s)3 = ML2 watt. Since base units of length and mass are such that the coherent unit of power is the watt, it must be that ML2 = 1. It follows that if the base unit of length is changed by a factor of L, then the base unit of mass must change by a factor of 1/L2 if the watt is to remain a coherent unit. It would be impractical to make the base unit of length a decimal multiple of a metre (10 m, 100 m, or more). Therefore the only option is to make the base unit of length a decimal submultiple of the metre. This would mean decreasing the metre by a factor of 10 to obtain the decimetre (0.1 m), or by a factor of 100 to get the centimetre, or by a factor of 1000 to get the millimetre. Making the base unit of length even smaller would not be practical (for example, the next decimal factor, 10000, would produce the base unit of length of one-tenth of a millimetre), so these three factors (10, 100, and 1000) are the only acceptable options as far as the base unit of length. But then the base unit of mass would have to be larger than a kilogram, by the following respective factors: 102 = 100, 1002 = 10000, and 10002 = 106. In other words, the watt is a coherent unit for the following pairs of base units of length and mass: 0.1 m and 100 kg, 1 cm and 10000 kg, and 1 mm and 1000000 kg. Even in the first pair, the base unit of mass is impractically large, 100 kg, and as the base unit of length is decreased, the base unit of mass gets even larger. Thus, assuming that the second remains the base unit of time, the metre-kilogram combination is the only one that has base units for both length and mass that are neither too large nor too small, and that are decimal multiples or divisions of the metre and gram, and has the watt as a coherent unit.
- ^ A system in which the base quantities are length, mass, and time, and only those three.
- ^ There is only one three-dimensional ‘absolute’ system[Note 4] in which all practical units are coherent, including the volt, the ampere, etc.: one in which the base unit of length is 107 m and the base unit of mass is 10−11 g. Clearly, these magnitudes are not practical.
- ^ Meanwhile, there were parallel developments that, for independent reasons, eventually resulted in three additional fundamental dimensions, for a total of seven: those for temperature, luminous intensity, and the amount of substance.
- ^ That is, units which have length, mass, and time as base dimensions and that are coherent in the CGS system.
- ^ For quite a long time, the ESU and EMU units did not have special names; one would just say, e.g. the ESU unit of resistance. It was apparently only in 1903 that A. E. Kennelly suggested that the names of the EMU units be obtained by prefixing the name of the corresponding ‘practical unit’ by ‘ab-’ (short for ‘absolute’, giving the ‘abohm’, ‘abvolt’, the ‘abampere’, etc.), and that the names of the ESU units be analogously obtained by using the prefix ‘abstat-’, which was later shortened to ‘stat-’ (giving the ‘statohm’, ‘statvolt’, ‘statampere’, etc.).[25]: 534–5 This naming system was widely used in the U.S., but, apparently, not in Europe.[26]
- ^ The use of SI electrical units is essentially universal worldwide (besides the clearly electrical units like the ohm, the volt, and the ampere, it is also nearly universal to use the watt when quantifying specifically electrical power). Resistance to the adoption of SI units mostly concerns mechanical units (lengths, mass, force, torque, pressure), thermal units (temperature, heat), and units for describing ionizing radiation (activity referred to a radionuclide, absorbed dose, dose equivalent); it does not concern electrical units.
- ^ In alternating current (AC) circuits one can introduce three kinds of power: active, reactive, and apparent. Though the three have the same dimensions and thus the same units when those are expressed in terms of base units (i.e. kg⋅m2⋅s-3), it is customary to use different names for each: respectively, the watt, the volt-ampere reactive, and the volt-ampere.
- ^ At the time, it was popular to denote decimal multiples and submultiples of quantities by using a system suggested by G. J. Stoney. The system is easiest to explain through examples. For decimal multiples: 109 grams would be denoted as gram-nine, 1013 m would be a metre-thirteen, etc. For submultiples: 10−9 grams would be denoted as a ninth-gram, 10−13 m would be a thirteenth-metre, etc. The system also worked with units that used metric prefixes, so e.g. 1015 centimetre would be centimetre-fifteen. The rule, when spelled out, is this: we denote ‘the exponent of the power of 10, which serves as multiplier, by an appended cardinal number, if the exponent be positive, and by a prefixed ordinal number, if the exponent be negative.’[28]
- ^ This is also obvious from the fact that in both absolute and practical units, current is charge per unit time, so that the unit of time is the unit of charge divided by the unit of current. In the practical system, we know that the base unit of time is the second, so the coulomb per ampere gives the second. The base unit of time in CGS-EMU is then the abcoulomb per abampere, but that ratio is the same as the coulomb per ampere, since the units of current and charge both use the same conversion factor, 0.1, to go between the EMU and practical units (coulomb/ampere = (0.1 abcoulomb)/(0.1 abampere) = abcoulomb/abampere). So the base unit of time in EMU is also the second.
- ^ This can be shown from the definitions of, say, the volt, the ampere, and the coulomb in terms of the EMU units. The volt was chosen as 108 EMU units (abvolts), the ampere as 0.1 EMU units (abamperes), and the coulomb as 0.1 EMU units (abcoulombs). Now we use the fact that, when expressed in the base CGS units, the abvolt is g1/2·cm3/2/s2, the abampere is g1/2·cm1/2/s, and the abcoulomb is g1/2·cm1/2. Suppose we choose new base units of length, mass, and time, equal to L centimetres, M grams, and T seconds. Then instead of the abvolt, the unit of electric potential will be (M × g)1/2·(L × cm)3/2/(T × s)2 = M1/2L3/2/T2 × g1/2·cm3/2/s2 = M1/2L3/2/T2 abvolts. We want this new unit to be the volt, so we must have M1/2L3/2/T2 = 108. Similarly, if we want the new unit for current to be the ampere, we obtain that M1/2L1/2/T = 0.1, and if we want the new unit of charge to be the coulomb, we get that M1/2L1/2 = 0.1. This is a system of three equations with three unknowns. By dividing the middle equation by the last one, we get that T = 1, so the second should remain the base unit of time.[Note 12] If we then divide the first equation by the middle one (and use the fact that T = 1), we get that L = 108/0.1 = 109, so the base unit of length should be 109 cm = 107 m. Finally, we square the final equation and obtain that M = 0.12/L = 10−11, so the base unit of mass should be 10−11 grams.
- ^ The dimensions of energy are ML2/T2 and of power, ML2/T3. One meaning of these dimensional formulas is that if the unit of mass is changed by a factor of M, the unit of length by a factor of L, and the unit of time by a factor of T, then the unit of energy will change by a factor of ML2/T2 and the unit of power by a factor of ML2/T3. This means that if the unit of length is decreased while at the same time increasing the unit of mass in such a way that the product ML2 remains constant, the units of energy and power would not change. Clearly, this happens if M = 1/L2. Now, the watt and joule are coherent in a system in which the base unit of length is 107 m while the base unit of mass is 10−11 grams. They will then also be coherent in any system in which the base unit of length is L × 107 m and the base unit of mass is 1/L2 × 10−11 g, where L is any positive real number. If we set L = 10−7, we obtain the metre as the base unit of length. Then the corresponding base unit of mass is 1/(10−7)2 × 10−11 g=1014 × 10−11 g = 103 g = 1 kg.
- ^ Criterion: A combined total of at least five occurrences on the British National Corpus and the Corpus of Contemporary American English, including both the singular and the plural for both the —gram and the —gramme spelling.
- ^ The practice of using the abbreviation «mcg» rather than the SI symbol «μg» was formally mandated in the US for medical practitioners in 2004 by the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) in their «Do Not Use» List: Abbreviations, Acronyms, and Symbols Archived September 15, 2015, at the Wayback Machine because «μg» and «mg» when handwritten can be confused with one another, resulting in a thousand-fold overdosing (or underdosing). The mandate was also adopted by the Institute for Safe Medication Practices.
References[edit]
- ^ a b «Kilogram». Oxford Dictionaries. Archived from the original on January 31, 2013. Retrieved November 3, 2011.
- ^ «The Latest: Landmark Change to Kilogram Approved». AP News. Associated Press. November 16, 2018. Retrieved March 4, 2020.
- ^ BIPM (July 7, 2021). «Mise en pratique for the definition of the kilogram in the SI». BIPM.org. Retrieved February 18, 2022.
- ^ a b c d Resnick, Brian (May 20, 2019). «The new kilogram just debuted. It’s a massive achievement». vox.com. Retrieved May 23, 2019.
- ^ a b Draft Resolution A «On the revision of the International System of units (SI)» to be submitted to the CGPM at its 26th meeting (2018) (PDF), archived (PDF) from the original on April 2, 2021
- ^ Decision CIPM/105-13 (October 2016). The day is the 144th anniversary of the Metre Convention.
- ^ SI Brochure: The International System of Units (SI). BIPM, 9th edition, 2019.
- ^ The density of water is 0.999972 g/cm3 at 3.984 °C. See Franks, Felix (2012). The Physics and Physical Chemistry of Water. Springer. ISBN 978-1-4684-8334-5.
- ^ Guyton; Lavoisier; Monge; Berthollet; et al. (1792). Annales de chimie ou Recueil de mémoires concernant la chimie et les arts qui en dépendent. Vol. 15–16. Paris: Chez Joseph de Boffe. p. 277.
- ^ Gramme, le poids absolu d’un volume d’eau pure égal au cube de la centième partie du mètre, et à la température de la glace fondante
- ^ a b «Kilogram». Oxford English Dictionary. Oxford University Press. Retrieved November 3, 2011.
- ^ Fowlers, HW; Fowler, FG (1964). The Concise Oxford Dictionary. Oxford: The Clarendon Press.
Greek γράμμα (as it were γράφ-μα, Doric γράθμα) means «something written, a letter», but it came to be used as a unit of weight, apparently equal to 1/24 of an ounce (1/288 of a libra, which would correspond to about 1.14 grams in modern units), at some time during Late Antiquity. French gramme was adopted from Latin gramma, itself quite obscure, but found in the Carmen de ponderibus et mensuris (8.25) attributed by Remmius Palaemon (fl. 1st century), where it is the weight of two oboli (Charlton T. Lewis, Charles Short, A Latin Dictionary s.v. «gramma», 1879).
Henry George Liddell. Robert Scott. A Greek-English Lexicon (revised and augmented edition, Oxford, 1940) s.v. γράμμα, citing the 10th-century work Geoponica and a 4th-century papyrus edited in L. Mitteis, Griechische Urkunden der Papyrussammlung zu Leipzig, vol. i (1906), 62 ii 27. - ^ «Décret relatif aux poids et aux mesures du 18 germinal an 3 (7 avril 1795)» [Decree of 18 Germinal, year III (April 7, 1795) regarding weights and measures]. Grandes lois de la République (in French). Digithèque de matériaux juridiques et politiques, Université de Perpignan. Retrieved November 3, 2011.
- ^ Convention nationale, décret du 1er août 1793, ed. Duvergier, Collection complète des lois, décrets, ordonnances, règlemens avis du Conseil d’état, publiée sur les éditions officielles du Louvre, vol. 6 (2nd ed. 1834), p. 70.
The metre (mètre) on which this definition depends was itself defined as the ten-millionth part of a quarter of Earth’s meridian, given in traditional units as 3 pieds, 11.44 lignes (a ligne being the 12th part of a pouce (inch), or the 144th part of a pied. - ^ Peltier, Jean-Gabriel (1795). «Paris, during the year 1795». Monthly Review. 17: 556. Retrieved August 2, 2018. Contemporaneous English translation of the French decree of 1795
- ^ «Spelling of «gram», etc». Weights and Measures Act 1985. Her Majesty’s Stationery Office. October 30, 1985. Retrieved November 6, 2011.
- ^ «kilo (n1)». Oxford English Dictionary (2nd ed.). Oxford: Oxford University Press. 1989. Retrieved November 8, 2011.
- ^ «kilo (n2)». Oxford English Dictionary (2nd ed.). Oxford: Oxford University Press. 1989. Retrieved November 8, 2011.
- ^ «Style Guide» (PDF). The Economist. January 7, 2002. Archived from the original (PDF) on July 1, 2017. Retrieved November 8, 2011.
- ^
«kilogram, kg, kilo». Termium Plus. Government of Canada. October 8, 2009. Retrieved May 29, 2019. - ^
«kilo». How Many?. Archived from the original on November 16, 2011. Retrieved November 6, 2011. - ^ 29th Congress of the United States, Session 1 (May 13, 1866). «H.R. 596, An Act to authorize the use of the metric system of weights and measures». Archived from the original on July 5, 2015.
- ^ «Metric System of Measurement:Interpretation of the International System of Units for the United States; Notice» (PDF). Federal Register. 63 (144): 40340. July 28, 1998. Archived from the original (PDF) on October 15, 2011. Retrieved November 10, 2011.
Obsolete Units As stated in the 1990 Federal Register notice, …
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 130, ISBN 92-822-2213-6, archived (PDF) from the original on June 4, 2021, retrieved December 16, 2021
- ^ Kennelly, A. E. (July 1903). «Magnetic Units and Other Subjects that Might Occupy Attention at the Next International Electrical Congress». Transactions of the American Institute of Electrical Engineers. XXII: 529–536. doi:10.1109/T-AIEE.1903.4764390. S2CID 51634810.
[p. 534] The expedient suggests itself of attaching the prefix ab or abs to a practical or Q. E. S. unit, in order to express the absolute or corresponding C. G. S. magnetic unit. … [p. 535] In a comprehensive system of electromagnetic terminology, the electric C. G. S. units should also be christened. They are sometimes referred to in electrical papers, but always in an apologetic, symbolical fashion, owing to the absence of names to cover their nakedness. They might be denoted by the prefix abstat.
- ^ Silsbee, Francis (April–June 1962). «Systems of Electrical Units». Journal of Research of the National Bureau of Standards Section C. 66C (2): 137–183. doi:10.6028/jres.066C.014.
- ^ Fleming, John Ambrose (1911). «Units, Physical» . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 27 (11th ed.). Cambridge University Press. pp. 738–745, see page 740.
- ^ a b Thomson, Sir W.; Foster, C. G.; Maxwell, J. C.; Stoney, G. J.; Jenkin, Fleeming; Siemens; Bramwell, F. J.; Everett (1873). Report of the 43rd Meeting of the British Association for the Advancement of Science. Vol. 43. Bradford. p. 223.
- ^ «The Electrical Congress». The Electrician. 7: 297. September 24, 1881. Retrieved June 3, 2020.
- ^ Giovanni Giorgi (1901), «Unità Razionali di Elettromagnetismo», Atti della Associazione Elettrotecnica Italiana (in Italian), Torino, OL 18571144M
Giovanni Giorgi (1902), Rational Units of Electromagnetism Original manuscript with handwritten notes by Oliver Heaviside Archived October 29, 2019, at the Wayback Machine - ^ a b c Giorgi, Giovanni (2018) [Originally published in June 1934 by the Central Office of the International Electrotechnical Commission (IEC), London, for IEC Advisory Committee No. 1 on Nomenclature, Section B: Electric and Magnetic Magnitudes and Units.]. «Memorandum on the M.K.S. System of Practical Units». IEEE Magnetics Letters. 9: 1–6. doi:10.1109/LMAG.2018.2859658.
- ^ Carron, Neal (2015). «Babel of Units. The Evolution of Units Systems in Classical Electromagnetism». arXiv:1506.01951 [physics.hist-ph].
- ^ a b Bridgman, P. W. (1922). Dimensional Analysis. Yale University Press.
- ^ Arthur E. Kennelly (1935), «Adoption of the Meter–Kilogram–Mass–Second (M.K.S.) Absolute System of Practical Units by the International Electrotechnical Commission (I.E.C.), Bruxelles, June, 1935», Proceedings of the National Academy of Sciences of the United States of America, 21 (10): 579–583, Bibcode:1935PNAS…21..579K, doi:10.1073/pnas.21.10.579, PMC 1076662, PMID 16577693
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6, archived (PDF) from the original on June 4, 2021, retrieved December 16, 2021
- ^ Resolution 6 – Proposal for establishing a practical system of units of measurement. 9th Conférence Générale des Poids et Mesures (CGPM). October 12–21, 1948. Retrieved May 8, 2011.
- ^ Pallab Ghosh (November 16, 2018). «Kilogram gets a new definition». BBC News. Retrieved November 16, 2018.
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 112, ISBN 92-822-2213-6, archived (PDF) from the original on June 4, 2021, retrieved December 16, 2021
- ^ Recommendation 1: Preparative steps towards new definitions of the kilogram, the ampere, the kelvin and the mole in terms of fundamental constants (PDF). 94th meeting of the International Committee for Weights and Measures. October 2005. p. 233. Archived (PDF) from the original on June 30, 2007. Retrieved February 7, 2018.
- ^ «NIST Backs Proposal for a Revamped System of Measurement Units». Nist. Nist.gov. October 26, 2010. Retrieved April 3, 2011.
- ^ Ian Mills (September 29, 2010). «Draft Chapter 2 for SI Brochure, following redefinitions of the base units» (PDF). CCU. Retrieved January 1, 2011.
- ^ Resolution 1 – On the possible future revision of the International System of Units, the SI (PDF). 24th meeting of the General Conference on Weights and Measures. Sèvres, France. October 17–21, 2011. Retrieved October 25, 2011.
- ^ a b «BIPM – Resolution 1 of the 25th CGPM». www.bipm.org. Retrieved March 27, 2017.
- ^ «General Conference on Weights and Measures approves possible changes to the International System of Units, including redefinition of the kilogram» (PDF) (Press release). Sèvres, France: General Conference on Weights and Measures. October 23, 2011. Retrieved October 25, 2011.
- ^ BIPM: SI Brochure: Section 3.2, The kilogram Archived March 29, 2016, at the Wayback Machine
- ^ «Prescribing Information for Liquid Medicines». Scottish Palliative Care Guidelines. Archived from the original on July 10, 2018. Retrieved June 15, 2015.
- ^ Tom Stobart, The Cook’s Encyclopedia, 1981, p. 525
- ^ J.J. Kinder, V.M. Savini, Using Italian: A Guide to Contemporary Usage, 2004, ISBN 0521485568, p. 231
- ^ Giacomo Devoto, Gian Carlo Oli, Nuovo vocabolario illustrato della lingua italiana, 1987, s.v. ‘ètto’: «frequentissima nell’uso comune: un e. di caffè, un e. di mortadella; formaggio a 2000 lire l’etto«
- ^ U.S. National Bureau of Standards, The International Metric System of Weights and Measures, «Official Abbreviations of International Metric Units», 1932, p. 13
- ^ «Jestřebická hovězí šunka 10 dkg | Rancherské speciality». eshop.rancherskespeciality.cz (in Czech). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ «Sedliacka šunka 1 dkg | Gazdovský dvor – Farma Busov Gaboltov». Sedliacka šunka 1 dkg (in Slovak). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ «sýr bazalkový – Farmářské Trhy». www.e-farmarsketrhy.cz (in Czech). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ «Termékek – Csíz Sajtműhely» (in Hungarian). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ Non-SI units that are accepted for use with the SI, SI Brochure: Section 4 (Table 8), BIPM
External links[edit]
Wikimedia Commons has media related to Kilogram.
NIST: K20, the US National Prototype Kilogram resting on an egg crate fluorescent light panel |
BIPM: Steam cleaning a 1 kg prototype before a mass comparison |
BIPM: The IPK and its six sister copies in their vault |
The Age: Silicon sphere for the Avogadro Project |
NPL: The NPL’s Watt Balance project |
NIST: This particular Rueprecht Balance, an Austrian-made precision balance, was used by the NIST from 1945 until 1960 |
BIPM: The FB‑2 flexure-strip balance, the BIPM’s modern precision balance featuring a standard deviation of one ten-billionth of a kilogram (0.1 μg) |
BIPM: Mettler HK1000 balance, featuring 1 μg resolution and a 4 kg maximum mass. Also used by NIST and Sandia National Laboratories’ Primary Standards Laboratory |
Micro-g LaCoste: FG‑5 absolute gravimeter, (diagram), used in national laboratories to measure gravity to 2 μGal accuracy |
- NIST Improves Accuracy of ‘Watt Balance’ Method for Defining the Kilogram
- The UK’s National Physical Laboratory (NPL): Are any problems caused by having the kilogram defined in terms of a physical artefact? (FAQ – Mass & Density)
- NPL: NPL Kibble balance
- Metrology in France: Watt balance
- Australian National Measurement Institute: Redefining the kilogram through the Avogadro constant
- International Bureau of Weights and Measures (BIPM): Home page
- NZZ Folio: What a kilogram really weighs
- NPL: What are the differences between mass, weight, force and load?
- BBC: Getting the measure of a kilogram
- NPR: This Kilogram Has A Weight-Loss Problem, an interview with National Institute of Standards and Technology physicist Richard Steiner
- Avogadro and molar Planck constants for the redefinition of the kilogram
- Realization of the awaited definition of the kilogram
- Sample, Ian (November 9, 2018). «In the balance: scientists vote on first change to kilogram in a century». The Guardian. Retrieved November 9, 2018.
Videos[edit]
- The BIPM – YouTube channel
- «The role of the Planck constant in physics» – presentation at 26th CGPM meeting at Versailles, France, November 2018 when voting on superseding the IPK took place on YouTube
«kg» redirects here. For other uses, see KG.
Kilogram | |
---|---|
A Kibble balance is used to measure a kilogram with electricity and magnetism |
|
General information | |
Unit system | SI |
Unit of | mass |
Symbol | kg |
Conversions | |
1 kg in … | … is equal to … |
Avoirdupois | ≈ 2.204623 pounds[Note 1] |
British Gravitational | ≈ 0.0685 slugs |
The kilogram (also kilogramme[1]) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially. It means ‘one thousand grams’.
The kilogram is defined in terms of the second and the metre, both of which are based on fundamental physical constants. This allows a properly equipped metrology laboratory to calibrate a mass measurement instrument such as a Kibble balance as the primary standard to determine an exact kilogram mass.[2][3]
The kilogram was originally defined in 1795 as the mass of one litre of water. The current definition of a kilogram agrees with this original definition to within 30 parts per million. In 1799, the platinum Kilogramme des Archives replaced it as the standard of mass. In 1889, a cylinder of platinum-iridium, the International Prototype of the Kilogram (IPK), became the standard of the unit of mass for the metric system and remained so for 130 years, before the current standard was adopted in 2019.[4]
Definition[edit]
The kilogram is defined in terms of three fundamental physical constants:
- a specific atomic transition frequency ΔνCs, which defines the duration of the second,
- the speed of light c, which when combined with the second, defines the length of the metre,
- and the Planck constant h. which when combined with the metre and second, defines the mass of the kilogram.
The formal definition according to the General Conference on Weights and Measures (CGPM) is:
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015×10−34 when expressed in the unit J⋅s, which is equal to kg⋅m2⋅s−1, where the metre and the second are defined in terms of c and ΔνCs.
— CGPM [5][6]
Defined in term of those units, the kg is formulated as:[7]
- kg = (299792458)2/(6.62607015×10−34)(9192631770)hΔνCs/c2 = 917097121160018/621541050725904751042hΔνCs/c2 ≈ (1.475521399735270×1040)hΔνCs/c2 .
This definition is generally consistent with previous definitions: the mass remains within 30 ppm of the mass of one litre of water.[8]
Timeline of previous definitions[edit]
- 1793: The grave (the precursor of the kilogram) was defined as the mass of 1 litre (dm3) of water, which was determined to be 18841 grains.[9]
- 1795: the gram (1/1000 of a kilogram) was provisionally defined as the mass of one cubic centimetre of water at the melting point of ice.[10]
- 1799: The Kilogramme des Archives was manufactured as a prototype. It had a mass equal to the mass of 1 dm3 of water at the temperature of its maximum density, which is approximately 4 °C.
- 1875–1889: The Metre Convention was signed in 1875, leading to the production of the International Prototype of the Kilogram (IPK) in 1879 and its adoption in 1889.
- 2019: The kilogram was defined in terms of the Planck constant, the speed of light and hyperfine transition frequency of 133Cs as approved by the General Conference on Weights and Measures (CGPM) on November 16, 2018.
Name and terminology[edit]
The kilogram is the only base SI unit with an SI prefix (kilo) as part of its name. The word kilogramme or kilogram is derived from the French kilogramme,[11] which itself was a learned coinage, prefixing the Greek stem of χίλιοι khilioi «a thousand» to gramma, a Late Latin term for «a small weight», itself from Greek γράμμα.[12]
The word kilogramme was written into French law in 1795, in the Decree of 18 Germinal,[13]
which revised the provisional system of units introduced by the French National Convention two years earlier, where the gravet had been defined as weight (poids) of a cubic centimetre of water, equal to 1/1000 of a grave.[14] In the decree of 1795, the term gramme thus replaced gravet, and kilogramme replaced grave.
The French spelling was adopted in Great Britain when the word was used for the first time in English in 1795,[15][11] with the spelling kilogram being adopted in the United States. In the United Kingdom both spellings are used, with «kilogram» having become by far the more common.[1] UK law regulating the units to be used when trading by weight or measure does not prevent the use of either spelling.[16]
In the 19th century the French word kilo, a shortening of kilogramme, was imported into the English language where it has been used to mean both kilogram[17] and kilometre.[18] While kilo as an alternative is acceptable, to The Economist for example,[19] the Canadian government’s Termium Plus system states that «SI (International System of Units) usage, followed in scientific and technical writing» does not allow its usage and it is described as «a common informal name» on Russ Rowlett’s Dictionary of Units of Measurement.[20][21] When the United States Congress gave the metric system legal status in 1866, it permitted the use of the word kilo as an alternative to the word kilogram,[22] but in 1990 revoked the status of the word kilo.[23]
The SI system was introduced in 1960 and in 1970 the BIPM started publishing the SI Brochure, which contains all relevant decisions and recommendations by the CGPM concerning units. The SI Brochure states that «It is not permissible to use abbreviations for unit symbols or unit names …».[24][Note 2]
Kilogram becoming a base unit: the role of units for electromagnetism[edit]
It is primarily because of units for electromagnetism that the kilogram rather than the gram was eventually adopted as the base unit of mass in the SI. The relevant series of discussions and decisions started roughly in the 1850s and effectively concluded in 1946. By the end of the 19th century, the ‘practical units’ for electric and magnetic quantities such as the ampere and the volt were well established in practical use (e.g. for telegraphy). Unfortunately, they were not coherent with the then-prevailing base units for length and mass, the centimetre, and the gram. However, the ‘practical units’ also included some purely mechanical units. In particular, the product of the ampere and the volt gives a purely mechanical unit of power, the watt. It was noticed that the purely mechanical practical units such as the watt would be coherent in a system in which the base unit of length was the metre and the base unit of mass was the kilogram. Because no one wanted to replace the second as the base unit of time, the metre and the kilogram are the only pair of base units of length and mass such that (1) the watt is a coherent unit of power, (2) the base units of length and time are integer-power-of-ten ratios to the metre and the gram (so that the system remains ‘metric’), and (3) the sizes of the base units of length and mass are convenient for practical use.[Note 3] This would still leave out the purely electrical and magnetic units: while the purely mechanical practical units such as the watt are coherent in the metre-kilogram-second system, the explicitly electrical and magnetic units such as the volt, the ampere, etc. are not.[Note 5] The only way to also make those units coherent with the metre-kilogram-second system is to modify that system in a different way: the number of fundamental dimensions must be increased from three (length, mass, and time) to four (the previous three, plus one purely electrical one).[Note 6]
The state of units for electromagnetism at the end of the 19th century[edit]
During the second half of the 19th century, the centimetre–gram–second system of units was becoming widely accepted for scientific work, treating the gram as the fundamental unit of mass and the kilogram as a decimal multiple of the base unit formed by using a metric prefix. However, as the century drew to a close, there was widespread dissatisfaction with the units for electricity and magnetism in the CGS system. There were two obvious choices for absolute units[Note 7] of electromagnetism: the ‘electrostatic’ (CGS-ESU) system and the ‘electromagnetic’ (CGS-EMU) system. But the sizes of coherent electric and magnetic units were not convenient in either of these systems; for example, the ESU unit of electrical resistance, which was later named the statohm, corresponds to about 9×1011 ohm, while the EMU unit, which was later named the abohm, corresponds to 10−9 ohm.[Note 8]
To circumvent this difficulty, a third set of units was introduced: the so-called practical units. The practical units were obtained as decimal multiples of coherent CGS-EMU units, chosen so that the resulting magnitudes were convenient for practical use and so that the practical units were, as far as possible, coherent with each other.[27] The practical units included such units as the volt, the ampere, the ohm, etc.,[28][29] which were later incorporated in the SI system and which are used to this day.[Note 9] The reason the metre and the kilogram were later chosen to be the base units of length and mass was that they are the only combination of reasonably sized decimal multiples or submultiples of the metre and the gram that can be made coherent with the volt, the ampere, etc.
The reason is that electrical quantities cannot be isolated from mechanical and thermal ones: they are connected by relations such as current × electric potential difference = power. For this reason, the practical system also included coherent units for certain mechanical quantities. For example, the previous equation implies that ampere × volt is a coherent derived practical unit of power;[Note 10] this unit was named the watt. The coherent unit of energy is then the watt times the second, which was named the joule. The joule and the watt also have convenient magnitudes and are decimal multiples of CGS coherent units for energy (the erg) and power (the erg per second). The watt is not coherent in the centimetre-gram-second system, but it is coherent in the metre-kilogram-second system—and in no other system whose base units of length and mass are reasonably sized decimal multiples or submultiples of the metre and the gram.
However, unlike the watt and the joule, the explicitly electrical and magnetic units (the volt, the ampere…) are not coherent even in the (absolute three-dimensional) metre-kilogram-second system. Indeed, one can work out what the base units of length and mass have to be in order for all the practical units to be coherent (the watt and the joule as well as the volt, the ampere, etc.). The values are 107 metres (one half of a meridian of the Earth, called a quadrant) and 10−11 grams (called an eleventh-gram[Note 11]).[Note 13]
Therefore, the full absolute system of units in which the practical electrical units are coherent is the quadrant–eleventh-gram–second (QES) system. However, the extremely inconvenient magnitudes of the base units for length and mass made it so that no one seriously considered adopting the QES system. Thus, people working on practical applications of electricity had to use units for electrical quantities and for energy and power that were not coherent with the units they were using for e.g. length, mass, and force.
Meanwhile, scientists developed yet another fully coherent absolute system, which came to be called the Gaussian system, in which the units for purely electrical quantities are taken from CGE-ESU, while the units for magnetic quantities are taken from the CGS-EMU. This system proved very convenient for scientific work and is still widely used. However, the sizes of its units remained either too large or too small—by many orders of magnitude—for practical applications.
Finally, in both CGS-ESU and CGS-EMU as well as in the Gaussian system, Maxwell’s equations are ‘unrationalized’, meaning that they contain various factors of 4π that many workers found awkward. So yet another system was developed to rectify that: the ‘rationalized’ Gaussian system, usually called the Heaviside–Lorentz system. This system is still used in some subfields of physics. However, the units in that system are related to Gaussian units by factors of √4π ≈ 3.5, which means that their magnitudes remained, like those of the Gaussian units, either far too large or far too small for practical applications.
The Giorgi proposal[edit]
In 1901, Giovanni Giorgi proposed a new system of units that would remedy this situation.[30] He noted that the mechanical practical units such as the joule and the watt are coherent not only in the QES system, but also in the metre-kilogram-second (MKS) system.[31][Note 14] It was of course known that adopting the metre and the kilogram as base units—obtaining the three dimensional MKS system—would not solve the problem: while the watt and the joule would be coherent, this would not be so for the volt, the ampere, the ohm, and the rest of the practical units for electric and magnetic quantities (the only three-dimensional absolute system in which all practical units are coherent is the QES system).
But Giorgi pointed out that the volt and the rest could be made coherent if the idea that all physical quantities must be expressible in terms of dimensions of length, mass, and time, is relinquished and a fourth base dimension is added for electric quantities. Any practical electrical unit could be chosen as the new fundamental unit, independent from the metre, kilogram, and second. Likely candidates for the fourth independent unit included the coulomb, the ampere, the volt, and the ohm, but eventually, the ampere proved to be the most convenient for metrology. Moreover, the freedom gained by making an electric unit independent from the mechanical units could be used to rationalize Maxwell’s equations.
The idea that one should give up on having a purely ‘absolute’ system (i.e. one where only length, mass, and time are the base dimensions) was a departure from a viewpoint that seemed to underlie the early breakthroughs by Gauss and Weber (especially their famous ‘absolute measurements’ of Earth’s magnetic field[32]: 54–56 ), and it took some time for the scientific community to accept it—not least because many scientists clung to the notion that the dimensions of a quantity in terms of length, mass, and time somehow specify its ‘fundamental physical nature’.[33]:24, 26[31]
Acceptance of the Giorgi system, leading to the MKSA system and the SI[edit]
By the 1920s, dimensional analysis had become much better understood[31] and it was becoming widely accepted that the choice of both the number and of the identities of the «fundamental» dimensions should be dictated by convenience only and that there is nothing really fundamental about the dimensions of a quantity.[33] In 1935, Giorgi’s proposal was adopted by the IEC as the Giorgi system. It is this system that has since then been called the MKS system,[34]
although ‘MKSA’ appears in careful usage. In 1946 the CIPM approved a proposal to adopt the ampere as the electromagnetic unit of the «MKSA system».[35]: 109, 110 In 1948 the CGPM commissioned the CIPM «to make recommendations for a single practical system of units of measurement, suitable for adoption by all countries adhering to the Metre Convention».[36] This led to the launch of SI in 1960.
To summarize, the ultimate reason that the kilogram was chosen over the gram as the base unit of mass was, in one word, the volt-ampere. Namely, the combination of the metre and the kilogram was the only choice of base units of length and mass such that 1. the volt-ampere—which is also called the watt and which is the unit of power in the practical system of electrical units—is coherent, 2. the base units of length and mass are decimal multiples or submultiples of the metre and the gram, and 3. the base units of length and mass have convenient sizes.
The CGS and MKS systems co-existed during much of the early-to-mid-20th century, but as a result of the decision to adopt the «Giorgi system» as the international system of units in 1960, the kilogram is now the SI base unit for mass, while the definition of the gram is derived.
Redefinition based on fundamental constants[edit]
A Kibble balance, which was originally used to measure the Planck constant in terms of the IPK, can now be used to calibrate secondary standard weights for practical use.
The replacement of the International Prototype of the Kilogram (IPK) as the primary standard was motivated by evidence accumulated over a long period of time that the mass of the IPK and its replicas had been changing; the IPK had diverged from its replicas by approximately 50 micrograms since their manufacture late in the 19th century. This led to several competing efforts to develop measurement technology precise enough to warrant replacing the kilogram artefact with a definition based directly on physical fundamental constants.[4] Physical standard masses such as the IPK and its replicas still serve as secondary standards.
The International Committee for Weights and Measures (CIPM) approved a redefinition of the SI base units in November 2018 that defines the kilogram by defining the Planck constant to be exactly 6.62607015×10−34 kg⋅m2⋅s−1, effectively defining the kilogram in terms of the second and the metre. The new definition took effect on May 20, 2019.[4][5][37]
Prior to the redefinition, the kilogram and several other SI units based on the kilogram were defined by a man-made metal artifact: the Kilogramme des Archives from 1799 to 1889, and the IPK from 1889 to 2019.[4]
In 1960, the metre, previously similarly having been defined with reference to a single platinum-iridium bar with two marks on it, was redefined in terms of an invariant physical constant (the wavelength of a particular emission of light emitted by krypton,[38] and later the speed of light) so that the standard can be independently reproduced in different laboratories by following a written specification.
At the 94th Meeting of the International Committee for Weights and Measures (CIPM) in 2005, it was recommended that the same be done with the kilogram.[39]
In October 2010, the CIPM voted to submit a resolution for consideration at the General Conference on Weights and Measures (CGPM), to «take note of an intention» that the kilogram be defined in terms of the Planck constant, h (which has dimensions of energy times time, thus mass × length2 / time) together with other physical constants.[40][41] This resolution was accepted by the 24th conference of the CGPM[42] in October 2011 and further discussed at the 25th conference in 2014.[43][44] Although the Committee recognised that significant progress had been made, they concluded that the data did not yet appear sufficiently robust to adopt the revised definition, and that work should continue to enable the adoption at the 26th meeting, scheduled for 2018.[43] Such a definition would theoretically permit any apparatus that was capable of delineating the kilogram in terms of the Planck constant to be used as long as it possessed sufficient precision, accuracy and stability. The Kibble balance is one way to do this.
As part of this project, a variety of very different technologies and approaches were considered and explored over many years. Some of these approaches were based on equipment and procedures that would enable the reproducible production of new, kilogram-mass prototypes on demand (albeit with extraordinary effort) using measurement techniques and material properties that are ultimately based on, or traceable to, physical constants. Others were based on devices that measured either the acceleration or weight of hand-tuned kilogram test masses and which expressed their magnitudes in electrical terms via special components that permit traceability to physical constants. All approaches depend on converting a weight measurement to a mass and therefore require the precise measurement of the strength of gravity in laboratories. All approaches would have precisely fixed one or more constants of nature at a defined value.
SI multiples[edit]
Because an SI unit may not have multiple prefixes (see SI prefix), prefixes are added to gram, rather than the base unit kilogram, which already has a prefix as part of its name.[45] For instance, one-millionth of a kilogram is 1 mg (one milligram), not 1 μkg (one microkilogram).
Submultiples | Multiples | ||||
---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name |
10−1 g | dg | decigram | 101 g | dag | decagram |
10−2 g | cg | centigram | 102 g | hg | hectogram |
10−3 g | mg | milligram | 103 g | kg | kilogram |
10−6 g | µg | microgram | 106 g | Mg | megagram (tonne) |
10−9 g | ng | nanogram | 109 g | Gg | gigagram |
10−12 g | pg | picogram | 1012 g | Tg | teragram |
10−15 g | fg | femtogram | 1015 g | Pg | petagram |
10−18 g | ag | attogram | 1018 g | Eg | exagram |
10−21 g | zg | zeptogram | 1021 g | Zg | zettagram |
10−24 g | yg | yoctogram | 1024 g | Yg | yottagram |
10−27 g | rg | rontogram | 1027 g | Rg | ronnagram |
10−30 g | qg | quectogram | 1030 g | Qg | quettagram |
Common prefixed units are in bold face.[Note 15] |
- The microgram is typically abbreviated «mcg» in pharmaceutical and nutritional supplement labelling, to avoid confusion, since the «μ» prefix is not always well recognised outside of technical disciplines.[Note 16] (The expression «mcg» is also the symbol for an obsolete CGS unit of measure known as the «millicentigram», which is equal to 10 μg.)
- In the United Kingdom, because serious medication errors have been made from the confusion between milligrams and micrograms when micrograms has been abbreviated, the recommendation given in the Scottish Palliative Care Guidelines is that doses of less than one milligram must be expressed in micrograms and that the word microgram must be written in full, and that it is never acceptable to use «mcg» or «μg».[46]
- The hectogram (100 g) (Italian: ettogrammo or etto) is a very commonly used unit in the retail food trade in Italy.[47][48][49]
- The former standard spelling and abbreviation «deka-» and «dk» produced abbreviations such as «dkm» (dekametre) and «dkg» (dekagram).[50] As of 2020, the abbreviation «dkg» (10 g) is still used in parts of central Europe in retail for some foods such as cheese and meat.[51][52][53][55]
- The unit name megagram is rarely used, and even then typically only in technical fields in contexts where especially rigorous consistency with the SI standard is desired. For most purposes, the name tonne is instead used. The tonne and its symbol, «t», were adopted by the CIPM in 1879. It is a non-SI unit accepted by the BIPM for use with the SI. According to the BIPM, «This unit is sometimes referred to as ‘metric ton’ in some English-speaking countries.»[56] The unit name megatonne or megaton (Mt) is often used in general-interest literature on greenhouse gas emissions and nuclear weapons yields, whereas the equivalent unit in scientific papers on the subject is often the teragram (Tg).
See also[edit]
- 1795 in science
- 1799 in science
- General Conference on Weights and Measures (CGPM)
- Gram
- Grave (original name of the kilogram, its history)
- Gravimetry
- Inertia
- International Bureau of Weights and Measures (BIPM)
- International Committee for Weights and Measures (CIPM)
- International System of Units (SI)
- Kibble balance
- Kilogram-force
- Litre
- Mass
- Mass versus weight
- Metric system
- Metric ton
- Milligram per cent
- National Institute of Standards and Technology (NIST)
- Newton
- SI base units
- Standard gravity
- Weight
Notes[edit]
- ^ The avoirdupois pound is part of both United States customary system of units and the Imperial system of units. It is defined as exactly 0.45359237 kilograms.
- ^ The French text (which is the authoritative text) states «Il n’est pas autorisé d’utiliser des abréviations pour les symboles et noms d’unités …«
- ^ If it is known that the metre and the kilogram satisfy all three conditions, then no other choice does: The coherent unit of power, when written out in terms of the base units of length, mass, and time, is (base unit of mass) × (base unit of length)2/(base unit of time)3. It is stated that the watt is coherent in the metre-kilogram-second system; thus, 1 watt = (1 kg) × (1 m)2/(1 s)3. The second is left as it is and it is noted that if the base unit of length is changed to L m and the base unit of mass to M kg, then the coherent unit of power is (M kg) × (L m)2/(1 s)3 = ML2 × (1 kg) × (1 m)2/(1 s)3 = ML2 watt. Since base units of length and mass are such that the coherent unit of power is the watt, it must be that ML2 = 1. It follows that if the base unit of length is changed by a factor of L, then the base unit of mass must change by a factor of 1/L2 if the watt is to remain a coherent unit. It would be impractical to make the base unit of length a decimal multiple of a metre (10 m, 100 m, or more). Therefore the only option is to make the base unit of length a decimal submultiple of the metre. This would mean decreasing the metre by a factor of 10 to obtain the decimetre (0.1 m), or by a factor of 100 to get the centimetre, or by a factor of 1000 to get the millimetre. Making the base unit of length even smaller would not be practical (for example, the next decimal factor, 10000, would produce the base unit of length of one-tenth of a millimetre), so these three factors (10, 100, and 1000) are the only acceptable options as far as the base unit of length. But then the base unit of mass would have to be larger than a kilogram, by the following respective factors: 102 = 100, 1002 = 10000, and 10002 = 106. In other words, the watt is a coherent unit for the following pairs of base units of length and mass: 0.1 m and 100 kg, 1 cm and 10000 kg, and 1 mm and 1000000 kg. Even in the first pair, the base unit of mass is impractically large, 100 kg, and as the base unit of length is decreased, the base unit of mass gets even larger. Thus, assuming that the second remains the base unit of time, the metre-kilogram combination is the only one that has base units for both length and mass that are neither too large nor too small, and that are decimal multiples or divisions of the metre and gram, and has the watt as a coherent unit.
- ^ A system in which the base quantities are length, mass, and time, and only those three.
- ^ There is only one three-dimensional ‘absolute’ system[Note 4] in which all practical units are coherent, including the volt, the ampere, etc.: one in which the base unit of length is 107 m and the base unit of mass is 10−11 g. Clearly, these magnitudes are not practical.
- ^ Meanwhile, there were parallel developments that, for independent reasons, eventually resulted in three additional fundamental dimensions, for a total of seven: those for temperature, luminous intensity, and the amount of substance.
- ^ That is, units which have length, mass, and time as base dimensions and that are coherent in the CGS system.
- ^ For quite a long time, the ESU and EMU units did not have special names; one would just say, e.g. the ESU unit of resistance. It was apparently only in 1903 that A. E. Kennelly suggested that the names of the EMU units be obtained by prefixing the name of the corresponding ‘practical unit’ by ‘ab-’ (short for ‘absolute’, giving the ‘abohm’, ‘abvolt’, the ‘abampere’, etc.), and that the names of the ESU units be analogously obtained by using the prefix ‘abstat-’, which was later shortened to ‘stat-’ (giving the ‘statohm’, ‘statvolt’, ‘statampere’, etc.).[25]: 534–5 This naming system was widely used in the U.S., but, apparently, not in Europe.[26]
- ^ The use of SI electrical units is essentially universal worldwide (besides the clearly electrical units like the ohm, the volt, and the ampere, it is also nearly universal to use the watt when quantifying specifically electrical power). Resistance to the adoption of SI units mostly concerns mechanical units (lengths, mass, force, torque, pressure), thermal units (temperature, heat), and units for describing ionizing radiation (activity referred to a radionuclide, absorbed dose, dose equivalent); it does not concern electrical units.
- ^ In alternating current (AC) circuits one can introduce three kinds of power: active, reactive, and apparent. Though the three have the same dimensions and thus the same units when those are expressed in terms of base units (i.e. kg⋅m2⋅s-3), it is customary to use different names for each: respectively, the watt, the volt-ampere reactive, and the volt-ampere.
- ^ At the time, it was popular to denote decimal multiples and submultiples of quantities by using a system suggested by G. J. Stoney. The system is easiest to explain through examples. For decimal multiples: 109 grams would be denoted as gram-nine, 1013 m would be a metre-thirteen, etc. For submultiples: 10−9 grams would be denoted as a ninth-gram, 10−13 m would be a thirteenth-metre, etc. The system also worked with units that used metric prefixes, so e.g. 1015 centimetre would be centimetre-fifteen. The rule, when spelled out, is this: we denote ‘the exponent of the power of 10, which serves as multiplier, by an appended cardinal number, if the exponent be positive, and by a prefixed ordinal number, if the exponent be negative.’[28]
- ^ This is also obvious from the fact that in both absolute and practical units, current is charge per unit time, so that the unit of time is the unit of charge divided by the unit of current. In the practical system, we know that the base unit of time is the second, so the coulomb per ampere gives the second. The base unit of time in CGS-EMU is then the abcoulomb per abampere, but that ratio is the same as the coulomb per ampere, since the units of current and charge both use the same conversion factor, 0.1, to go between the EMU and practical units (coulomb/ampere = (0.1 abcoulomb)/(0.1 abampere) = abcoulomb/abampere). So the base unit of time in EMU is also the second.
- ^ This can be shown from the definitions of, say, the volt, the ampere, and the coulomb in terms of the EMU units. The volt was chosen as 108 EMU units (abvolts), the ampere as 0.1 EMU units (abamperes), and the coulomb as 0.1 EMU units (abcoulombs). Now we use the fact that, when expressed in the base CGS units, the abvolt is g1/2·cm3/2/s2, the abampere is g1/2·cm1/2/s, and the abcoulomb is g1/2·cm1/2. Suppose we choose new base units of length, mass, and time, equal to L centimetres, M grams, and T seconds. Then instead of the abvolt, the unit of electric potential will be (M × g)1/2·(L × cm)3/2/(T × s)2 = M1/2L3/2/T2 × g1/2·cm3/2/s2 = M1/2L3/2/T2 abvolts. We want this new unit to be the volt, so we must have M1/2L3/2/T2 = 108. Similarly, if we want the new unit for current to be the ampere, we obtain that M1/2L1/2/T = 0.1, and if we want the new unit of charge to be the coulomb, we get that M1/2L1/2 = 0.1. This is a system of three equations with three unknowns. By dividing the middle equation by the last one, we get that T = 1, so the second should remain the base unit of time.[Note 12] If we then divide the first equation by the middle one (and use the fact that T = 1), we get that L = 108/0.1 = 109, so the base unit of length should be 109 cm = 107 m. Finally, we square the final equation and obtain that M = 0.12/L = 10−11, so the base unit of mass should be 10−11 grams.
- ^ The dimensions of energy are ML2/T2 and of power, ML2/T3. One meaning of these dimensional formulas is that if the unit of mass is changed by a factor of M, the unit of length by a factor of L, and the unit of time by a factor of T, then the unit of energy will change by a factor of ML2/T2 and the unit of power by a factor of ML2/T3. This means that if the unit of length is decreased while at the same time increasing the unit of mass in such a way that the product ML2 remains constant, the units of energy and power would not change. Clearly, this happens if M = 1/L2. Now, the watt and joule are coherent in a system in which the base unit of length is 107 m while the base unit of mass is 10−11 grams. They will then also be coherent in any system in which the base unit of length is L × 107 m and the base unit of mass is 1/L2 × 10−11 g, where L is any positive real number. If we set L = 10−7, we obtain the metre as the base unit of length. Then the corresponding base unit of mass is 1/(10−7)2 × 10−11 g=1014 × 10−11 g = 103 g = 1 kg.
- ^ Criterion: A combined total of at least five occurrences on the British National Corpus and the Corpus of Contemporary American English, including both the singular and the plural for both the —gram and the —gramme spelling.
- ^ The practice of using the abbreviation «mcg» rather than the SI symbol «μg» was formally mandated in the US for medical practitioners in 2004 by the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) in their «Do Not Use» List: Abbreviations, Acronyms, and Symbols Archived September 15, 2015, at the Wayback Machine because «μg» and «mg» when handwritten can be confused with one another, resulting in a thousand-fold overdosing (or underdosing). The mandate was also adopted by the Institute for Safe Medication Practices.
References[edit]
- ^ a b «Kilogram». Oxford Dictionaries. Archived from the original on January 31, 2013. Retrieved November 3, 2011.
- ^ «The Latest: Landmark Change to Kilogram Approved». AP News. Associated Press. November 16, 2018. Retrieved March 4, 2020.
- ^ BIPM (July 7, 2021). «Mise en pratique for the definition of the kilogram in the SI». BIPM.org. Retrieved February 18, 2022.
- ^ a b c d Resnick, Brian (May 20, 2019). «The new kilogram just debuted. It’s a massive achievement». vox.com. Retrieved May 23, 2019.
- ^ a b Draft Resolution A «On the revision of the International System of units (SI)» to be submitted to the CGPM at its 26th meeting (2018) (PDF), archived (PDF) from the original on April 2, 2021
- ^ Decision CIPM/105-13 (October 2016). The day is the 144th anniversary of the Metre Convention.
- ^ SI Brochure: The International System of Units (SI). BIPM, 9th edition, 2019.
- ^ The density of water is 0.999972 g/cm3 at 3.984 °C. See Franks, Felix (2012). The Physics and Physical Chemistry of Water. Springer. ISBN 978-1-4684-8334-5.
- ^ Guyton; Lavoisier; Monge; Berthollet; et al. (1792). Annales de chimie ou Recueil de mémoires concernant la chimie et les arts qui en dépendent. Vol. 15–16. Paris: Chez Joseph de Boffe. p. 277.
- ^ Gramme, le poids absolu d’un volume d’eau pure égal au cube de la centième partie du mètre, et à la température de la glace fondante
- ^ a b «Kilogram». Oxford English Dictionary. Oxford University Press. Retrieved November 3, 2011.
- ^ Fowlers, HW; Fowler, FG (1964). The Concise Oxford Dictionary. Oxford: The Clarendon Press.
Greek γράμμα (as it were γράφ-μα, Doric γράθμα) means «something written, a letter», but it came to be used as a unit of weight, apparently equal to 1/24 of an ounce (1/288 of a libra, which would correspond to about 1.14 grams in modern units), at some time during Late Antiquity. French gramme was adopted from Latin gramma, itself quite obscure, but found in the Carmen de ponderibus et mensuris (8.25) attributed by Remmius Palaemon (fl. 1st century), where it is the weight of two oboli (Charlton T. Lewis, Charles Short, A Latin Dictionary s.v. «gramma», 1879).
Henry George Liddell. Robert Scott. A Greek-English Lexicon (revised and augmented edition, Oxford, 1940) s.v. γράμμα, citing the 10th-century work Geoponica and a 4th-century papyrus edited in L. Mitteis, Griechische Urkunden der Papyrussammlung zu Leipzig, vol. i (1906), 62 ii 27. - ^ «Décret relatif aux poids et aux mesures du 18 germinal an 3 (7 avril 1795)» [Decree of 18 Germinal, year III (April 7, 1795) regarding weights and measures]. Grandes lois de la République (in French). Digithèque de matériaux juridiques et politiques, Université de Perpignan. Retrieved November 3, 2011.
- ^ Convention nationale, décret du 1er août 1793, ed. Duvergier, Collection complète des lois, décrets, ordonnances, règlemens avis du Conseil d’état, publiée sur les éditions officielles du Louvre, vol. 6 (2nd ed. 1834), p. 70.
The metre (mètre) on which this definition depends was itself defined as the ten-millionth part of a quarter of Earth’s meridian, given in traditional units as 3 pieds, 11.44 lignes (a ligne being the 12th part of a pouce (inch), or the 144th part of a pied. - ^ Peltier, Jean-Gabriel (1795). «Paris, during the year 1795». Monthly Review. 17: 556. Retrieved August 2, 2018. Contemporaneous English translation of the French decree of 1795
- ^ «Spelling of «gram», etc». Weights and Measures Act 1985. Her Majesty’s Stationery Office. October 30, 1985. Retrieved November 6, 2011.
- ^ «kilo (n1)». Oxford English Dictionary (2nd ed.). Oxford: Oxford University Press. 1989. Retrieved November 8, 2011.
- ^ «kilo (n2)». Oxford English Dictionary (2nd ed.). Oxford: Oxford University Press. 1989. Retrieved November 8, 2011.
- ^ «Style Guide» (PDF). The Economist. January 7, 2002. Archived from the original (PDF) on July 1, 2017. Retrieved November 8, 2011.
- ^
«kilogram, kg, kilo». Termium Plus. Government of Canada. October 8, 2009. Retrieved May 29, 2019. - ^
«kilo». How Many?. Archived from the original on November 16, 2011. Retrieved November 6, 2011. - ^ 29th Congress of the United States, Session 1 (May 13, 1866). «H.R. 596, An Act to authorize the use of the metric system of weights and measures». Archived from the original on July 5, 2015.
- ^ «Metric System of Measurement:Interpretation of the International System of Units for the United States; Notice» (PDF). Federal Register. 63 (144): 40340. July 28, 1998. Archived from the original (PDF) on October 15, 2011. Retrieved November 10, 2011.
Obsolete Units As stated in the 1990 Federal Register notice, …
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 130, ISBN 92-822-2213-6, archived (PDF) from the original on June 4, 2021, retrieved December 16, 2021
- ^ Kennelly, A. E. (July 1903). «Magnetic Units and Other Subjects that Might Occupy Attention at the Next International Electrical Congress». Transactions of the American Institute of Electrical Engineers. XXII: 529–536. doi:10.1109/T-AIEE.1903.4764390. S2CID 51634810.
[p. 534] The expedient suggests itself of attaching the prefix ab or abs to a practical or Q. E. S. unit, in order to express the absolute or corresponding C. G. S. magnetic unit. … [p. 535] In a comprehensive system of electromagnetic terminology, the electric C. G. S. units should also be christened. They are sometimes referred to in electrical papers, but always in an apologetic, symbolical fashion, owing to the absence of names to cover their nakedness. They might be denoted by the prefix abstat.
- ^ Silsbee, Francis (April–June 1962). «Systems of Electrical Units». Journal of Research of the National Bureau of Standards Section C. 66C (2): 137–183. doi:10.6028/jres.066C.014.
- ^ Fleming, John Ambrose (1911). «Units, Physical» . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 27 (11th ed.). Cambridge University Press. pp. 738–745, see page 740.
- ^ a b Thomson, Sir W.; Foster, C. G.; Maxwell, J. C.; Stoney, G. J.; Jenkin, Fleeming; Siemens; Bramwell, F. J.; Everett (1873). Report of the 43rd Meeting of the British Association for the Advancement of Science. Vol. 43. Bradford. p. 223.
- ^ «The Electrical Congress». The Electrician. 7: 297. September 24, 1881. Retrieved June 3, 2020.
- ^ Giovanni Giorgi (1901), «Unità Razionali di Elettromagnetismo», Atti della Associazione Elettrotecnica Italiana (in Italian), Torino, OL 18571144M
Giovanni Giorgi (1902), Rational Units of Electromagnetism Original manuscript with handwritten notes by Oliver Heaviside Archived October 29, 2019, at the Wayback Machine - ^ a b c Giorgi, Giovanni (2018) [Originally published in June 1934 by the Central Office of the International Electrotechnical Commission (IEC), London, for IEC Advisory Committee No. 1 on Nomenclature, Section B: Electric and Magnetic Magnitudes and Units.]. «Memorandum on the M.K.S. System of Practical Units». IEEE Magnetics Letters. 9: 1–6. doi:10.1109/LMAG.2018.2859658.
- ^ Carron, Neal (2015). «Babel of Units. The Evolution of Units Systems in Classical Electromagnetism». arXiv:1506.01951 [physics.hist-ph].
- ^ a b Bridgman, P. W. (1922). Dimensional Analysis. Yale University Press.
- ^ Arthur E. Kennelly (1935), «Adoption of the Meter–Kilogram–Mass–Second (M.K.S.) Absolute System of Practical Units by the International Electrotechnical Commission (I.E.C.), Bruxelles, June, 1935», Proceedings of the National Academy of Sciences of the United States of America, 21 (10): 579–583, Bibcode:1935PNAS…21..579K, doi:10.1073/pnas.21.10.579, PMC 1076662, PMID 16577693
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6, archived (PDF) from the original on June 4, 2021, retrieved December 16, 2021
- ^ Resolution 6 – Proposal for establishing a practical system of units of measurement. 9th Conférence Générale des Poids et Mesures (CGPM). October 12–21, 1948. Retrieved May 8, 2011.
- ^ Pallab Ghosh (November 16, 2018). «Kilogram gets a new definition». BBC News. Retrieved November 16, 2018.
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 112, ISBN 92-822-2213-6, archived (PDF) from the original on June 4, 2021, retrieved December 16, 2021
- ^ Recommendation 1: Preparative steps towards new definitions of the kilogram, the ampere, the kelvin and the mole in terms of fundamental constants (PDF). 94th meeting of the International Committee for Weights and Measures. October 2005. p. 233. Archived (PDF) from the original on June 30, 2007. Retrieved February 7, 2018.
- ^ «NIST Backs Proposal for a Revamped System of Measurement Units». Nist. Nist.gov. October 26, 2010. Retrieved April 3, 2011.
- ^ Ian Mills (September 29, 2010). «Draft Chapter 2 for SI Brochure, following redefinitions of the base units» (PDF). CCU. Retrieved January 1, 2011.
- ^ Resolution 1 – On the possible future revision of the International System of Units, the SI (PDF). 24th meeting of the General Conference on Weights and Measures. Sèvres, France. October 17–21, 2011. Retrieved October 25, 2011.
- ^ a b «BIPM – Resolution 1 of the 25th CGPM». www.bipm.org. Retrieved March 27, 2017.
- ^ «General Conference on Weights and Measures approves possible changes to the International System of Units, including redefinition of the kilogram» (PDF) (Press release). Sèvres, France: General Conference on Weights and Measures. October 23, 2011. Retrieved October 25, 2011.
- ^ BIPM: SI Brochure: Section 3.2, The kilogram Archived March 29, 2016, at the Wayback Machine
- ^ «Prescribing Information for Liquid Medicines». Scottish Palliative Care Guidelines. Archived from the original on July 10, 2018. Retrieved June 15, 2015.
- ^ Tom Stobart, The Cook’s Encyclopedia, 1981, p. 525
- ^ J.J. Kinder, V.M. Savini, Using Italian: A Guide to Contemporary Usage, 2004, ISBN 0521485568, p. 231
- ^ Giacomo Devoto, Gian Carlo Oli, Nuovo vocabolario illustrato della lingua italiana, 1987, s.v. ‘ètto’: «frequentissima nell’uso comune: un e. di caffè, un e. di mortadella; formaggio a 2000 lire l’etto«
- ^ U.S. National Bureau of Standards, The International Metric System of Weights and Measures, «Official Abbreviations of International Metric Units», 1932, p. 13
- ^ «Jestřebická hovězí šunka 10 dkg | Rancherské speciality». eshop.rancherskespeciality.cz (in Czech). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ «Sedliacka šunka 1 dkg | Gazdovský dvor – Farma Busov Gaboltov». Sedliacka šunka 1 dkg (in Slovak). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ «sýr bazalkový – Farmářské Trhy». www.e-farmarsketrhy.cz (in Czech). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ «Termékek – Csíz Sajtműhely» (in Hungarian). Archived from the original on June 16, 2020. Retrieved June 16, 2020.
- ^ Non-SI units that are accepted for use with the SI, SI Brochure: Section 4 (Table 8), BIPM
External links[edit]
Wikimedia Commons has media related to Kilogram.
NIST: K20, the US National Prototype Kilogram resting on an egg crate fluorescent light panel |
BIPM: Steam cleaning a 1 kg prototype before a mass comparison |
BIPM: The IPK and its six sister copies in their vault |
The Age: Silicon sphere for the Avogadro Project |
NPL: The NPL’s Watt Balance project |
NIST: This particular Rueprecht Balance, an Austrian-made precision balance, was used by the NIST from 1945 until 1960 |
BIPM: The FB‑2 flexure-strip balance, the BIPM’s modern precision balance featuring a standard deviation of one ten-billionth of a kilogram (0.1 μg) |
BIPM: Mettler HK1000 balance, featuring 1 μg resolution and a 4 kg maximum mass. Also used by NIST and Sandia National Laboratories’ Primary Standards Laboratory |
Micro-g LaCoste: FG‑5 absolute gravimeter, (diagram), used in national laboratories to measure gravity to 2 μGal accuracy |
- NIST Improves Accuracy of ‘Watt Balance’ Method for Defining the Kilogram
- The UK’s National Physical Laboratory (NPL): Are any problems caused by having the kilogram defined in terms of a physical artefact? (FAQ – Mass & Density)
- NPL: NPL Kibble balance
- Metrology in France: Watt balance
- Australian National Measurement Institute: Redefining the kilogram through the Avogadro constant
- International Bureau of Weights and Measures (BIPM): Home page
- NZZ Folio: What a kilogram really weighs
- NPL: What are the differences between mass, weight, force and load?
- BBC: Getting the measure of a kilogram
- NPR: This Kilogram Has A Weight-Loss Problem, an interview with National Institute of Standards and Technology physicist Richard Steiner
- Avogadro and molar Planck constants for the redefinition of the kilogram
- Realization of the awaited definition of the kilogram
- Sample, Ian (November 9, 2018). «In the balance: scientists vote on first change to kilogram in a century». The Guardian. Retrieved November 9, 2018.
Videos[edit]
- The BIPM – YouTube channel
- «The role of the Planck constant in physics» – presentation at 26th CGPM meeting at Versailles, France, November 2018 when voting on superseding the IPK took place on YouTube
СОКРАЩЁННЫЕ ОБОЗНАЧЕНИЯ ЕДИНИЦ ВЕЛИЧИН
- СОКРАЩЁННЫЕ ОБОЗНАЧЕНИЯ ЕДИНИЦ ВЕЛИЧИН
-
А — ампер
а. е.- астрономическая единица
а. е. м.- атомная единица массы
Б — бел
Бк — беккерель
В — вольт
В-А — вольт-ампер
вар — вольт-ампер реактивный
Вб — вебер
Вт — ватт
г — грамм
га — гектар
Гн — генри
Гр — грэй
град — градус угловой
Гц — герц,
дБ — децибел
Дж — джоуль
дптр — диоптрия
Зв — зиверт
К — кельвин
кал — калория
кар — карат
кг — килограмм
кд — кандела
Кл — кулон
л — литр
лк — люкс
лм — люмен
м — метр
мес — месяц
миля — морская миля
мин — минута
Н — ньютон
нед — неделя
Нп — непер
окт — октава
Ом — ом
Па — паскаль
пк — парсек
рад — радиан
с — секунда
0С — градус Цельсия
св. год — световой год
См — сименс
см — сантиметр
ср — стерадиан
сут — сутки
т — тонна
Тл — тесла
уз — узел
Ф — фарад
ч — час
эВ — электронвольт
О единицах, во. много раз больших или меньших, см. статьи Дольные единицы и Кратные единицы.
Естествознание. Энциклопедический словарь.
Смотреть что такое «СОКРАЩЁННЫЕ ОБОЗНАЧЕНИЯ ЕДИНИЦ ВЕЛИЧИН» в других словарях:
-
Сокращённые обозначения единиц величин — А ампер Ǻ ангстрем ат атмосфера техническая атм атмосфера физическая бар бар Бк беккерель Бэр биологический эквивалент рентгена В вольт В•А вольт ампер Вт ватт Вт•ч ватт час г грамм Г генри га гектар Гб гильберт Гс гаусс Гц герц… … Ветеринарный энциклопедический словарь
-
Международная система единиц — Запрос «СИ» перенаправляется сюда; см. также другие значения. Иное название этого понятия «SI»; см. также другие значения. Эту страницу предлагается переименовать в Система интернациональная. Пояснение прич … Википедия
-
СИ — У этого термина существуют и другие значения, см. СИ (значения). У слова «Си» есть и другие значения: см. Си. У слова «SI» есть и другие значения: см. SI. Даты перехода на метрическую систему … Википедия
-
САНТИ — САНТИ… первая составная часть наименований единиц физ. величин, служащая для обозначения единиц, равных Z доле исходных. Сокращённые обозначения с: 1 см (сантиметр) = 0,01 м … Большая политехническая энциклопедия
-
История арифметики — Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия
-
Знаки валют — … Википедия
-
Планк, Макс — Эта статья о немецком физике. Другие значения термина в заглавии статьи см. на Планк (значения). Макс Планк Max Planck … Википедия
-
Двоичные приставки — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
-
История математики — История науки … Википедия