Краткий рассказ про юпитер

Юпитер – пятая планета от Солнца. Газовый гигант является самым большим объектом в нашей системе и регулярно получает массу внимания со стороны астрономов. К Юпитеру регулярно летают зонды, собирающие всевозможные сведения о небесном теле. С момента открытия люди уже успели достаточно изучить его и составить полное представление.

Общие сведения о Юпитере

Юпитер является пятой планетой от Солнца и относится к группе газовых гигантов. Свое название объект получил в честь древнеримского бога, который правит небом и остальными божествами.

Изображение Юпитера в красном фильтре

Изображение Юпитера в красном фильтре

За время своего существования планета успела обзавестись большим количеством спутников. На данный момент их число составляет 79. Из-за внушительных размеров Юпитер был замечен еще древними людьми: в греции его называли “Звездой Зевса”, а астрономы из Китая подробно описали траекторию движения гиганта на протяжении двенадцати лет.

Между Юпитером находятся Сатурн и Марс. Строение планеты состоит из атмосферы, нескольких слоев и ядра. А магнитное поле небесного тела имеет форму сплющенного диска.

Интересный факт: на Юпитере имеется повышенный радиационный фон. Находящийся на орбите аппарат Galileo получил дозу излучения, которое в 2500% превышает земную критическую отметку.

В 1979 году с помощью зонда Вояджер-1 было установлено, что Юпитер имеет кольца, просто разглядеть их можно лишь на близком расстоянии.

Размер

Наглядное сравнение размеров Земли и Юпитера

Наглядное сравнение размеров Земли и Юпитера

Радиус Юпитера составляет 69 911 км, что делает его самой большой планетой в Солнечной системе. Для сравнения, у второго по габаритам небесного тела – Сатурна данный параметр равен 57 350 км.

Ученые объясняют большой размер Юпитера тем, что это первая планета, которая начала формироваться в близости от Солнца. Она вобрала в себя большую часть вещества и газа, которые находились вокруг светила миллиарды лет назад. Позже солнечный ветер начал рассеивать все вокруг, но Юпитер сумел удержать возле себя определенные объекты.

Интересный факт: масса Юпитера в два раза больше, чем этот параметр у суммы всех объектов Солнечной системы, не считая самой звезды.

Благодаря своим размерам Юпитер хорошо заметен на небе. Его поверхность отражает солнечные лучи, из-за чего ночью его можно увидеть в виде белого пятна. Древние цивилизации ошибочно принимали его за звезду из-за яркого свечения.

В состав гиганта входит большое количество веществ, причем многие из них встречаются и на других объектах Солнечной системы. Это еще раз намекает на то, что Юпитер может быть первой планетой. Также на его поверхностях и в недрах происходит множество процессов, которые можно встретить на других небесных телах.

Орбита Юпитера

Орбита Юпитера и других планет

Орбита Юпитера и других планет

Планета вращается вокруг Солнца по овальной траектории. Полный оборот вокруг Солнца она совершает почти за 12 земных лет. Среднее расстояние до звезды составляет 778 млн км. Ее скорость движения в пространстве равна 46 800 км/ч, а вектор направления совпадает с большинством планет системы. Лишь Венера и Уран движутся в противоположную сторону.

Физические характеристики Юпитера

Поверхность Юпитера крупным планом

Поверхность Юпитера крупным планом

Поскольку Юпитер вобрал в себя свойства множества планет, он может похвастаться довольно интересными физическими характеристиками:

  • верхний слой облаков планеты имеет давление в одну атмосферу, температура на их поверхности составляет -107 градусов Цельсия; при углублении на 146 км давление увеличивается до 22 атмосфер, а температура возрастает до +156 градусов Цельсия;
  • средний диаметр планеты равен 139 822 км, что составляет одиннадцать земных;
  • площадь поверхности равна 62,18 млрд кв. км;
  • поскольку Юпитер является газовым гигантом, его плотность довольно невысока: 1,33 гр/куб.см;
  • из-за высокой силы притяжения ускорение свободного падения равно 24,8 м/с;
  • масса планеты равна 1898*E24, что превосходит земную в 318 раз.

По многим параметрам Юпитер является лидером среди планет Солнечной системы.

Состав, поверхность и строение

Внутреннее строение Юпитера

Внутреннее строение Юпитера

Юпитер представляет собой смесь из жидких и газообразных веществ. Атмосферный слой гиганта выполнен преимущественно из водорода (92%), остальная часть приходится на гелий (8%). Также незначительную долю веществ над поверхностью составляют фосфин, сера, этан, углерод, неон, сероводород и метан.

Под атмосферой находится слой газообразного водорода, в котором также растворен гелий и другие вещества. При углублении внутрь Юпитера можно наткнуться на следующий слой планеты, состоящий из жидкого водорода с аналогичными примесями. А под ним находится уровень металлического водорода. Фактически, газовый гигант представляет собой слои водорода в разных состояниях с наличием в них других веществ.

В самом центре небесного тела находится ядро, причем ученые до сих пор не могут прийти к окончательному выводу, является ли оно идеально круглым или имеет скалистую форму. Его наличие было доказано в 1997-ом году, когда на Юпитере открыли гравитацию. По предварительной оценке, оно состоит из жидкого металлического водорода и гелия, а его масса может составлять от 4 до 14% от всей планеты.

Также предполагается, что в центре Юпитера температура равна 35 700 градусов Цельсия, а давление – 4 500 ГПа. Для сравнения, считается, что на поверхности температура – 67 градусов Цельсия, а давление – 10 бар. Нужно пояснить, что это лишь теоретические данные, и на деле параметры могут быть совершенно иными. Эти значения получены лишь на основе поверхностных исследований и изучении планеты с большого расстояния, поскольку современные зонды не в состоянии подобраться вплотную к верхнему слою из-за большой радиации.

Атмосфера Юпитера

Художественное изображение урагана на Юпитере

Художественное изображение урагана на Юпитере

Газовый гигант обладает атмосферой в 1000 км, в которой давление варьируется от 20 до 220 кПА, что является довольно высоким показателем. Большую часть от веществ, находящихся над поверхностью, составляет водород (90%), второй по преобладанию компонент – гелий (10%). Также малая доля приходится на другие вещества.

Астрономы разделяют атмосферу на следующие слои (от верхнего к нижнему):

  • экзосфера;
  • термосфера;
  • стратосфера;
  • тропопауза;
  • тропосфера.

Состав уровней практически не меняется, отличаются лишь температура и давление. Причем если первый параметр постепенно увеличивается, то второй снижается. Отдельно можно выделить слой тропосферы, где из-за большой потери тепла появляются полярные сияния.

Интересный факт: скорость ветров в атмосфере Юпитера может достигать 600 км/ч.

Из-за изменения температуры, преобладания водорода и высокого давления учеными периодически наблюдаются полярные сияния на обоих полюсах.

Погода на Юпитере

На Юпитере бушуют бури и ураганы

На Юпитере бушуют бури и ураганы

На поверхности Юпитера постоянно гуляют ураганы и шторма, которые могут перемещаться по планете со скоростью до 600 км/ч. Причем их положение и форма могут существенно меняться даже в течение пары часов. Наглядным олицетворением всего буйства, что может твориться на планете, является Красное пятно – гигантская буря, которая отлично заметна в без сильного приближения. По оценкам, она длится уже несколько земных веков.

Большая часть планеты покрыта густыми облаками белого и коричневого цветов. Они представляют собой протяженные полосы с четкими границами и движутся с индивидуальными скоростями. Астрономы называют их тропическими районами. Образование полос появляется из-за хаотичных направлений воздуха, расположенных на разной высоте.

На газовом гиганте имеются участки, где воздушные потоки опускаются вниз. Такие области имеют темно-коричневый цвет и называются поясами. Также из-за особенностей воздуха имеются белые участки, называемые зонами.

Фактически, погода на Юпитере представляет собой бесконечные шторма из непроглядных облаков, которые имеют определенные размер, температуру и давление.

Температура планеты Юпитер

Температура на Юпитере сильно меняется в зависимости от рассматриваемого слоя

Температура на Юпитере сильно меняется в зависимости от рассматриваемого слоя

Каждый слой планеты обладает определенной температурой. Также этот параметр может сильно варьироваться и в рамках одного уровня, в зависимости от условий. Причем из-за невозможности детального изучения Юпитера в связи с большой радиацией, иногда ученым остается лишь предполагать, какие термические условия находятся в определенной области.

Считается, что ядро газового гиганта сильно раскалено, и внутри него температура может доходить до 35 700 градусов Цельсия. Вокруг него находится толстый слой жидкого металлического водорода. Астрономы до сих пор не могут хорошо изучить его. Однако имеющихся данных хватает для того, чтобы спрогнозировать возможную температуру на этом уровне. Для перехода металлического водорода из твердого в жидкое состояние требуется большая температура, но из-за высокого давления, которое присутствует на Юпитере, достаточно поддерживать данный параметр в диапазоне от 6 000 до 21 000 градусов Цельсия.

На поверхности гиганта преобладает отрицательная температура, которая может достигать до -170 градусов. Нижние слои атмосферы по температуре не сильно отличаются, и ее средний параметр составляет -145.

На верхних слоях облаков, начиная с высоты в 320 км, термические свойства начинают возрастать. И на границе термосферы и экзосферы (примерно 1000 км) температура уже может достигать 600 градусов Цельсия. Ученые до сих пор не могут объяснить, почему по мере поднятия с поверхности климатические условия в атмосфере Юпитера становятся более жаркими. По всем прогнозам, температура верхних слоев должна снижаться или сохранять такие же показатели, как в тропопаузе.

Спутники Юпитера

Юпитер имеет 79 спутников, что является самым большим показателем среди планет Солнечной системы. Первые из них открыл Галилей в 1610 году с помощью изобретенного им телескопа. Наблюдая планету сквозь линзы, он практически сразу заметил четыре яркие точки, расположенные вблизи от гиганта. Что удивительно, они находились на одной линии, но постепенно двигались вокруг планеты.

Интересный факт: открытие спутников позволило Галилею доказать, что не все объекты во вселенной вращаются вокруг Земли. Из-за этого он подвергся гонениям католической церкви, которая утверждала, что третья планета от Солнца – центр мироздания.

Галилеевские спутники Юпитера: Каллисто, Ганимед, Европа, Ио

Галилеевские спутники Юпитера: Каллисто, Ганимед, Европа, Ио

Первые четыре спутника прозвали “галилеевскими”, в их состав входят:

  1. Ио. Ближайшее небесное тело к Юпитеру, имеет диаметр 3 642 км. Из-за высокого содержания серы его поверхность имеет желтый цвет, также на ней находится более 400 активных вулканов, что является рекордным показателем среди всех объектов Солнечной системы.
  2. Европа. Данный спутник знаменит своей гладкой поверхностью. Небесное тело обладает диаметром в 3 120 км, и на нем практически отсутствуют кратеры. Зато присутствуют трещины и полосы, из-за чего Европа имеет серо-коричневый окрас.
  3. Ганимед. Является самым крупным спутником в Солнечной системе: его диаметр равен 5 268 км. Поверхность состоит из участков, усеянных кратерами, а также из скалистых областей. Внешне Ганимед серого цвета из-за силикатных пород и ледяных озер. Есть предположение, что подо льдом находится вода в жидком состоянии.
  4. Каллисто. Диаметр спутника равен 4 820 км, а сам он состоит из льда и горных пород. Поскольку вокруг него отсутствует сильный радиационный фон, люди не исключают в будущем установки станции для изучения Юпитера.

Вслед за четырьмя спутниками, открытыми Галилеем, в их список постепенно начали добавляться новые. Астрономы активно изучали пятую планету и обнаруживали тела, находящиеся под влиянием ее притяжения.

Большое красное пятно

Изображение Большого красного пятна

Изображение Большого красного пятна

Из-за того, что Юпитер слишком быстро вращается вокруг своей оси, на его поверхности регулярно появляются ураганы, которые легко отличить по индивидуальным цветам облаков. Они представляют собой длинные полосы и прочие участки, которые движутся с большой скоростью.

В 1664-ом году астрономы нашли на поверхности гиганта Большое красное пятно. Оно является штормом больших размеров, который до сих пор никак не прекратится.

Интересный факт: по размерам Красное пятно в два раза превосходит Землю.

Однако длительные наблюдения показали, что начиная с 1930-го года ураган начал постепенно уменьшаться. Причем с каждым годом сжатие пятна происходит все быстрее. Возможно, через несколько десятков лет его будет тяжело различить без сильного увеличения.

Радиация

Радиационные пояса Юпитера

Радиационные пояса Юпитера

Из-за большого давления внутри планеты, водород, являющийся основным компонентом, находится в жидком состоянии. Его электроны прекрасно проводят электричество, что в сумме с быстрым вращением гиганта порождает мощнейшее магнитное поле. Оно притягивает заряженные частицы, которые содержатся в солнечных ветрах и спутниках Юпитера. Часть из них порождает полярные сияния на полюсах планеты, а остальные разгоняются до высоких скоростей, создавая радиоактивные пояса. Излучение в них является самым мощным в Солнечной системе.

Кольца Юпитера

Кольца Юпитера

Кольца Юпитера

Юпитер имеет кольца, правда они не так заметны, как у Сатурна. Они состоят преимущественно из пыли и мелкой крошки, которая удерживается за счет силы притяжения газового гиганта.

Считается, что кольца Юпитера образовались из-за частого столкновения его спутников с астероидами. От удара небольшие объекты улетали в открытый космос и притягивались планетой, а ее стремительная скорость вращения сформировала из них кольца.

Расстояние до Солнца и Земли

Демонстрация максимального и минимального расстояния от Юпитера до Солнца

Демонстрация максимального и минимального расстояния от Юпитера до Солнца

Минимальное расстояние до звезды (перигелий) составляет 740,57 млн км, а максимальное (афелий) – 816,52 млн км. К Земле гигант приближается на расстояние в 588 млн км, а отдаляется до 967 млн км. Лучшее время для наблюдения за гигантом случается каждые 13 месяцев. Например, в 2019 году он ближе всего подошел к Земле 10 июня, а в 2020-ом году Юпитер окажется близко 10 июля.

Период вращения по орбите

Полный оборот вокруг Солнца Юпитер совершает за 4 331 день, для этого он движется со скоростью 13 км/с. Орбита гиганта наклонена на 6 градусов относительно экватора Солнца. Причем из-за внушительных размеров планета имеет со светилом центр масс, который находится за пределами звезды.

Поскольку Юпитер обладает небольшим наклоном оси – всего 3,13 градусов, на нем отсутствует смена времен года.

Происхождение названия планеты

Римский бог Юпитер

Римский бог Юпитер

Поскольку Юпитер хорошо заметен на небе, еще в древности люди давали ему различные названия. Римляне прозвали гиганта в честь своего бога неба и грома. Даже когда на территории государства было введено христианство, древние мифы так плотно вошли в быт жителей, что их было невозможно искоренить. Такая ситуация получилась и с астрономией. До сих пор многие звезды, планеты и галактики носят имена древних богов, и Юпитер не является исключением.

Возраст планеты

Точно нельзя сказать, когда именно появился Юпитер. Поскольку планета полностью состоит из газов, а любая техника довольно быстро выходит из строя по мере приближения к поверхности, у ученых отсутствует возможность взять образцы почвы и произвести какие-либо анализы.

Считается, что Юпитер появился 4,6 млрд лет назад, когда образовалась Солнечная система. После взрыва сверхновой в пространстве, где сейчас находятся планеты, возникло облако из газа и пыли. Взрывная волна оказала на него сильное давление, из-за которого в определенных местах начали формироваться уплотнения. Постепенно они превратились в планеты.

Как образовался Юпитер

Иллюстрация газов, окутывающих молодое Солнце, из которых появился Юпитер

Иллюстрация газов, окутывающих молодое Солнце, из которых появился Юпитер

Юпитер образовался из водорода и гелия, которые находились в пространстве на ранних этапах появления Солнечной системы. Мелкие частицы постепенно сталкивались друг с другом и сливались в единое целое, пока не превратились в газового гиганта.

Поскольку планета обладает большими размерами, ученые предполагают, что она появилась раньше объектов земной группы, поскольку ей ничего не мешало поглощать газ в пространстве.

По предварительным оценкам, Юпитер формировался на протяжении нескольких миллионов лет. Газы постепенно собирались в единое целое, образуя круг гигантских размеров.

История изучения

Планета хорошо заметна с Земли, из-за чего о ее существовании знали еще в Вавилоне в VIII веке до н.э. Птолемей во II веке создал геоцентрическую модель и определил, что Юпитер делает оборот вокруг Земли за 4332 дня. Спустя триста лет математик Ариабхата повторил опыты астронома и уточнил период обращения вплоть до часов.

Галилей смотрит в телескоп собственного изобретения

Галилей смотрит в телескоп собственного изобретения

В 1610-ом году Галилей с помощью телескопа рассмотрел газовый гигант и открыл четыре спутника, вращающихся вокруг него. Это натолкнуло ученого на мысль, что не все небесные объекты движутся вокруг Земли. Также благодаря этому была доказана справедливость гелиоцентрической модели, которая утверждает, что планеты движутся вокруг Солнца.

В 1660-х годах к изучению Юпитера приступил астроном Кассини, который использовал улучшенную модель телескопа, позволяющую добиться большего увеличения. Через 30 лет он подробно описал вращение гиганта вокруг своей оси, а также выделил зоны в атмосфере, которые вращаются с разными скоростями.

Генрих Швабе в 1831-ом году первым обнаружил Большое красное пятно. Ученый дал урагану подробное описание, однако ему не хватило данных, чтобы точно объяснить причину образования этого явления.

Альматея - спутник Юпитера

Альматея – спутник Юпитера

В 1892-ом году был открыт пятый спутник Юпитера – Альматея. Ее в телескоп разглядел Э. Бернард. В 1955-ом за счет радиоволн и их взаимодействия с объектами в пространстве была определена точная скорость вращения газового гиганта.

Начиная со второй половины XIX века и по сей день ведется непрерывное наблюдение за Юпитером. Астрономы собирают сведения об объекте и пытаются составить полное представление о нем. Но технологиям еще предстоит сделать большой шаг вперед, прежде чем зонды смогут подобраться вплотную к поверхности Юпитера.

Интересное видео о Юпитере

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Сообщение о Юпитере

На чтение 2 мин Обновлено 5 февраля, 2022

Рассказ о Юпитере для детей содержит информацию о том какая температура на Юпитере, о его спутниках и особенностях. Сообщение о Юпитере Вы можете дополнить интересными фактами.

Краткое сообщение о Юпитере

Юпитер — самая большая планета Солнечной системы.   Один Юпитер весит в два с половиной раза больше, чем все остальные планеты всместе.  Чтобы долететь до Юпитера потребуется примерно 2 года. Название планеты происходит от имени верховного бога-громовержца Древнего Рима.

А еще здесь есть Большое Красное Пятно. Люди следят за этим пятном уже более 300 лет. За это время оно не раз меняло свои размеры и яркость, временами ненадолго исчезало. Ученые считают, что это гигантский атмосферный вихрь.

В атмосфере Юпитера расположены длинные слои облаков, из-за которых Юпитер выглядит полосатым. Кольцо этой планеты, в отличии от кольца Сатурна, узкое, и не такое уж заметное.

Эта планета относится к газовым гигантам, то есть плотным в ней может быть только внутреннее ядро. Континентов там нет, т.к. нет как таковой поверхности, по докладам учёных она газовая и представляет собой кипящий океан жидкого водорода. На Юпитере настолько высокое давление, что водород там становится жидким. А поскольку на этой планете ещё и очень высокая температура, такая же, как на поверхности Солнца: +6000 градусов Цельсия (а ядро ещё горячее), то жизни там быть не может.

В составе атмосферы обнаружены в основном водород и гелий, другие газы: азот, сероводород, аммиак имеются в небольших количествах.

Удивительно, но в облаках атмосферы температура отрицательная — -130 градусов по Цельсию.

Диаметр Юпитера около 140 тыс. км. Масса Юпитера превышает в 317,8 раз — массу Земли.

Год на Юпитере длится 12 земных лет. Именно столько времени требуется, чтобы Юпитер совершил полный оборот вокруг Солнца. Зато вокруг своей оси он оборачивается менее чем за 10 часов. Среднее расстояние Юпитера от солнца составляет 778 млн. км.

У Юпитера 69 спутников. Все они вращаются в противоположном направлении от вращения самой планеты. Возможно, что число спутников больше, но пока они неизвестны для ученых. Среди спутников Юпитера самые большие: Каллисто, Ио, Европа и Ганимед. Один из них — Ганимед — самый большой спутник в Солнечной системе.

Jupiter ♃

see caption

Full disk view of Jupiter in natural color, with the shadow of its largest moon Ganymede cast onto it and the Great Red Spot at the left horizon.

Designations
Pronunciation (listen)[1]

Named after

Jupiter
Adjectives Jovian
Orbital characteristics[7]
Epoch J2000
Aphelion 816.363 Gm (5.4570 AU)
Perihelion 740.595 Gm (4.9506 AU)

Semi-major axis

778.479 Gm (5.2038 AU)
Eccentricity 0.0489

Orbital period (sidereal)

  • 11.862 yr
  • 4,332.59 d
  • 10,476.8 Jovian solar days[2]

Orbital period (synodic)

398.88 d

Average orbital speed

13.07 km/s (8.12 mi/s)

Mean anomaly

20.020°[3]
Inclination
  • 1.303° to ecliptic[3]
  • 6.09° to Sun’s equator[3]
  • 0.32° to invariable plane[4]

Longitude of ascending node

100.464°

Time of perihelion

21 January 2023[5]

Argument of perihelion

273.867°[3]
Known satellites 84 (as of 2023)[6]
Physical characteristics[7][13][14]

Mean radius

69,911 km (43,441 mi)[a]
10.973 of Earth’s

Equatorial radius

71,492 km (44,423 mi)[a]
11.209 of Earth’s

Polar radius

66,854 km (41,541 mi)[a]
10.517 of Earth’s
Flattening 0.06487

Surface area

6.1469×1010 km2 (2.3733×1010 sq mi)
120.4 of Earth’s
Volume 1.4313×1015 km3 (3.434×1014 cu mi)[a]
1,321 of Earth’s
Mass 1.8982×1027 kg (4.1848×1027 lb)

  • 317.8 of Earth’s
  • 1/1047 of Sun’s[8]

Mean density

1,326 kg/m3 (2,235 lb/cu yd)[b]

Surface gravity

24.79 m/s2 (81.3 ft/s2)[a]
2.528 g

Moment of inertia factor

0.2756±0.0006[9]

Escape velocity

59.5 km/s (37.0 mi/s)[a]

Synodic rotation period

9.9258 h (9 h 55 m 33 s)[2]

Sidereal rotation period

9.9250 hours (9 h 55 m 30 s)

Equatorial rotation velocity

12.6 km/s (7.8 mi/s; 45,000 km/h)

Axial tilt

3.13° (to orbit)

North pole right ascension

268.057°; 17h 52m 14s

North pole declination

64.495°
Albedo 0.503 (Bond)[10]
0.538 (geometric)[11]
Temperature 88 K (−185 °C) (blackbody temperature)
Surface temp. min mean max
1 bar 165 K
0.1 bar 78 K 128 K

Apparent magnitude

−2.94[12] to −1.66[12]

Angular diameter

29.8″ to 50.1″
Atmosphere[7]

Surface pressure

200–600 kPa (30–90 psi)
(opaque cloud deck)[15]

Scale height

27 km (17 mi)
Composition by volume
  • 89%±2.0% hydrogen
  • 10%±2.0% helium
  • 0.3%±0.1% methane
  • 0.026%±0.004% ammonia
  • 0.0028%±0.001% hydrogen deuteride
  • 0.0006%±0.0002% ethane
  • 0.0004%±0.0004% water

Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, while being slightly less than one-thousandth the mass of the Sun. Jupiter is the third brightest natural object in the Earth’s night sky after the Moon and Venus, and it has been observed since prehistoric times. It was named after Jupiter, the chief deity of ancient Roman religion.

Jupiter is primarily composed of hydrogen, but helium constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but (like the Solar System’s other giant planets) lacks a well-defined solid surface. The ongoing contraction of Jupiter’s interior generates more heat than the planet receives from the Sun. Because of its rapid rotation, the planet’s shape is an oblate spheroid, having a slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries. A prominent result of this is the Great Red Spot, a giant storm which has been observed since at least 1831.

Jupiter is surrounded by a faint planetary ring system and a powerful magnetosphere. The planet’s magnetic tail is nearly 800 million kilometres (5.3 astronomical units; 500 million miles) long, covering nearly the entire distance to Saturn’s orbit. Jupiter has 84 known moons and likely many more, including the four large moons discovered by Galileo Galilei in 1610: Io, Europa, Ganymede, and Callisto. Io and Europa are about the size of Earth’s Moon, Ganymede is larger than the planet Mercury, and Callisto slightly smaller than Ganymede.

Pioneer 10 was the first spacecraft to visit Jupiter, making its closest approach to the planet in December 1973. Jupiter has since been explored by multiple robotic spacecraft, beginning with the Pioneer and Voyager flyby missions from 1973 to 1979, and later with the Galileo orbiter in 1995. In 2007, New Horizons visited Jupiter using its gravity to increase its speed, bending its trajectory en route to Pluto. The latest probe to visit Jupiter, Juno, entered its orbit in July 2016. Future targets for exploration in the Jupiter system include Europa, which likely has an ice-covered liquid ocean.

Name and symbol

In both the ancient Greek and Roman civilizations, Jupiter was named after the chief god of the divine pantheon: Zeus for the Greeks and Jupiter for the Romans. The International Astronomical Union formally adopted the name Jupiter for the planet in 1976, and has since named newly discovered satellites for the god’s lovers, favourites, and descendants.[16] The planetary symbol for Jupiter, ♃, descends from a Greek zeta with a horizontal stroke, ⟨Ƶ⟩, as an abbreviation for Zeus.[17][18]

In Germanic mythology, Jupiter is equated to Thor, the namesake of Thursday.[19] It has been theorized that this replaced the Latin name for the day, i.e. Dies Iovi (‘Day of Jupiter’).[20] The Latin name Iovis is associated with the etymology of Zeus (‘sky father’). The English equivalent, Jove, is only known to have come into use as a poetic name for the planet around the 14th century.[21]

The original Greek deity Zeus supplies the root zeno-, which is used to form some Jupiter-related words, such as zenographic.[c] Jovian is the adjectival form of Jupiter. The older adjectival form jovial, employed by astrologers in the Middle Ages, has come to mean ‘happy’ or ‘merry’, moods ascribed to Jupiter’s influence in astrology.[22]

Formation and migration

Jupiter is believed to be the oldest planet in the Solar System.[23] Current models of Solar System formation suggest that Jupiter formed at or beyond the snow line: a distance from the early Sun where the temperature is sufficiently cold for volatiles such as water to condense into solids.[24] The planet began as a solid core, which then accumulated its gaseous atmosphere. As a consequence, the planet must have formed before the solar nebula was fully dispersed.[25] During its formation, Jupiter’s mass gradually increased until it had 20 times the mass of the Earth (about half of which was made up of silicates, ices and other heavy-element constituents). When the proto-Jupiter grew larger than 50 Earth masses it created a gap in the solar nebula. Thereafter, the growing planet reached its final masses in 3–4 million years.[23]

According to the «grand tack hypothesis», Jupiter began to form at a distance of roughly 3.5 AU (520 million km; 330 million mi) from the Sun. As the young planet accreted mass, interaction with the gas disk orbiting the Sun and orbital resonances with Saturn caused it to migrate inward.[24][26] This upset the orbits of several super-Earths orbiting closer to the Sun, causing them to collide destructively. Saturn would later have begun to migrate inwards too, much faster than Jupiter, until the two planets became captured in a 3:2 mean motion resonance at approximately 1.5 AU (220 million km; 140 million mi) from the Sun. This changed the direction of migration, causing them to migrate away from the Sun and out of the inner system to their current locations.[27] All of this happened over a period of 3–6 million years, with the final migration of Jupiter occurring over several hundred thousand years.[26][28] Jupiter’s departure from the inner solar system eventually allowed the inner planets—including Earth—to form from the rubble.[29]

There are several problems with the grand tack hypothesis. The resulting formation timescales of terrestrial planets appear to be inconsistent with the measured elemental composition.[30] It is likely that Jupiter would have settled into an orbit much closer to the Sun if it had migrated through the solar nebula.[31] Some competing models of Solar System formation predict the formation of Jupiter with orbital properties that are close to those of the present day planet.[25] Other models predict Jupiter forming at distances much farther out, such as 18 AU (2.7 billion km; 1.7 billion mi).[32][33]

Based on Jupiter’s composition, researchers have made the case for an initial formation outside the molecular nitrogen (N2) snowline, which is estimated at 20–30 AU (3.0–4.5 billion km; 1.9–2.8 billion mi) from the Sun,[34][35] and possibly even outside the argon snowline, which may be as far as 40 AU (6.0 billion km; 3.7 billion mi). Having formed at one of these extreme distances, Jupiter would then have migrated inwards to its current location. This inward migration would have occurred over a roughly 700,000-year time period,[32][33] during an epoch approximately 2–3 million years after the planet began to form. In this model, Saturn, Uranus and Neptune would have formed even further out than Jupiter, and Saturn would also have migrated inwards.

Physical characteristics

Jupiter is a gas giant, being primarily composed of gas and liquid rather than solid matter. It is the largest planet in the Solar System, with a diameter of 142,984 km (88,846 mi) at its equator.[36] The average density of Jupiter, 1.326 g/cm3, is about the same as simple syrup (syrup USP),[37] and is lower than those of the four terrestrial planets.[38][39]

Composition

Jupiter’s upper atmosphere is about 90% hydrogen and 10% helium by volume. Since helium atoms are more massive than hydrogen molecules, Jupiter’s atmosphere is approximately 24% helium by mass.[40] The atmosphere contains trace amounts of methane, water vapour, ammonia, and silicon-based compounds. There are also fractional amounts of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found.[41] The interior of Jupiter contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements.[42][43]

The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun.[44] Helium is also reduced to about 80% of the Sun’s helium composition. This depletion is a result of precipitation of these elements as helium-rich droplets, a process that happens deep in the interior of the planet.[45][46]

Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more of the next most common elements, including oxygen, carbon, nitrogen, and sulfur.[47] These planets are known as ice giants, because the majority of their volatile compounds are in solid form.

Size and mass

see caption

Jupiter with its moon Europa on the left. Earth’s diameter is 11 times smaller than Jupiter, and 4 times larger than Europa.

Jupiter’s mass is 2.5 times that of all the other planets in the Solar System combined—so massive that its barycentre with the Sun lies above the Sun’s surface at 1.068 solar radii from the Sun’s centre.[48] Jupiter is much larger than Earth and considerably less dense: it has 1,321 times the volume of the Earth, but only 318 times the mass.[7][49]: 6  Jupiter’s radius is about one tenth the radius of the Sun,[50] and its mass is one thousandth the mass of the Sun, as the densities of the two bodies are similar.[51] A «Jupiter mass» (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. For example, the extrasolar planet HD 209458 b has a mass of 0.69 MJ, while Kappa Andromedae b has a mass of 12.8 MJ.[52]

Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would decrease despite the increasing amount of matter. For smaller changes in its mass, the radius would not change appreciably.[53] As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve.[54] The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved.[55] Although Jupiter would need to be about 75 times more massive to fuse hydrogen and become a star,[56] the smallest red dwarf may be only slightly larger in radius than Saturn.[57]

Jupiter radiates more heat than it receives through solar radiation, due to the Kelvin–Helmholtz mechanism within its contracting interior.[58]: 30 [59] This process causes Jupiter to shrink by about 1 mm (0.039 in)/yr.[60][61] When it formed, Jupiter was hotter and was about twice its current diameter.[62]

Internal structure

Diagram of Jupiter, its interior, surface features, rings, and inner moons.

Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense core, a surrounding layer of liquid metallic hydrogen (with some helium) extending outward to about 80% of the radius of the planet,[63] and an outer atmosphere consisting primarily of molecular hydrogen.[61] Alternatively, if the planet collapsed directly from the gaseous protoplanetary disk, it was expected to completely lack a core, consisting instead of denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the Juno mission showed that Jupiter has a very diffuse core that mixes into its mantle.[64][65][66] This mixing process could have arisen during formation, while the planet accreted solids and gases from the surrounding nebula.[67] Alternatively, it could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter’s formation, which would have disrupted an originally solid Jovian core.[68][69] It is estimated that the core takes up 30–50% of the planet’s radius, and contains heavy elements with a combined mass 7–25 times the Earth.[70]

Outside the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen’s critical pressure of 1.3 MPa and critical temperature of 33 K (−240.2 °C; −400.3 °F).[71] In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. The hydrogen and helium gas extending downward from the cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids.[58]: 22 [72][73][74] Physically, the gas gradually becomes hotter and denser as depth increases.[75][76]

Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere.[45][77] Calculations suggest that helium drops separate from metallic hydrogen at a radius of 60,000 km (37,000 mi) (11,000 km (6,800 mi) below the cloud tops) and merge again at 50,000 km (31,000 mi) (22,000 km (14,000 mi) beneath the clouds).[78] Rainfalls of diamonds have been suggested to occur, as well as on Saturn[79] and the ice giants Uranus and Neptune.[80]

The temperature and pressure inside Jupiter increase steadily inward because the heat of planetary formation can only escape by convection.[46] At a surface depth where the atmospheric pressure level is 1 bar (0.10 MPa), the temperature is around 165 K (−108 °C; −163 °F). The region of supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of 50–400 GPa with temperatures of 5,000–8,400 K (4,730–8,130 °C; 8,540–14,660 °F), respectively. The temperature of Jupiter’s diluted core is estimated to be 20,000 K (19,700 °C; 35,500 °F) with a pressure of around 4,000 GPa.[81]

Atmosphere

Timelapse of Jupiter’s cloud system moving over the course of one month (photographed during Voyager 1 flyby in 1979)

The atmosphere of Jupiter extends to a depth of 3,000 km (2,000 mi) below the cloud layers.[81]

Cloud layers

View of Jupiter’s south pole

Enhanced colour view of Jupiter’s southern storms

Jupiter is perpetually covered with clouds of ammonia crystals, which may contain ammonium hydrosulfide as well.[82] The clouds are located in the tropopause layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 100 metres per second (360 km/h; 220 mph) are common in zonal jet streams.[83] The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them.[49]: 6 

The cloud layer is about 50 km (31 mi) deep, and consists of at least two decks of ammonia clouds: a thin clearer region on top with a thick lower deck. There may be a thin layer of water clouds underlying the ammonia clouds, as suggested by flashes of lightning detected in the atmosphere of Jupiter.[84] These electrical discharges can be up to a thousand times as powerful as lightning on Earth.[85] The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior.[86] The Juno mission revealed the presence of «shallow lightning» which originates from ammonia-water clouds relatively high in the atmosphere.[87] These discharges carry «mushballs» of water-ammonia slushes covered in ice, which fall deep into the atmosphere.[88] Upper-atmospheric lightning has been observed in Jupiter’s upper atmosphere, bright flashes of light that last around 1.4 milliseconds. These are known as «elves» or «sprites» and appear blue or pink due to the hydrogen.[89][90]

The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons.[58]: 39 [91] These colourful compounds, known as chromophores, mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising convection cells form crystallising ammonia that hides the chromophores from view.[92]

Jupiter’s low axial tilt means that the poles always receive less solar radiation than the planet’s equatorial region. Convection within the interior of the planet transports energy to the poles, balancing out the temperatures at the cloud layer.[49]: 54 

Great Red Spot and other vortices

The best known feature of Jupiter is the Great Red Spot,[93] a persistent anticyclonic storm located 22° south of the equator. It is known to have existed since at least 1831,[94] and possibly since 1665.[95][96] Images by the Hubble Space Telescope have shown as many as two «red spots» adjacent to the Great Red Spot.[97][98] The storm is visible through Earth-based telescopes with an aperture of 12 cm or larger.[99] The oval object rotates counterclockwise, with a period of about six days.[100] The maximum altitude of this storm is about 8 km (5 mi) above the surrounding cloud tops.[101] The Spot’s composition and the source of its red colour remain uncertain, although photodissociated ammonia reacting with acetylene is a likely explanation.[102]

The Great Red Spot is larger than the Earth.[103] Mathematical models suggest that the storm is stable and will be a permanent feature of the planet.[104] However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately 41,000 km (25,500 mi) across. By the time of the Voyager flybys in 1979, the storm had a length of 23,300 km (14,500 mi) and a width of approximately 13,000 km (8,000 mi).[105] Hubble observations in 1995 showed it had decreased in size to 20,950 km (13,020 mi), and observations in 2009 showed the size to be 17,910 km (11,130 mi). As of 2015, the storm was measured at approximately 16,500 by 10,940 km (10,250 by 6,800 mi),[105] and was decreasing in length by about 930 km (580 mi) per year.[103][106] In October 2021, a Juno flyby mission measured the depth of the Great Red Spot, putting it at around 300–500 kilometres (190–310 mi).[107]

Juno missions show that there are several polar cyclone groups at Jupiter’s poles. The northern group contains nine cyclones, with a large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one.[108][109] These polar structures are caused by the turbulence in Jupiter’s atmosphere and can be compared with the hexagon at Saturn’s north pole.

Formation of Oval BA from three white ovals

In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named Oval BA. It has since increased in intensity and changed from white to red, earning it the nickname «Little Red Spot».[110][111]

In April 2017, a «Great Cold Spot» was discovered in Jupiter’s thermosphere at its north pole. This feature is 24,000 km (15,000 mi) across, 12,000 km (7,500 mi) wide, and 200 °C (360 °F) cooler than surrounding material. While this spot changes form and intensity over the short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant vortex similar to the Great Red Spot, and appears to be quasi-stable like the vortices in Earth’s thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow.[112]

Magnetosphere

Jupiter’s magnetic field is the strongest of any planet in the Solar System,[92] with a dipole moment of 4.170 gauss (0.4170 mT) that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from 2 gauss (0.20 mT) up to 20 gauss (2.0 mT).[113] This field is thought to be generated by eddy currents—swirling movements of conducting materials—within the liquid metallic hydrogen core. At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter’s magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter’s lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind.[58]: 69 

The volcanoes on the moon Io emit large amounts of sulfur dioxide, forming a gas torus along the moon’s orbit. The gas is ionized in Jupiter’s magnetosphere, producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter’s equatorial plane. The plasma in the sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magnetodisk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30 MHz that are detectable from Earth with consumer-grade shortwave radio receivers.[114][115] As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the radio output of the Sun.[116]

Planetary rings

Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring.[117] These rings appear to be made of dust, while Saturn’s rings are made of ice.[58]: 65  The main ring is most likely made out of material ejected from the satellites Adrastea and Metis, which is drawn into Jupiter because of the planet’s strong gravitational influence. New material is added by additional impacts.[118] In a similar way, the moons Thebe and Amalthea are believed to produce the two distinct components of the dusty gossamer ring.[118] There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon’s orbit.[119]

Orbit and rotation

see caption

Jupiter is the only planet whose barycentre with the Sun lies outside the volume of the Sun, though by only 7% of the Sun’s radius.[120][121] The average distance between Jupiter and the Sun is 778 million km (5.2 AU) and it completes an orbit every 11.86 years. This is approximately two-fifths the orbital period of Saturn, forming a near orbital resonance.[122] The orbital plane of Jupiter is inclined 1.30° compared to Earth. Because the eccentricity of its orbit is 0.049, Jupiter is slightly over 75 million km nearer the Sun at perihelion than aphelion.[7]

The axial tilt of Jupiter is relatively small, only 3.13°, so its seasons are insignificant compared to those of Earth and Mars.[123]

Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours; this creates an equatorial bulge easily seen through an amateur telescope. Because Jupiter is not a solid body, its upper atmosphere undergoes differential rotation. The rotation of Jupiter’s polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere.[124] The planet is an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between its poles.[76] On Jupiter, the equatorial diameter is 9,276 km (5,764 mi) longer than the polar diameter.[7]

Three systems are used as frames of reference for tracking the planetary rotation, particularly when graphing the motion of atmospheric features. System I applies to latitudes from 7° N to 7° S; its period is the planet’s shortest, at 9h 50 m 30.0s. System II applies at latitudes north and south of these; its period is 9h 55 m 40.6s.[125] System III was defined by radio astronomers and corresponds to the rotation of the planet’s magnetosphere; its period is Jupiter’s official rotation.[126]

Observation

see caption

Jupiter and four Galilean moons seen through an amateur telescope

Jupiter is usually the fourth brightest object in the sky (after the Sun, the Moon, and Venus),[92] although at opposition Mars can appear brighter than Jupiter. Depending on Jupiter’s position with respect to the Earth, it can vary in visual magnitude from as bright as −2.94 at opposition down to −1.66 during conjunction with the Sun.[12] The mean apparent magnitude is −2.20 with a standard deviation of 0.33.[12] The angular diameter of Jupiter likewise varies from 50.1 to 30.5 arc seconds.[7] Favourable oppositions occur when Jupiter is passing through the perihelion of its orbit, bringing it closer to Earth.[127] Near opposition, Jupiter will appear to go into retrograde motion for a period of about 121 days, moving backward through an angle of 9.9° before returning to prograde movement.[128]

Because the orbit of Jupiter is outside that of Earth, the phase angle of Jupiter as viewed from Earth is always less than 11.5°; thus, Jupiter always appears nearly fully illuminated when viewed through Earth-based telescopes. It was only during spacecraft missions to Jupiter that crescent views of the planet were obtained.[129] A small telescope will usually show Jupiter’s four Galilean moons and the prominent cloud belts across Jupiter’s atmosphere. A larger telescope with an aperture of 4–6 in (10.16–15.24 cm) will show Jupiter’s Great Red Spot when it faces Earth.[130][131]

History

Pre-telescopic research

Model in the Almagest of the longitudinal motion of Jupiter (☉) relative to Earth (🜨)

Observation of Jupiter dates back to at least the Babylonian astronomers of the 7th or 8th century BC.[132] The ancient Chinese knew Jupiter as the «Suì Star» (Suìxīng 歲星) and established their cycle of 12 earthly branches based on the approximate number of years it takes Jupiter to rotate around the Sun; the Chinese language still uses its name (simplified as ) when referring to years of age. By the 4th century BC, these observations had developed into the Chinese zodiac,[133] and each year became associated with a Tai Sui star and god controlling the region of the heavens opposite Jupiter’s position in the night sky. These beliefs survive in some Taoist religious practices and in the East Asian zodiac’s twelve animals. The Chinese historian Xi Zezong has claimed that Gan De, an ancient Chinese astronomer,[134] reported a small star «in alliance» with the planet,[135] which may indicate a sighting of one of Jupiter’s moons with the unaided eye. If true, this would predate Galileo’s discovery by nearly two millennia.[136][137]

A 2016 paper reports that trapezoidal rule was used by Babylonians before 50 BCE for integrating the velocity of Jupiter along the ecliptic.[138] In his 2nd century work the Almagest, the Hellenistic astronomer Claudius Ptolemaeus constructed a geocentric planetary model based on deferents and epicycles to explain Jupiter’s motion relative to Earth, giving its orbital period around Earth as 4332.38 days, or 11.86 years.[139]

Ground-based telescope research

Galileo’s drawings of Jupiter and its «Medicean Stars» from Sidereus Nuncius

In 1610, Italian polymath Galileo Galilei discovered the four largest moons of Jupiter (now known as the Galilean moons) using a telescope. This is thought to be the first telescopic observation of moons other than Earth’s. Just one day after Galileo, Simon Marius independently discovered moons around Jupiter, though he did not publish his discovery in a book until 1614.[140] It was Marius’s names for the major moons, however, that stuck: Io, Europa, Ganymede, and Callisto. The discovery was a major point in favour of Copernicus’ heliocentric theory of the motions of the planets; Galileo’s outspoken support of the Copernican theory led to him being tried and condemned by the Inquisition.[141]

During the 1660s, Giovanni Cassini used a new telescope to discover spots and colourful bands in Jupiter’s atmosphere, observe that the planet appeared oblate, and estimate its rotation period.[142] In 1692, Cassini noticed that the atmosphere undergoes differential rotation.[143]

The Great Red Spot may have been observed as early as 1664 by Robert Hooke and in 1665 by Cassini, although this is disputed. The pharmacist Heinrich Schwabe produced the earliest known drawing to show details of the Great Red Spot in 1831.[144] The Red Spot was reportedly lost from sight on several occasions between 1665 and 1708 before becoming quite conspicuous in 1878.[145] It was recorded as fading again in 1883 and at the start of the 20th century.[146]

Both Giovanni Borelli and Cassini made careful tables of the motions of Jupiter’s moons, which allowed predictions of when the moons would pass before or behind the planet. By the 1670s, Cassini observed that when Jupiter was on the opposite side of the Sun from Earth, these events would occur about 17 minutes later than expected. Ole Rømer deduced that light does not travel instantaneously (a conclusion that Cassini had earlier rejected),[43] and this timing discrepancy was used to estimate the speed of light.[147][148]

In 1892, E. E. Barnard observed a fifth satellite of Jupiter with the 36-inch (910 mm) refractor at Lick Observatory in California. This moon was later named Amalthea.[149] It was the last planetary moon to be discovered directly by a visual observer through a telescope.[150] An additional eight satellites were discovered before the flyby of the Voyager 1 probe in 1979.[d]

Jupiter viewed in infrared by JWST
(July 14, 2022)

In 1932, Rupert Wildt identified absorption bands of ammonia and methane in the spectra of Jupiter.[151] Three long-lived anticyclonic features called «white ovals» were observed in 1938. For several decades they remained as separate features in the atmosphere, sometimes approaching each other but never merging. Finally, two of the ovals merged in 1998, then absorbed the third in 2000, becoming Oval BA.[152]

Space-based telescope research

On July 14, 2022, NASA presented images of Jupiter and related areas captured, for the first time, and including infrared views, by the James Webb Space Telescope (JWST).[153]

Radiotelescope research

Image of Jupiter and its radiation belts in radio

In 1955, Bernard Burke and Kenneth Franklin discovered that Jupiter emits bursts of radio waves at a frequency of 22.2 MHz.[58]: 36  The period of these bursts matched the rotation of the planet, and they used this information to determine a more precise value for Jupiter’s rotation rate. Radio bursts from Jupiter were found to come in two forms: long bursts (or L-bursts) lasting up to several seconds, and short bursts (or S-bursts) lasting less than a hundredth of a second.[154]

Scientists have discovered three forms of radio signals transmitted from Jupiter:

  • Decametric radio bursts (with a wavelength of tens of metres) vary with the rotation of Jupiter, and are influenced by the interaction of Io with Jupiter’s magnetic field.[155]
  • Decimetric radio emission (with wavelengths measured in centimetres) was first observed by Frank Drake and Hein Hvatum in 1959.[58]: 36  The origin of this signal is a torus-shaped belt around Jupiter’s equator, which generates cyclotron radiation from electrons that are accelerated in Jupiter’s magnetic field.[156]
  • Thermal radiation is produced by heat in the atmosphere of Jupiter.[58]: 43 

Exploration

Jupiter has been visited by automated spacecraft since 1973, when the space probe Pioneer 10 passed close enough to Jupiter to send back revelations about its properties and phenomena.[157][158] Missions to Jupiter are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, or delta-v. Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s,[159] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit.[160] Gravity assists through planetary flybys can be used to reduce the energy required to reach Jupiter.[161]

Flyby missions

Spacecraft Closest
approach
Distance
Pioneer 10 December 3, 1973 130,000 km
Pioneer 11 December 4, 1974 34,000 km
Voyager 1 March 5, 1979 349,000 km
Voyager 2 July 9, 1979 570,000 km
Ulysses February 8, 1992[162] 408,894 km
February 4, 2004[162] 120,000,000 km
Cassini December 30, 2000 10,000,000 km
New Horizons February 28, 2007 2,304,535 km

Beginning in 1973, several spacecraft have performed planetary flyby manoeuvres that brought them within observation range of Jupiter. The Pioneer missions obtained the first close-up images of Jupiter’s atmosphere and several of its moons. They discovered that the radiation fields near the planet were much stronger than expected, but both spacecraft managed to survive in that environment. The trajectories of these spacecraft were used to refine the mass estimates of the Jovian system. Radio occultations by the planet resulted in better measurements of Jupiter’s diameter and the amount of polar flattening.[49]: 47 [163]

Six years later, the Voyager missions vastly improved the understanding of the Galilean moons and discovered Jupiter’s rings. They also confirmed that the Great Red Spot was anticyclonic. Comparison of images showed that the Spot had changed hue since the Pioneer missions, turning from orange to dark brown. A torus of ionized atoms was discovered along Io’s orbital path, which were found to come from erupting volcanoes on the moon’s surface. As the spacecraft passed behind the planet, it observed flashes of lightning in the night side atmosphere.[49]: 87 [164]

The next mission to encounter Jupiter was the Ulysses solar probe. In February 1992, it performed a flyby manoeuvre to attain a polar orbit around the Sun. During this pass, the spacecraft studied Jupiter’s magnetosphere, although it had no cameras to photograph the planet. The spacecraft passed by Jupiter six years later, this time at a much greater distance.[162]

In 2000, the Cassini probe flew by Jupiter on its way to Saturn, and provided higher-resolution images.[165]

The New Horizons probe flew by Jupiter in 2007 for a gravity assist en route to Pluto.[166] The probe’s cameras measured plasma output from volcanoes on Io and studied all four Galilean moons in detail.[167]

Galileo mission

Galileo in preparation for mating with the rocket, 1989

The first spacecraft to orbit Jupiter was the Galileo mission, which reached the planet on December 7, 1995.[54] It remained in orbit for over seven years, conducting multiple flybys of all the Galilean moons and Amalthea. The spacecraft also witnessed the impact of Comet Shoemaker–Levy 9 when it collided with Jupiter in 1994. Some of the goals for the mission were thwarted due to a malfunction in Galileo’s high-gain antenna.[168]

A 340-kilogram titanium atmospheric probe was released from the spacecraft in July 1995, entering Jupiter’s atmosphere on December 7.[54] It parachuted through 150 km (93 mi) of the atmosphere at a speed of about 2,575 km/h (1600 mph)[54] and collected data for 57.6 minutes until the spacecraft was destroyed.[169] The Galileo orbiter itself experienced a more rapid version of the same fate when it was deliberately steered into the planet on September 21, 2003. NASA destroyed the spacecraft in order to avoid any possibility of the spacecraft crashing into and possibly contaminating the moon Europa, which may harbour life.[168]

Data from this mission revealed that hydrogen composes up to 90% of Jupiter’s atmosphere.[54] The recorded temperature was more than 300 °C (570 °F) and the windspeed measured more than 644 km/h (>400 mph) before the probes vaporized.[54]

Juno mission

see caption

Juno preparing for testing in a rotation stand, 2011

NASA’s Juno mission arrived at Jupiter on July 4, 2016 with the goal of studying the planet in detail from a polar orbit. The spacecraft was originally intended to orbit Jupiter thirty-seven times over a period of twenty months.[170][64][171] During the mission, the spacecraft will be exposed to high levels of radiation from Jupiter’s magnetosphere, which may cause future failure of certain instruments.[172] On August 27, 2016, the spacecraft completed its first fly-by of Jupiter and sent back the first-ever images of Jupiter’s north pole.[173]

Juno completed 12 orbits before the end of its budgeted mission plan, ending July 2018.[174] In June of that year, NASA extended the mission operations plan to July 2021, and in January of that year the mission was extended to September 2025 with four lunar flybys: one of Ganymede, one of Europa, and two of Io.[175][176] When Juno reaches the end of the mission, it will perform a controlled deorbit and disintegrate into Jupiter’s atmosphere. This will avoid the risk of collision with Jupiter’s moons.[177][178]

Cancelled missions and future plans

There is great interest in missions to study Jupiter’s larger icy moons, which may have subsurface liquid oceans. Funding difficulties have delayed progress, causing NASA’s JIMO (Jupiter Icy Moons Orbiter) to be cancelled in 2005.[179] A subsequent proposal was developed for a joint NASA/ESA mission called EJSM/Laplace, with a provisional launch date around 2020. EJSM/Laplace would have consisted of the NASA-led Jupiter Europa Orbiter and the ESA-led Jupiter Ganymede Orbiter.[180] However, the ESA formally ended the partnership in April 2011, citing budget issues at NASA and the consequences on the mission timetable. Instead, ESA planned to go ahead with a European-only mission to compete in its L1 Cosmic Vision selection.[181] These plans have been realized as the European Space Agency’s Jupiter Icy Moon Explorer (JUICE), due to launch in 2023,[182] followed by NASA’s Europa Clipper mission, scheduled for launch in 2024.[183]

Other proposed missions include the Chinese National Space Administration’s Tianwen-4 mission which aims to launch an orbiter to the Jovian system and possibly Callisto around 2035,[184] and CNSA’s Interstellar Express[185] and NASA’s Interstellar Probe,[186] which would both use Jupiter’s gravity to help them reach the edges of the heliosphere.

Moons

Jupiter has 84 known natural satellites.[6] Of these, 68 are less than 10 km in diameter.[6] The four largest moons are Io, Europa, Ganymede, and Callisto, collectively known as the «Galilean moons», and are visible from Earth with binoculars on a clear night.[187]

Galilean moons

The moons discovered by Galileo—Io, Europa, Ganymede, and Callisto—are among the largest in the Solar System. The orbits of Io, Europa, and Ganymede form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes the gravitational effects of the three large moons to distort their orbits into elliptical shapes, because each moon receives an extra tug from its neighbours at the same point in every orbit it makes. The tidal force from Jupiter, on the other hand, works to circularise their orbits.[188]

The eccentricity of their orbits causes regular flexing of the three moons’ shapes, with Jupiter’s gravity stretching them out as they approach it and allowing them to spring back to more spherical shapes as they swing away. The friction created by this tidal flexing generates heat in the interior of the moons.[189] This is seen most dramatically in the volcanic activity of Io (which is subject to the strongest tidal forces),[189] and to a lesser degree in the geological youth of Europa’s surface, which indicates recent resurfacing of the moon’s exterior.[190]

The Galilean moons compared to the Earth’s Moon

Name IPA Diameter Mass Orbital radius Orbital period
km % kg % km % days %
Io /ˈaɪ.oʊ/ 3,643 105 8.9×1022 120 421,700 110 1.77 7
Europa /jʊˈroʊpə/ 3,122 90 4.8×1022 65 671,034 175 3.55 13
Ganymede /ˈɡænimiːd/ 5,262 150 14.8×1022 200 1,070,412 280 7.15 26
Callisto /kəˈlɪstoʊ/ 4,821 140 10.8×1022 150 1,882,709 490 16.69 61

The Galilean moons. From left to right, in order of increasing distance from Jupiter: Io, Europa, Ganymede, Callisto.

The Galilean moons Io, Europa, Ganymede, and Callisto (in order of increasing distance from Jupiter)

Classification

Jupiter’s moons were traditionally classified into four groups of four, based on their similar orbital elements.[191] This picture has been complicated by the discovery of numerous small outer moons since 1999. Jupiter’s moons are currently divided into several different groups, although there are several moons which are not part of any group.[192]

The eight innermost regular moons, which have nearly circular orbits near the plane of Jupiter’s equator, are thought to have formed alongside Jupiter, whilst the remainder are irregular moons and are thought to be captured asteroids or fragments of captured asteroids. The irregular moons within each group may have a common origin, perhaps as a larger moon or captured body that broke up.[193][194]

Regular moons
Inner group The inner group of four small moons all have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree.
Galilean moons[195] These four moons, discovered by Galileo Galilei and by Simon Marius in parallel, orbit between 400,000 and 2,000,000 km, and are some of the largest moons in the Solar System.
Irregular moons
Himalia group A tightly clustered group of moons with orbits around 11,000,000–12,000,000 km from Jupiter.[196]
Ananke group This retrograde orbit group has rather indistinct borders, averaging 21,276,000 km from Jupiter with an average inclination of 149 degrees.[194]
Carme group A fairly distinct retrograde group that averages 23,404,000 km from Jupiter with an average inclination of 165 degrees.[194]
Pasiphae group A dispersed and only vaguely distinct retrograde group that covers all the outermost moons.[197]

Interaction with the Solar System

As the most massive of the eight planets, the gravitational influence of Jupiter has helped shape the Solar System. With the exception of Mercury, the orbits of the system’s planets lie closer to Jupiter’s orbital plane than the Sun’s equatorial plane. The Kirkwood gaps in the asteroid belt are mostly caused by Jupiter,[198] and the planet may have been responsible for the purported Late Heavy Bombardment in the inner Solar System’s history.[199]

In addition to its moons, Jupiter’s gravitational field controls numerous asteroids that have settled around the Lagrangian points that precede and follow the planet in its orbit around the Sun. These are known as the Trojan asteroids, and are divided into Greek and Trojan «camps» to honour the Iliad. The first of these, 588 Achilles, was discovered by Max Wolf in 1906; since then more than two thousand have been discovered.[200] The largest is 624 Hektor.[201]

The Jupiter family is defined as comets that have a semi-major axis smaller than Jupiter’s; most short-period comets belong to this group. Members of the Jupiter family are thought to form in the Kuiper belt outside the orbit of Neptune. During close encounters with Jupiter, they are perturbed into orbits with a smaller period, which then becomes circularised by regular gravitational interaction with the Sun and Jupiter.[202]

Impacts

Jupiter has been called the Solar System’s vacuum cleaner[203] because of its immense gravity well and location near the inner Solar System. There are more impacts on Jupiter, such as comets, than on any other planet in the Solar System.[204] For example, Jupiter experiences about 200 times more asteroid and comet impacts than Earth.[54] In the past, scientists believed that Jupiter partially shielded the inner system from cometary bombardment.[54] However, computer simulations in 2008 suggest that Jupiter does not cause a net decrease in the number of comets that pass through the inner Solar System, as its gravity perturbs their orbits inward roughly as often as it accretes or ejects them.[205] This topic remains controversial among scientists, as some think it draws comets towards Earth from the Kuiper belt, while others believes that Jupiter protects Earth from the Oort cloud.[206]

In July 1994, the Comet Shoemaker–Levy 9 comet collided with Jupiter.[207][208] The impacts were closely observed by observatories around the world, including the Hubble Space Telescope and Galileo spacecraft.[209][210][211][212] The event was widely covered by the media.[213]

Surveys of early astronomical records and drawings produced eight examples of potential impact observations between 1664 and 1839. However, a 1997 review determined that these observations had little or no possibility of being the results of impacts. Further investigation by this team revealed a dark surface feature discovered by astronomer Giovanni Cassini in 1690 may have been an impact scar.[214]

In culture

Jupiter, woodcut from a 1550 edition of Guido Bonatti’s Liber Astronomiae

The planet Jupiter has been known since ancient times. It is visible to the naked eye in the night sky and can occasionally be seen in the daytime when the Sun is low.[215] To the Babylonians, this planet represented their god Marduk,[216] chief of their pantheon from the Hammurabi period.[217] They used Jupiter’s roughly 12-year orbit along the ecliptic to define the constellations of their zodiac.[216]

The mythical Greek name for this planet is Zeus (Ζεύς), also referred to as Dias (Δίας), the planetary name of which is retained in modern Greek.[218] The ancient Greeks knew the planet as Phaethon (Φαέθων), meaning «shining one» or «blazing star».[219][220] The Greek myths of Zeus from the Homeric period showed particular similarities to certain Near-Eastern gods, including the Semitic El and Baal, the Sumerian Enlil, and the Babylonian god Marduk.[221] The association between the planet and the Greek deity Zeus was drawn from Near Eastern influences and was fully established by the fourth century BCE, as documented in the Epinomis of Plato and his contemporaries.[222]

The god Jupiter is the Roman counterpart of Zeus, and he is the principal god of Roman mythology. The Romans originally called Jupiter the «star of Jupiter» (Iuppiter Stella),» as they believed it to be sacred to its namesake god. This name comes from the Proto-Indo-European vocative compound *Dyēu-pəter (nominative: *Dyēus-pətēr, meaning «Father Sky-God», or «Father Day-God»).[223] As the supreme god of the Roman pantheon, Jupiter was the god of thunder, lightning, and storms, and appropriately called the god of light and sky.

In Vedic astrology, Hindu astrologers named the planet after Brihaspati, the religious teacher of the gods, and often called it «Guru», which means the «Teacher».[224][225] In Central Asian Turkic myths, Jupiter is called Erendiz or Erentüz, from eren (of uncertain meaning) and yultuz («star»). The Turks calculated the period of the orbit of Jupiter as 11 years and 300 days. They believed that some social and natural events connected to Erentüz’s movements on the sky.[226] The Chinese, Vietnamese, Koreans, and Japanese called it the «wood star» (Chinese: 木星; pinyin: mùxīng), based on the Chinese Five Elements.[227][228][229] In China it became known as the «Year-star» (Sui-sing) as Chinese astronomers noted that it jumped one zodiac constellation each year (with corrections). In some ancient Chinese writings the years were named, at least in principle, in correlation with the Jovian zodiacal signs.[230]

Gallery

  • Infrared view of Jupiter, imaged by the Gemini North telescope in Hawaiʻi, January 11, 2017

    Infrared view of Jupiter, imaged by the Gemini North telescope in Hawaiʻi, January 11, 2017

  • Ultraviolet view of Jupiter by Hubble, January 11, 2017[231]

    Ultraviolet view of Jupiter by Hubble, January 11, 2017[231]

  • Jupiter and Europa, taken by Hubble on 25 August 2020, when the planet was 653 million kilometres from Earth.[232]

    Jupiter and Europa, taken by Hubble on 25 August 2020, when the planet was 653 million kilometres from Earth.[232]

See also

  • Outline of Jupiter – Overview of and topical guide to Jupiter
  • Eccentric Jupiter – Jovian planet that orbits its star in an eccentric orbit
  • Hot Jupiter – Class of high mass planets orbiting close to a star
  • Super-Jupiter – Class of planets with more mass than Jupiter
  • Jovian–Plutonian gravitational effect – Astronomical hoax
  • List of gravitationally rounded objects of the Solar System

Notes

  1. ^ a b c d e f Refers to the level of 1 bar atmospheric pressure
  2. ^ Based on the volume within the level of 1 bar atmospheric pressure
  3. ^ See for example: «IAUC 2844: Jupiter; 1975h». International Astronomical Union. October 1, 1975. Retrieved October 24, 2010. That particular word has been in use since at least 1966. See: «Query Results from the Astronomy Database». Smithsonian/NASA. Retrieved July 29, 2007.
  4. ^ See Moons of Jupiter for details and cites

References

  1. ^ Simpson, J. A.; Weiner, E. S. C. (1989). «Jupiter». Oxford English Dictionary. Vol. 8 (2nd ed.). Clarendon Press. ISBN 978-0-19-861220-9.
  2. ^ a b Seligman, Courtney. «Rotation Period and Day Length». Retrieved August 13, 2009.
  3. ^ a b c d Simon, J. L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). «Numerical expressions for precession formulae and mean elements for the Moon and planets». Astronomy and Astrophysics. 282 (2): 663–683. Bibcode:1994A&A…282..663S.
  4. ^ Souami, D.; Souchay, J. (July 2012). «The solar system’s invariable plane». Astronomy & Astrophysics. 543: 11. Bibcode:2012A&A…543A.133S. doi:10.1051/0004-6361/201219011. A133.
  5. ^ «HORIZONS Planet-center Batch call for January 2023 Perihelion». ssd.jpl.nasa.gov (Perihelion for Jupiter’s planet-centre (599) occurs on 2023-Jan-21 at 4.9510113au during a rdot flip from negative to positive). NASA/JPL. Retrieved September 7, 2021.
  6. ^ a b c Sheppard, Scott S. «Moons of Jupiter». Earth & Planets Laboratory. Carnegie Institution for Science. Retrieved December 20, 2022.
  7. ^ a b c d e f g Williams, David R. (December 23, 2021). «Jupiter Fact Sheet». NASA. Retrieved October 13, 2017.
  8. ^ «Astrodynamic Constants». JPL Solar System Dynamics. February 27, 2009. Retrieved August 8, 2007.
  9. ^ Ni, D. (2018). «Empirical models of Jupiter’s interior from Juno data». Astronomy & Astrophysics. 613: A32. Bibcode:2018A&A…613A..32N. doi:10.1051/0004-6361/201732183.
  10. ^ Li, Liming; Jiang, X.; West, R. A.; Gierasch, P. J.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Fletcher, L. N.; Fortney, J. J.; Knowles, B.; Porco, C. C.; Baines, K. H.; Fry, P. M.; Mallama, A.; Achterberg, R. K.; Simon, A. A.; Nixon, C. A.; Orton, G. S.; Dyudina, U. A.; Ewald, S. P.; Schmude, R. W. (2018). «Less absorbed solar energy and more internal heat for Jupiter». Nature Communications. 9 (1): 3709. Bibcode:2018NatCo…9.3709L. doi:10.1038/s41467-018-06107-2. PMC 6137063. PMID 30213944.
  11. ^ Mallama, Anthony; Krobusek, Bruce; Pavlov, Hristo (2017). «Comprehensive wide-band magnitudes and albedos for the planets, with applications to exo-planets and Planet Nine». Icarus. 282: 19–33. arXiv:1609.05048. Bibcode:2017Icar..282…19M. doi:10.1016/j.icarus.2016.09.023. S2CID 119307693.
  12. ^ a b c d Mallama, A.; Hilton, J. L. (2018). «Computing Apparent Planetary Magnitudes for The Astronomical Almanac». Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C….25…10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809.
  13. ^ Seidelmann, P. Kenneth; Archinal, Brent A.; A’Hearn, Michael F.; Conrad, Albert R.; Consolmagno, Guy J.; Hestroffer, Daniel; Hilton, James L.; Krasinsky, Georgij A.; Neumann, Gregory A.; Oberst, Jürgen; Stooke, Philip J.; Tedesco, Edward F.; Tholen, David J.; Thomas, Peter C.; Williams, Iwan P. (2007). «Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006». Celestial Mechanics and Dynamical Astronomy. 98 (3): 155–180. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y.
  14. ^ de Pater, Imke; Lissauer, Jack J. (2015). Planetary Sciences (2nd updated ed.). New York: Cambridge University Press. p. 250. ISBN 978-0-521-85371-2.
  15. ^ Bjoraker, G. L.; Wong, M. H.; de Pater, I.; Ádámkovics, M. (September 2015). «Jupiter’s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes». The Astrophysical Journal. 810 (2): 10. arXiv:1508.04795. Bibcode:2015ApJ…810..122B. doi:10.1088/0004-637X/810/2/122. S2CID 55592285. 122.
  16. ^ «Naming of Astronomical Objects». International Astronomical Union. Retrieved March 23, 2022.
  17. ^ Jones, Alexander (1999). Astronomical papyri from Oxyrhynchus. pp. 62–63. ISBN 978-0-87169-233-7. It is now possible to trace the medieval symbols for at least four of the five planets to forms that occur in some of the latest papyrus horoscopes ([ P.Oxy. ] 4272, 4274, 4275 […]). That for Jupiter is an obvious monogram derived from the initial letter of the Greek name.
  18. ^ Maunder, A. S. D. (August 1934). «The origin of the symbols of the planets». The Observatory. 57: 238–247. Bibcode:1934Obs….57..238M.
  19. ^ Falk, Michael; Koresko, Christopher (2004). «Astronomical Names for the Days of the Week». Journal of the Royal Astronomical Society of Canada. 93: 122–133. arXiv:astro-ph/0307398. Bibcode:1999JRASC..93..122F. doi:10.1016/j.newast.2003.07.002. S2CID 118954190.
  20. ^ Simek, Rudolf (1993) [1984]. Dictionary of Northern Mythology. Translated by Hall, Angela. D. S. Brewer. p. 371. ISBN 978-0-85991-513-7.
  21. ^ Harper, Douglas. Jove. Online Etymology Dictionary. Retrieved March 22, 2022.
  22. ^ «Jovial». Dictionary.com. Retrieved July 29, 2007.
  23. ^ a b Kruijer, Thomas S.; Burkhardt, Christoph; Budde, Gerrit; Kleine, Thorsten (June 2017). «Age of Jupiter inferred from the distinct genetics and formation times of meteorites». Proceedings of the National Academy of Sciences. 114 (26): 6712–6716. Bibcode:2017PNAS..114.6712K. doi:10.1073/pnas.1704461114. PMC 5495263. PMID 28607079.
  24. ^ a b Bosman, A. D.; Cridland, A. J.; Miguel, Y. (December 2019). «Jupiter formed as a pebble pile around the N2 ice line». Astronomy & Astrophysics. 632: 5. arXiv:1911.11154. Bibcode:2019A&A…632L..11B. doi:10.1051/0004-6361/201936827. S2CID 208291392. L11.
  25. ^ a b D’Angelo, G.; Weidenschilling, S. J.; Lissauer, J. J.; Bodenheimer, P. (2021). «Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch». Icarus. 355: 114087. arXiv:2009.05575. Bibcode:2021Icar..35514087D. doi:10.1016/j.icarus.2020.114087. S2CID 221654962.
  26. ^ a b Walsh, K. J.; Morbidelli, A.; Raymond, S. N.; O’Brien, D. P.; Mandell, A. M. (2011). «A low mass for Mars from Jupiter’s early gas-driven migration». Nature. 475 (7355): 206–209. arXiv:1201.5177. Bibcode:2011Natur.475..206W. doi:10.1038/nature10201. PMID 21642961. S2CID 4431823.
  27. ^ Batygin, Konstantin (2015). «Jupiter’s decisive role in the inner Solar System’s early evolution». Proceedings of the National Academy of Sciences. 112 (14): 4214–4217. arXiv:1503.06945. Bibcode:2015PNAS..112.4214B. doi:10.1073/pnas.1423252112. PMC 4394287. PMID 25831540.
  28. ^ Haisch Jr., K. E.; Lada, E. A.; Lada, C. J. (2001). «Disc Frequencies and Lifetimes in Young Clusters». The Astrophysical Journal. 553 (2): 153–156. arXiv:astro-ph/0104347. Bibcode:2001ApJ…553L.153H. doi:10.1086/320685. S2CID 16480998.
  29. ^ Fazekas, Andrew (March 24, 2015). «Observe: Jupiter, Wrecking Ball of Early Solar System». National Geographic. Archived from the original on March 14, 2017. Retrieved April 18, 2021.
  30. ^ Zube, N.; Nimmo, F.; Fischer, R.; Jacobson, S. (2019). «Constraints on terrestrial planet formation timescales and equilibration processes in the Grand Tack scenario from Hf-W isotopic evolution». Earth and Planetary Science Letters. 522 (1): 210–218. arXiv:1910.00645. Bibcode:2019E&PSL.522..210Z. doi:10.1016/j.epsl.2019.07.001. PMC 7339907. PMID 32636530. S2CID 199100280.
  31. ^ D’Angelo, G.; Marzari, F. (2012). «Outward Migration of Jupiter and Saturn in Evolved Gaseous Disks». The Astrophysical Journal. 757 (1): 50 (23 pp.). arXiv:1207.2737. Bibcode:2012ApJ…757…50D. doi:10.1088/0004-637X/757/1/50. S2CID 118587166.
  32. ^ a b Pirani, S.; Johansen, A.; Bitsch, B.; Mustill, A.J.; Turrini, D. (March 2019). «Consequences of planetary migration on the minor bodies of the early solar system». Astronomy & Astrophysics. 623: A169. arXiv:1902.04591. Bibcode:2019A&A…623A.169P. doi:10.1051/0004-6361/201833713.
  33. ^ a b «Jupiter’s Unknown Journey Revealed». ScienceDaily. Lund University. March 22, 2019. Retrieved March 25, 2019.
  34. ^ Öberg, K.I.; Wordsworth, R. (2019). «Jupiter’s Composition Suggests its Core Assembled Exterior to the N_{2} Snowline». The Astronomical Journal. 158 (5). arXiv:1909.11246. doi:10.3847/1538-3881/ab46a8. S2CID 202749962.
  35. ^ Öberg, K.I.; Wordsworth, R. (2020). «Erratum: «Jupiter’s Composition Suggests Its Core Assembled Exterior to the N2 Snowline»«. The Astronomical Journal. 159 (2): 78. doi:10.3847/1538-3881/ab6172. S2CID 214576608.
  36. ^ Denecke, Edward J. (January 7, 2020). Regents Exams and Answers: Earth Science—Physical Setting 2020. Barrons Educational Series. p. 419. ISBN 978-1-5062-5399-2.
  37. ^ Swarbrick, James (2013). Encyclopedia of Pharmaceutical Technology. Vol. 6. CRC Press. p. 3601. ISBN 978-1-4398-0823-8. Syrup USP (1.31 g/cm3)
  38. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen’s Astrophysical Quantities. Springer. pp. 295–296. ISBN 978-0-387-98746-0.
  39. ^ Polyanin, Andrei D.; Chernoutsan, Alexei (October 18, 2010). A Concise Handbook of Mathematics, Physics, and Engineering Sciences. CRC Press. p. 1041. ISBN 978-1-4398-0640-1.
  40. ^ Guillot, Tristan; Gautier, Daniel; Hubbard, William B (December 1997). «NOTE: New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models». Icarus. 130 (2): 534–539. arXiv:astro-ph/9707210. Bibcode:1997Icar..130..534G. doi:10.1006/icar.1997.5812. S2CID 5466469.
  41. ^ Kim, S. J.; Caldwell, J.; Rivolo, A. R.; Wagner, R. (1985). «Infrared Polar Brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS Experiment». Icarus. 64 (2): 233–248. Bibcode:1985Icar…64..233K. doi:10.1016/0019-1035(85)90201-5.
  42. ^ Gautier, D.; Conrath, B.; Flasar, M.; Hanel, R.; Kunde, V.; Chedin, A.; Scott, N. (1981). «The helium abundance of Jupiter from Voyager». Journal of Geophysical Research. 86 (A10): 8713–8720. Bibcode:1981JGR….86.8713G. doi:10.1029/JA086iA10p08713. hdl:2060/19810016480. S2CID 122314894.
  43. ^ a b Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bézard, B.; Strobel, D. F.; et al. (September 10, 2004). «Jupiter’s Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment». Science. 305 (5690): 1582–1586. Bibcode:2004Sci…305.1582K. doi:10.1126/science.1100240. PMID 15319491. S2CID 45296656. Retrieved April 4, 2007.
  44. ^ Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; et al. (1996). «The Galileo Probe Mass Spectrometer: Composition of Jupiter’s Atmosphere». Science. 272 (5263): 846–849. Bibcode:1996Sci…272..846N. doi:10.1126/science.272.5263.846. PMID 8629016. S2CID 3242002.
  45. ^ a b von Zahn, U.; Hunten, D. M.; Lehmacher, G. (1998). «Helium in Jupiter’s atmosphere: Results from the Galileo probe Helium Interferometer Experiment». Journal of Geophysical Research. 103 (E10): 22815–22829. Bibcode:1998JGR…10322815V. doi:10.1029/98JE00695.
  46. ^ a b Stevenson, David J. (May 2020). «Jupiter’s Interior as Revealed by Juno». Annual Review of Earth and Planetary Sciences. 48: 465–489. Bibcode:2020AREPS..48..465S. doi:10.1146/annurev-earth-081619-052855. S2CID 212832169. Archived from the original on May 7, 2020. Retrieved March 18, 2022.
  47. ^ Ingersoll, A. P.; Hammel, H. B.; Spilker, T. R.; Young, R. E. (June 1, 2005). «Outer Planets: The Ice Giants» (PDF). Lunar & Planetary Institute. Archived (PDF) from the original on October 9, 2022. Retrieved February 1, 2007.
  48. ^ MacDougal, Douglas W. (2012). «A Binary System Close to Home: How the Moon and Earth Orbit Each Other». Newton’s Gravity. Undergraduate Lecture Notes in Physics. Springer New York. pp. 193–211. doi:10.1007/978-1-4614-5444-1_10. ISBN 978-1-4614-5443-4. the barycentre is 743,000 km from the centre of the Sun. The Sun’s radius is 696,000 km, so it is 47,000 km above the surface.
  49. ^ a b c d e Burgess, Eric (1982). By Jupiter: Odysseys to a Giant. New York: Columbia University Press. ISBN 978-0-231-05176-7.
  50. ^ Shu, Frank H. (1982). The physical universe: an introduction to astronomy. Series of books in astronomy (12th ed.). University Science Books. p. 426. ISBN 978-0-935702-05-7.
  51. ^ Davis, Andrew M.; Turekian, Karl K. (2005). Meteorites, comets, and planets. Treatise on geochemistry. Vol. 1. Elsevier. p. 624. ISBN 978-0-08-044720-9.
  52. ^ Schneider, Jean (2009). «The Extrasolar Planets Encyclopedia: Interactive Catalogue». Paris Observatory.
  53. ^ Seager, S.; Kuchner, M.; Hier-Majumder, C. A.; Militzer, B. (2007). «Mass-Radius Relationships for Solid Exoplanets». The Astrophysical Journal. 669 (2): 1279–1297. arXiv:0707.2895. Bibcode:2007ApJ…669.1279S. doi:10.1086/521346. S2CID 8369390.
  54. ^ a b c d e f g h How the Universe Works 3. Vol. Jupiter: Destroyer or Savior?. Discovery Channel. 2014.
  55. ^ Guillot, Tristan (1999). «Interiors of Giant Planets Inside and Outside the Solar System» (PDF). Science. 286 (5437): 72–77. Bibcode:1999Sci…286…72G. doi:10.1126/science.286.5437.72. PMID 10506563. Archived (PDF) from the original on October 9, 2022. Retrieved April 24, 2022.
  56. ^ Burrows, Adam; Hubbard, W. B.; Lunine, J. I.; Liebert, James (July 2001). «The theory of brown dwarfs and extrasolar giant planets». Reviews of Modern Physics. 73 (3): 719–765. arXiv:astro-ph/0103383. Bibcode:2001RvMP…73..719B. doi:10.1103/RevModPhys.73.719. S2CID 204927572. Hence the HBMM at solar metallicity and Yα = 50.25 is 0.07 – 0.074 M, … while the HBMM at zero metallicity is 0.092 M
  57. ^ von Boetticher, Alexander; Triaud, Amaury H. M. J.; Queloz, Didier; Gill, Sam; Lendl, Monika; Delrez, Laetitia; Anderson, David R.; Collier Cameron, Andrew; Faedi, Francesca; Gillon, Michaël; Gómez Maqueo Chew, Yilen; Hebb, Leslie; Hellier, Coel; Jehin, Emmanuël; Maxted, Pierre F. L.; Martin, David V.; Pepe, Francesco; Pollacco, Don; Ségransan, Damien; Smalley, Barry; Udry, Stéphane; West, Richard (August 2017). «The EBLM project. III. A Saturn-size low-mass star at the hydrogen-burning limit». Astronomy & Astrophysics. 604: 6. arXiv:1706.08781. Bibcode:2017A&A…604L…6V. doi:10.1051/0004-6361/201731107. S2CID 54610182. L6.
  58. ^ a b c d e f g h Elkins-Tanton, Linda T. (2011). Jupiter and Saturn (revised ed.). New York: Chelsea House. ISBN 978-0-8160-7698-7.
  59. ^ Irwin, Patrick (2003). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. Springer Science & Business Media. p. 62. ISBN 978-3-540-00681-7.
  60. ^ Irwin, Patrick G. J. (2009) [2003]. Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (Second ed.). Springer. p. 4. ISBN 978-3-642-09888-8. the radius of Jupiter is estimated to be currently shrinking by approximately 1 mm/yr.
  61. ^ a b Guillot, Tristan; Stevenson, David J.; Hubbard, William B.; Saumon, Didier (2004). «Chapter 3: The Interior of Jupiter». In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 978-0-521-81808-7.
  62. ^ Bodenheimer, P. (1974). «Calculations of the early evolution of Jupiter». Icarus. 23. 23 (3): 319–325. Bibcode:1974Icar…23..319B. doi:10.1016/0019-1035(74)90050-5.
  63. ^ Smoluchowski, R. (1971). «Metallic interiors and magnetic fields of Jupiter and Saturn». The Astrophysical Journal. 166: 435. Bibcode:1971ApJ…166..435S. doi:10.1086/150971.
  64. ^ a b Chang, Kenneth (July 5, 2016). «NASA’s Juno Spacecraft Enters Jupiter’s Orbit». The New York Times. Retrieved July 5, 2016.
  65. ^ Wall, Mike (May 26, 2017). «More Jupiter Weirdness: Giant Planet May Have Huge, ‘Fuzzy’ Core». space.com. Retrieved April 20, 2021.
  66. ^ Weitering, Hanneke (January 10, 2018). «‘Totally Wrong’ on Jupiter: What Scientists Gleaned from NASA’s Juno Mission». space.com. Retrieved February 26, 2021.
  67. ^ Stevenson, D. J.; Bodenheimer, P.; Lissauer, J. J.; D’Angelo, G. (2022). «Mixing of Condensable Constituents with H-He during the Formation and Evolution of Jupiter». The Planetary Science Journal. 3 (4): id.74. arXiv:2202.09476. Bibcode:2022PSJ…..3…74S. doi:10.3847/PSJ/ac5c44. S2CID 247011195.
  68. ^ Liu, S. F.; Hori, Y.; Müller, S.; Zheng, X.; Helled, R.; Lin, D.; Isella, A. (2019). «The formation of Jupiter’s diluted core by a giant impact». Nature. 572 (7769): 355–357. arXiv:2007.08338. Bibcode:2019Natur.572..355L. doi:10.1038/s41586-019-1470-2. PMID 31413376. S2CID 199576704.
  69. ^ Guillot, T. (2019). «Signs that Jupiter was mixed by a giant impact». Nature. 572 (7769): 315–317. Bibcode:2019Natur.572..315G. doi:10.1038/d41586-019-02401-1. PMID 31413374.
  70. ^ Wahl, S. M.; Hubbard, William B.; Militzer, B.; Guillot, Tristan; Miguel, Y.; Movshovitz, N.; Kaspi, Y.; Helled, R.; Reese, D.; Galanti, E.; Levin, S.; Connerney, J. E.; Bolton, S. J. (2017). «Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core». Geophysical Research Letters. 44 (10): 4649–4659. arXiv:1707.01997. Bibcode:2017GeoRL..44.4649W. doi:10.1002/2017GL073160.
  71. ^ Trachenko, K.; Brazhkin, V. V.; Bolmatov, D. (March 2014). «Dynamic transition of supercritical hydrogen: Defining the boundary between interior and atmosphere in gas giants». Physical Review E. 89 (3): 032126. arXiv:1309.6500. Bibcode:2014PhRvE..89c2126T. doi:10.1103/PhysRevE.89.032126. PMID 24730809. S2CID 42559818. 032126.
  72. ^ Coulter, Dauna. «A Freaky Fluid inside Jupiter?». NASA. Retrieved December 8, 2021.
  73. ^ Bwaldwin, Emily. «Oceans of diamond possible on Uranus and Neptune». Astronomy Now. Retrieved December 8, 2021.
  74. ^ «NASA System Exploration Jupiter». NASA. Retrieved December 8, 2021.
  75. ^ Guillot, T. (1999). «A comparison of the interiors of Jupiter and Saturn». Planetary and Space Science. 47 (10–11): 1183–1200. arXiv:astro-ph/9907402. Bibcode:1999P&SS…47.1183G. doi:10.1016/S0032-0633(99)00043-4. S2CID 19024073.
  76. ^ a b Lang, Kenneth R. (2003). «Jupiter: a giant primitive planet». NASA. Archived from the original on May 14, 2011. Retrieved January 10, 2007.
  77. ^ Lodders, Katharina (2004). «Jupiter Formed with More Tar than Ice» (PDF). The Astrophysical Journal. 611 (1): 587–597. Bibcode:2004ApJ…611..587L. doi:10.1086/421970. S2CID 59361587. Archived from the original (PDF) on April 12, 2020.
  78. ^ Brygoo, S.; Loubeyre, P.; Millot, M.; Rygg, J. R.; Celliers, P. M.; Eggert, J. H.; Jeanloz, R.; Collins, G. W. (2021). «Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions». Nature. 593 (7860): 517–521. Bibcode:2021Natur.593..517B. doi:10.1038/s41586-021-03516-0. OSTI 1820549. PMID 34040210. S2CID 235217898.
  79. ^ Kramer, Miriam (October 9, 2013). «Diamond Rain May Fill Skies of Jupiter and Saturn». Space.com. Retrieved August 27, 2017.
  80. ^ Kaplan, Sarah (August 25, 2017). «It rains solid diamonds on Uranus and Neptune». The Washington Post. Retrieved August 27, 2017.
  81. ^ a b Guillot, Tristan; Stevenson, David J.; Hubbard, William B.; Saumon, Didier (2004). «The interior of Jupiter». In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). Jupiter. The planet, satellites and magnetosphere. Cambridge planetary science. Vol. 1. Cambridge, UK: Cambridge University Press. p. 45. Bibcode:2004jpsm.book…35G. ISBN 0-521-81808-7.
  82. ^ Loeffler, Mark J.; Hudson, Reggie L. (March 2018). «Coloring Jupiter’s clouds: Radiolysis of ammonium hydrosulfide (NH4SH)» (PDF). Icarus. 302: 418–425. Bibcode:2018Icar..302..418L. doi:10.1016/j.icarus.2017.10.041. Archived (PDF) from the original on October 9, 2022. Retrieved April 25, 2022.
  83. ^ Ingersoll, Andrew P.; Dowling, Timothy E.; Gierasch, Peter J.; Orton, Glenn S.; Read, Peter L.; Sánchez-Lavega, Agustin; Showman, Adam P.; Simon-Miller, Amy A.; Vasavada, Ashwin R. (2004). Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). «Dynamics of Jupiter’s Atmosphere» (PDF). Jupiter. The Planet, Satellites and Magnetosphere. Cambridge planetary science. Cambridge, UK: Cambridge University Press. 1: 105–128. ISBN 0-521-81808-7. Archived (PDF) from the original on October 9, 2022. Retrieved March 8, 2022.
  84. ^ Aglyamov, Yury S.; Lunine, Jonathan; Becker, Heidi N.; Guillot, Tristan; Gibbard, Seran G.; Atreya, Sushil; Bolton, Scott J.; Levin, Steven; Brown, Shannon T.; Wong, Michael H. (February 2021). «Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter». Journal of Geophysical Research: Planets. 126 (2). arXiv:2101.12361. Bibcode:2021JGRE..12606504A. doi:10.1029/2020JE006504. S2CID 231728590. e06504.
  85. ^ Watanabe, Susan, ed. (February 25, 2006). «Surprising Jupiter: Busy Galileo spacecraft showed jovian system is full of surprises». NASA. Retrieved February 20, 2007.
  86. ^ Kerr, Richard A. (2000). «Deep, Moist Heat Drives Jovian Weather». Science. 287 (5455): 946–947. doi:10.1126/science.287.5455.946b. S2CID 129284864. Retrieved April 26, 2022.
  87. ^ Becker, Heidi N.; Alexander, James W.; Atreya, Sushil K.; Bolton, Scott J.; Brennan, Martin J.; Brown, Shannon T.; Guillaume, Alexandre; Guillot, Tristan; Ingersoll, Andrew P.; Levin, Steven M.; Lunine, Jonathan I.; Aglyamov, Yury S.; Steffes, Paul G. (2020). «Small lightning flashes from shallow electrical storms on Jupiter». Nature. 584 (7819): 55–58. Bibcode:2020Natur.584…55B. doi:10.1038/s41586-020-2532-1. ISSN 0028-0836. PMID 32760043. S2CID 220980694.
  88. ^ Guillot, Tristan; Stevenson, David J.; Atreya, Sushil K.; Bolton, Scott J.; Becker, Heidi N. (2020). «Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of «Mushballs»«. Journal of Geophysical Research: Planets. 125 (8): e2020JE006403. arXiv:2012.14316. Bibcode:2020JGRE..12506403G. doi:10.1029/2020JE006404. S2CID 226194362.
  89. ^ Giles, Rohini S.; Greathouse, Thomas K.; Bonfond, Bertrand; Gladstone, G. Randall; Kammer, Joshua A.; Hue, Vincent; Grodent, Denis C.; Gérard, Jean-Claude; Versteeg, Maarten H.; Wong, Michael H.; Bolton, Scott J.; Connerney, John E. P.; Levin, Steven M. (2020). «Possible Transient Luminous Events Observed in Jupiter’s Upper Atmosphere». Journal of Geophysical Research: Planets. 125 (11): e06659. arXiv:2010.13740. Bibcode:2020JGRE..12506659G. doi:10.1029/2020JE006659. S2CID 225075904. e06659.
  90. ^ Greicius, Tony, ed. (October 27, 2020). «Juno Data Indicates ‘Sprites’ or ‘Elves’ Frolic in Jupiter’s Atmosphere». NASA. Retrieved December 30, 2020.
  91. ^ Strycker, P. D.; Chanover, N.; Sussman, M.; Simon-Miller, A. (2006). A Spectroscopic Search for Jupiter’s Chromophores. DPS meeting #38, #11.15. American Astronomical Society. Bibcode:2006DPS….38.1115S.
  92. ^ a b c Gierasch, Peter J.; Nicholson, Philip D. (2004). «Jupiter». World Book @ NASA. Archived from the original on January 5, 2005. Retrieved August 10, 2006.
  93. ^ Chang, Kenneth (December 13, 2017). «The Great Red Spot Descends Deep into Jupiter». The New York Times. Retrieved December 15, 2017.
  94. ^ Denning, William F. (1899). «Jupiter, early history of the great red spot on». Monthly Notices of the Royal Astronomical Society. 59 (10): 574–584. Bibcode:1899MNRAS..59..574D. doi:10.1093/mnras/59.10.574.
  95. ^ Kyrala, A. (1982). «An explanation of the persistence of the Great Red Spot of Jupiter». Moon and the Planets. 26 (1): 105–107. Bibcode:1982M&P….26..105K. doi:10.1007/BF00941374. S2CID 121637752.
  96. ^ Oldenburg, Henry, ed. (1665–1666). «Philosophical Transactions of the Royal Society». Project Gutenberg. Retrieved December 22, 2011.
  97. ^ Wong, M.; de Pater, I. (May 22, 2008). «New Red Spot Appears on Jupiter». HubbleSite. NASA. Retrieved December 12, 2013.
  98. ^ Simon-Miller, A.; Chanover, N.; Orton, G. (July 17, 2008). «Three Red Spots Mix It Up on Jupiter». HubbleSite. NASA. Retrieved April 26, 2015.
  99. ^ Covington, Michael A. (2002). Celestial Objects for Modern Telescopes. Cambridge University Press. p. 53. ISBN 978-0-521-52419-3.
  100. ^ Cardall, C. Y.; Daunt, S. J. «The Great Red Spot». University of Tennessee. Retrieved February 2, 2007.
  101. ^ Jupiter, the Giant of the Solar System. The Voyager Mission. NASA. 1979. p. 5.
  102. ^ Sromovsky, L. A.; Baines, K. H.; Fry, P. M.; Carlson, R. W. (July 2017). «A possibly universal red chromophore for modeling colour variations on Jupiter». Icarus. 291: 232–244. arXiv:1706.02779. Bibcode:2017Icar..291..232S. doi:10.1016/j.icarus.2016.12.014. S2CID 119036239.
  103. ^ a b White, Greg (November 25, 2015). «Is Jupiter’s Great Red Spot nearing its twilight?». Space.news. Retrieved April 13, 2017.
  104. ^
  105. ^ a b Simon, Amy A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S. (March 2015). Dramatic Change in Jupiter’s Great Red Spot. 46th Lunar and Planetary Science Conference. March 16–20, 2015. The Woodlands, Texas. Bibcode:2015LPI….46.1010S.
  106. ^ Doctor, Rina Marie (October 21, 2015). «Jupiter’s Superstorm Is Shrinking: Is Changing Red Spot Evidence Of Climate Change?». Tech Times. Retrieved April 13, 2017.
  107. ^ Grush, Loren (October 28, 2021). «NASA’s Juno spacecraft finds just how deep Jupiter’s Great Red Spot goes». The Verge. Retrieved October 28, 2021.
  108. ^ Adriani, Alberto; Mura, A.; Orton, G.; Hansen, C.; Altieri, F.; et al. (March 2018). «Clusters of cyclones encircling Jupiter’s poles». Nature. 555 (7695): 216–219. Bibcode:2018Natur.555..216A. doi:10.1038/nature25491. PMID 29516997. S2CID 4438233.
  109. ^ Starr, Michelle (December 13, 2017). «NASA Just Watched a Mass of Cyclones on Jupiter Evolve Into a Mesmerising Hexagon». Science Alert.
  110. ^ Steigerwald, Bill (October 14, 2006). «Jupiter’s Little Red Spot Growing Stronger». NASA. Retrieved February 2, 2007.
  111. ^ Wong, Michael H.; de Pater, Imke; Asay-Davis, Xylar; Marcus, Philip S.; Go, Christopher Y. (September 2011). «Vertical structure of Jupiter’s Oval BA before and after it reddened: What changed?» (PDF). Icarus. 215 (1): 211–225. Bibcode:2011Icar..215..211W. doi:10.1016/j.icarus.2011.06.032. Archived (PDF) from the original on October 9, 2022. Retrieved April 27, 2022.
  112. ^ Stallard, Tom S.; Melin, Henrik; Miller, Steve; Moore, Luke; O’Donoghue, James; Connerney, John E. P.; Satoh, Takehiko; West, Robert A.; Thayer, Jeffrey P.; Hsu, Vicki W.; Johnson, Rosie E. (April 10, 2017). «The Great Cold Spot in Jupiter’s upper atmosphere». Geophysical Research Letters. 44 (7): 3000–3008. Bibcode:2017GeoRL..44.3000S. doi:10.1002/2016GL071956. PMC 5439487. PMID 28603321.
  113. ^ Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M. (May 26, 2017). «A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits» (PDF). Geophysical Research Letters. 45 (6): 2590–2596. Bibcode:2018GeoRL..45.2590C. doi:10.1002/2018GL077312. Archived (PDF) from the original on October 9, 2022.
  114. ^ Brainerd, Jim (November 22, 2004). «Jupiter’s Magnetosphere». The Astrophysics Spectator. Archived from the original on January 25, 2021. Retrieved August 10, 2008.
  115. ^ «Receivers for Radio JOVE». NASA. March 1, 2017. Archived from the original on January 26, 2021. Retrieved September 9, 2020.
  116. ^ Phillips, Tony; Horack, John M. (February 20, 2004). «Radio Storms on Jupiter». NASA. Archived from the original on February 13, 2007. Retrieved February 1, 2007.
  117. ^ Showalter, M. A.; Burns, J. A.; Cuzzi, J. N.; Pollack, J. B. (1987). «Jupiter’s ring system: New results on structure and particle properties». Icarus. 69 (3): 458–498. Bibcode:1987Icar…69..458S. doi:10.1016/0019-1035(87)90018-2.
  118. ^ a b Burns, J. A.; Showalter, M. R.; Hamilton, D. P.; Nicholson, P. D.; de Pater, I.; Ockert-Bell, M. E.; Thomas, P. C. (1999). «The Formation of Jupiter’s Faint Rings». Science. 284 (5417): 1146–1150. Bibcode:1999Sci…284.1146B. doi:10.1126/science.284.5417.1146. PMID 10325220. S2CID 21272762.
  119. ^ Fieseler, P. D.; Adams, O. W.; Vandermey, N.; Theilig, E. E.; Schimmels, K. A.; Lewis, G. D.; Ardalan, S. M.; Alexander, C. J. (2004). «The Galileo Star Scanner Observations at Amalthea». Icarus. 169 (2): 390–401. Bibcode:2004Icar..169..390F. doi:10.1016/j.icarus.2004.01.012.
  120. ^ Herbst, T. M.; Rix, H.-W. (1999). «Star Formation and Extrasolar Planet Studies with Near-Infrared Interferometry on the LBT». In Guenther, Eike; Stecklum, Bringfried; Klose, Sylvio (eds.). Optical and Infrared Spectroscopy of Circumstellar Matter. ASP Conference Series. Vol. 188. San Francisco, Calif.: Astronomical Society of the Pacific. pp. 341–350. Bibcode:1999ASPC..188..341H. ISBN 978-1-58381-014-9. – See section 3.4.
  121. ^ MacDougal, Douglas W. (December 16, 2012). Newton’s Gravity: An Introductory Guide to the Mechanics of the Universe. Springer New York. p. 199. ISBN 978-1-4614-5444-1.
  122. ^ Michtchenko, T. A.; Ferraz-Mello, S. (February 2001). «Modeling the 5:2 Mean-Motion Resonance in the Jupiter–Saturn Planetary System». Icarus. 149 (2): 77–115. Bibcode:2001Icar..149..357M. doi:10.1006/icar.2000.6539.
  123. ^ «Interplanetary Seasons». Science@NASA. Archived from the original on October 16, 2007. Retrieved February 20, 2007.
  124. ^ Ridpath, Ian (1998). Norton’s Star Atlas (19th ed.). Prentice Hall. ISBN 978-0-582-35655-9.[page needed]
  125. ^ Hide, R. (January 1981). «On the rotation of Jupiter». Geophysical Journal. 64: 283–289. Bibcode:1981GeoJ…64..283H. doi:10.1111/j.1365-246X.1981.tb02668.x.
  126. ^ Russell, C. T.; Yu, Z. J.; Kivelson, M. G. (2001). «The rotation period of Jupiter» (PDF). Geophysical Research Letters. 28 (10): 1911–1912. Bibcode:2001GeoRL..28.1911R. doi:10.1029/2001GL012917. S2CID 119706637. Archived (PDF) from the original on October 9, 2022. Retrieved April 28, 2022.
  127. ^ Rogers, John H. (July 20, 1995). «Appendix 3». The giant planet Jupiter. Cambridge University Press. ISBN 978-0-521-41008-3.
  128. ^ Price, Fred W. (October 26, 2000). The Planet Observer’s Handbook. Cambridge University Press. p. 140. ISBN 978-0-521-78981-3.
  129. ^ Fimmel, Richard O.; Swindell, William; Burgess, Eric (1974). «8. Encounter with the Giant». Pioneer Odyssey (Revised ed.). NASA History Office. Retrieved February 17, 2007.
  130. ^ Chaple, Glenn F. (2009). Jones, Lauren V.; Slater, Timothy F. (eds.). Outer Planets. Greenwood Guides to the Universe. ABC-CLIO. p. 47. ISBN 978-0-313-36571-3.
  131. ^ North, Chris; Abel, Paul (October 31, 2013). The Sky at Night: How to Read the Solar System. Ebury Publishing. p. 183. ISBN 978-1-4481-4130-2.
  132. ^ Sachs, A. (May 2, 1974). «Babylonian Observational Astronomy». Philosophical Transactions of the Royal Society of London. 276 (1257): 43–50 (see p. 44). Bibcode:1974RSPTA.276…43S. doi:10.1098/rsta.1974.0008. JSTOR 74273. S2CID 121539390.
  133. ^ Dubs, Homer H. (1958). «The Beginnings of Chinese Astronomy». Journal of the American Oriental Society. 78 (4): 295–300. doi:10.2307/595793. JSTOR 595793.
  134. ^ Chen, James L.; Chen, Adam (2015). A Guide to Hubble Space Telescope Objects: Their Selection, Location, and Significance. Springer International Publishing. p. 195. ISBN 978-3-319-18872-0.
  135. ^ Seargent, David A. J. (September 24, 2010). «Facts, Fallacies, Unusual Observations, and Other Miscellaneous Gleanings». Weird Astronomy: Tales of Unusual, Bizarre, and Other Hard to Explain Observations. Astronomers’ Universe. pp. 221–282. ISBN 978-1-4419-6424-3.
  136. ^ Xi, Z. Z. (1981). «The Discovery of Jupiter’s Satellite Made by Gan-De 2000 Years Before Galileo». Acta Astrophysica Sinica. 1 (2): 87. Bibcode:1981AcApS…1…85X.
  137. ^ Dong, Paul (2002). China’s Major Mysteries: Paranormal Phenomena and the Unexplained in the People’s Republic. China Books. ISBN 978-0-8351-2676-2.
  138. ^ Ossendrijver, Mathieu (January 29, 2016). «Ancient Babylonian astronomers calculated Jupiter’s position from the area under a time-velocity graph». Science. 351 (6272): 482–484. Bibcode:2016Sci…351..482O. doi:10.1126/science.aad8085. PMID 26823423. S2CID 206644971.
  139. ^ Pedersen, Olaf (1974). A Survey of the Almagest. Odense University Press. pp. 423, 428. ISBN 9788774920878.
  140. ^ Pasachoff, Jay M. (2015). «Simon Marius’s Mundus Iovialis: 400th Anniversary in Galileo’s Shadow». Journal for the History of Astronomy. 46 (2): 218–234. Bibcode:2015AAS…22521505P. doi:10.1177/0021828615585493. S2CID 120470649.
  141. ^ Westfall, Richard S. «Galilei, Galileo». The Galileo Project. Rice University. Retrieved January 10, 2007.
  142. ^ O’Connor, J. J.; Robertson, E. F. (April 2003). «Giovanni Domenico Cassini». University of St. Andrews. Retrieved February 14, 2007.
  143. ^ Atkinson, David H.; Pollack, James B.; Seiff, Alvin (September 1998). «The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter». Journal of Geophysical Research. 103 (E10): 22911–22928. Bibcode:1998JGR…10322911A. doi:10.1029/98JE00060.
  144. ^ Murdin, Paul (2000). Encyclopedia of Astronomy and Astrophysics. Bristol: Institute of Physics Publishing. ISBN 978-0-12-226690-4.
  145. ^ Rogers, John H. (1995). The giant planet Jupiter. Cambridge University Press. pp. 188–189. ISBN 978-0-521-41008-3.
  146. ^ Fimmel, Richard O.; Swindell, William; Burgess, Eric (August 1974). «Jupiter, Giant of the Solar System». Pioneer Odyssey (Revised ed.). NASA History Office. Retrieved August 10, 2006.
  147. ^ Brown, Kevin (2004). «Roemer’s Hypothesis». MathPages. Retrieved January 12, 2007.
  148. ^ Bobis, Laurence; Lequeux, James (July 2008). «Cassini, Rømer, and the velocity of light». Journal of Astronomical History and Heritage. 11 (2): 97–105. Bibcode:2008JAHH…11…97B.
  149. ^ Tenn, Joe (March 10, 2006). «Edward Emerson Barnard». Sonoma State University. Archived from the original on September 17, 2011. Retrieved January 10, 2007.
  150. ^ «Amalthea Fact Sheet». NASA/JPL. October 1, 2001. Archived from the original on November 24, 2001. Retrieved February 21, 2007.
  151. ^ Dunham Jr., Theodore (1933). «Note on the Spectra of Jupiter and Saturn». Publications of the Astronomical Society of the Pacific. 45 (263): 42–44. Bibcode:1933PASP…45…42D. doi:10.1086/124297.
  152. ^ Youssef, A.; Marcus, P. S. (2003). «The dynamics of jovian white ovals from formation to merger». Icarus. 162 (1): 74–93. Bibcode:2003Icar..162…74Y. doi:10.1016/S0019-1035(02)00060-X.
  153. ^ Chang, Kenneth (July 15, 2022). «NASA Shows Webb’s View of Something Closer to Home: Jupiter – The powerful telescope will help scientists make discoveries both within our solar system and well beyond it». The New York Times. Retrieved July 16, 2022.
  154. ^ Weintraub, Rachel A. (September 26, 2005). «How One Night in a Field Changed Astronomy». NASA. Retrieved February 18, 2007.
  155. ^ Garcia, Leonard N. «The Jovian Decametric Radio Emission». NASA. Retrieved February 18, 2007.
  156. ^ Klein, M. J.; Gulkis, S.; Bolton, S. J. (1996). «Jupiter’s Synchrotron Radiation: Observed Variations Before, During and After the Impacts of Comet SL9». Conference at University of Graz. NASA: 217. Bibcode:1997pre4.conf..217K. Retrieved February 18, 2007.
  157. ^ «The Pioneer Missions». NASA. March 26, 2007. Retrieved February 26, 2021.
  158. ^ «NASA Glenn Pioneer Launch History». NASA – Glenn Research Center. March 7, 2003. Retrieved December 22, 2011.
  159. ^ Fortescue, Peter W.; Stark, John; Swinerd, Graham (2003). Spacecraft systems engineering (3rd ed.). John Wiley and Sons. p. 150. ISBN 978-0-470-85102-9.
  160. ^ Hirata, Chris. «Delta-V in the Solar System». California Institute of Technology. Archived from the original on July 15, 2006. Retrieved November 28, 2006.
  161. ^ Wong, Al (May 28, 1998). «Galileo FAQ: Navigation». NASA. Archived from the original on January 5, 1997. Retrieved November 28, 2006.
  162. ^ a b c Chan, K.; Paredes, E. S.; Ryne, M. S. (2004). «Ulysses Attitude and Orbit Operations: 13+ Years of International Cooperation». Space OPS 2004 Conference. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2004-650-447.
  163. ^ Lasher, Lawrence (August 1, 2006). «Pioneer Project Home Page». NASA Space Projects Division. Archived from the original on January 1, 2006. Retrieved November 28, 2006.
  164. ^ «Jupiter». NASA/JPL. January 14, 2003. Retrieved November 28, 2006.
  165. ^ Hansen, C. J.; Bolton, S. J.; Matson, D. L.; Spilker, L. J.; Lebreton, J.-P. (2004). «The Cassini–Huygens flyby of Jupiter». Icarus. 172 (1): 1–8. Bibcode:2004Icar..172….1H. doi:10.1016/j.icarus.2004.06.018.
  166. ^ «Pluto-Bound New Horizons Sees Changes in Jupiter System». NASA. October 9, 2007. Retrieved February 26, 2021.
  167. ^ «Pluto-Bound New Horizons Provides New Look at Jupiter System». NASA. May 1, 2007. Retrieved July 27, 2007.
  168. ^ a b McConnell, Shannon (April 14, 2003). «Galileo: Journey to Jupiter». NASA/JPL. Archived from the original on November 3, 2004. Retrieved November 28, 2006.
  169. ^ Magalhães, Julio (December 10, 1996). «Galileo Probe Mission Events». NASA Space Projects Division. Archived from the original on January 2, 2007. Retrieved February 2, 2007.
  170. ^ Goodeill, Anthony (March 31, 2008). «New Frontiers – Missions – Juno». NASA. Archived from the original on February 3, 2007. Retrieved January 2, 2007.
  171. ^ «Juno, NASA’s Jupiter probe». The Planetary Society. Retrieved April 27, 2022.
  172. ^ Jet Propulsion Laboratory (June 17, 2016). «NASA’s Juno spacecraft to risk Jupiter’s fireworks for science». phys.org. Retrieved April 10, 2022.
  173. ^ Firth, Niall (September 5, 2016). «NASA’s Juno probe snaps first images of Jupiter’s north pole». New Scientist. Retrieved September 5, 2016.
  174. ^ Clark, Stephen (February 21, 2017). «NASA’s Juno spacecraft to remain in current orbit around Jupiter». Spaceflight Now. Retrieved April 26, 2017.
  175. ^ Agle, D. C.; Wendel, JoAnna; Schmid, Deb (June 6, 2018). «NASA Re-plans Juno’s Jupiter Mission». NASA/JPL. Retrieved January 5, 2019.
  176. ^ Talbert, Tricia (January 8, 2021). «NASA Extends Exploration for Two Planetary Science Missions». NASA. Retrieved January 11, 2021.
  177. ^ Dickinson, David (February 21, 2017). «Juno Will Stay in Current Orbit Around Jupiter». Sky & Telescope. Retrieved January 7, 2018.
  178. ^ Bartels, Meghan (July 5, 2016). «To protect potential alien life, NASA will destroy its $1 billion Jupiter spacecraft on purpose». Business Insider. Retrieved January 7, 2018.
  179. ^ Berger, Brian (February 7, 2005). «White House scales back space plans». MSNBC. Retrieved January 2, 2007.
  180. ^ «Laplace: A mission to Europa & Jupiter system». European Space Agency. Retrieved January 23, 2009.
  181. ^ Favata, Fabio (April 19, 2011). «New approach for L-class mission candidates». European Space Agency.
  182. ^ «ESA Science & Technology – JUICE». ESA. November 8, 2021. Retrieved November 10, 2021.
  183. ^ Foust, Jeff (July 10, 2020). «Cost growth prompts changes to Europa Clipper instruments». Space News. Retrieved July 10, 2020.
  184. ^ Jones, Andrew (January 12, 2021). «Jupiter Mission by China Could Include Callisto Landing». The Planetary Society. Retrieved April 27, 2020.
  185. ^ Jones, Andrew (April 16, 2021). «China to launch a pair of spacecraft towards the edge of the solar system». Space News. Retrieved April 27, 2020.
  186. ^ Billings, Lee (November 12, 2019). «Proposed Interstellar Mission Reaches for the Stars, One Generation at a Time». Scientific American. Retrieved April 27, 2020.
  187. ^ Carter, Jamie (2015). A Stargazing Program for Beginners. Springer International Publishing. p. 104. ISBN 978-3-319-22072-7.
  188. ^ Musotto, S.; Varadi, F.; Moore, W. B.; Schubert, G. (2002). «Numerical simulations of the orbits of the Galilean satellites». Icarus. 159 (2): 500–504. Bibcode:2002Icar..159..500M. doi:10.1006/icar.2002.6939. Archived from the original on August 10, 2011. Retrieved February 19, 2007.
  189. ^ a b Lang, Kenneth R. (March 3, 2011). The Cambridge Guide to the Solar System. Cambridge University Press. p. 304. ISBN 978-1-139-49417-5.
  190. ^ McFadden, Lucy-Ann; Weissmann, Paul; Johnson, Torrence (2006). Encyclopedia of the Solar System. Elsevier Science. p. 446. ISBN 978-0-08-047498-4.
  191. ^ Kessler, Donald J. (October 1981). «Derivation of the collision probability between orbiting objects: the lifetimes of jupiter’s outer moons». Icarus. 48 (1): 39–48. Bibcode:1981Icar…48…39K. doi:10.1016/0019-1035(81)90151-2. Retrieved December 30, 2020.
  192. ^ Hamilton, Thomas W. M. (2013). Moons of the Solar System. SPBRA. p. 14. ISBN 978-1-62516-175-8.
  193. ^ Jewitt, D. C.; Sheppard, S.; Porco, C. (2004). Bagenal, F.; Dowling, T.; McKinnon, W. (eds.). Jupiter: The Planet, Satellites and Magnetosphere (PDF). Cambridge University Press. ISBN 978-0-521-81808-7. Archived from the original (PDF) on March 26, 2009.
  194. ^ a b c Nesvorný, D.; Alvarellos, J. L. A.; Dones, L.; Levison, H. F. (2003). «Orbital and Collisional Evolution of the Irregular Satellites» (PDF). The Astronomical Journal. 126 (1): 398–429. Bibcode:2003AJ….126..398N. doi:10.1086/375461. S2CID 8502734.
  195. ^ Showman, A. P.; Malhotra, R. (1999). «The Galilean Satellites». Science. 286 (5437): 77–84. Bibcode:1999Sci…296…77S. doi:10.1126/science.286.5437.77. PMID 10506564. S2CID 9492520.
  196. ^ Sheppard, Scott S.; Jewitt, David C. (May 2003). «An abundant population of small irregular satellites around Jupiter» (PDF). Nature. 423 (6937): 261–263. Bibcode:2003Natur.423..261S. doi:10.1038/nature01584. PMID 12748634. S2CID 4424447. Archived from the original (PDF) on August 13, 2006.
  197. ^ Nesvorný, David; Beaugé, Cristian; Dones, Luke; Levison, Harold F. (July 2003). «Collisional Origin of Families of Irregular Satellites» (PDF). The Astronomical Journal. 127 (3): 1768–1783. Bibcode:2004AJ….127.1768N. doi:10.1086/382099. S2CID 27293848. Archived (PDF) from the original on October 9, 2022.
  198. ^ Ferraz-Mello, S. (1994). Milani, Andrea; Di Martino, Michel; Cellino, A. (eds.). Kirkwood Gaps and Resonant Groups. Asteroids, Comets, Meteors 1993: Proceedings of the 160th Symposium of the International Astronomical Union, held in Belgirate, Italy, June 14–18, 1993, International Astronomical Union. Symposium no. 160. Dordrecht: Kluwer Academic Publishers. p. 175. Bibcode:1994IAUS..160..175F.
  199. ^ Kerr, Richard A. (2004). «Did Jupiter and Saturn Team Up to Pummel the Inner Solar System?». Science. 306 (5702): 1676. doi:10.1126/science.306.5702.1676a. PMID 15576586. S2CID 129180312.
  200. ^ «List Of Jupiter Trojans». IAU Minor Planet Center. Retrieved October 24, 2010.
  201. ^ Cruikshank, D. P.; Dalle Ore, C. M.; Geballe, T. R.; Roush, T. L.; Owen, T. C.; Cash, Michele; de Bergh, C.; Hartmann, W. K. (October 2000). «Trojan Asteroid 624 Hektor: Constraints on Surface Composition». Bulletin of the American Astronomical Society. 32: 1027. Bibcode:2000DPS….32.1901C.
  202. ^ Quinn, T.; Tremaine, S.; Duncan, M. (1990). «Planetary perturbations and the origins of short-period comets». Astrophysical Journal, Part 1. 355: 667–679. Bibcode:1990ApJ…355..667Q. doi:10.1086/168800.
  203. ^ «Caught in the act: Fireballs light up Jupiter». ScienceDaily. September 10, 2010. Retrieved April 26, 2022.
  204. ^ Nakamura, T.; Kurahashi, H. (1998). «Collisional Probability of Periodic Comets with the Terrestrial Planets: An Invalid Case of Analytic Formulation». Astronomical Journal. 115 (2): 848–854. Bibcode:1998AJ….115..848N. doi:10.1086/300206.
  205. ^ Horner, J.; Jones, B. W. (2008). «Jupiter – friend or foe? I: the asteroids». International Journal of Astrobiology. 7 (3–4): 251–261. arXiv:0806.2795. Bibcode:2008IJAsB…7..251H. doi:10.1017/S1473550408004187. S2CID 8870726.
  206. ^ Overbye, Dennis (July 25, 2009). «Jupiter: Our Comic Protector?». The New York Times. Retrieved July 27, 2009.
  207. ^ «In Depth | P/Shoemaker-Levy 9». NASA Solar System Exploration. Retrieved December 3, 2021.
  208. ^ Howell, Elizabeth (January 24, 2018). «Shoemaker-Levy 9: Comet’s Impact Left Its Mark on Jupiter». Space.com. Retrieved December 3, 2021.
  209. ^ information@eso.org. «The Big Comet Crash of 1994 – Intensive Observational Campaign at ESO». www.eso.org. Retrieved December 3, 2021.
  210. ^ «Top 20 Comet Shoemaker-Levy Images». www2.jpl.nasa.gov. Retrieved December 3, 2021.
  211. ^ information@eso.org. «Comet P/Shoemaker-Levy 9 «Gang Of Four»«. www.spacetelescope.org. Retrieved December 3, 2021.
  212. ^ Savage, Donald; Elliott, Jim; Villard, Ray (December 30, 2004). «Hubble Observations Shed New Light on Jupiter Collision». nssdc.gsfc.nasa.gov. Retrieved December 3, 2021.
  213. ^ «NASA TV Coverage on Comet Shoemaker-Levy». www2.jpl.nasa.gov. Retrieved December 3, 2021.
  214. ^ Tabe, Isshi; Watanabe, Jun-ichi; Jimbo, Michiwo (February 1997). «Discovery of a Possible Impact SPOT on Jupiter Recorded in 1690». Publications of the Astronomical Society of Japan. 49: L1–L5. Bibcode:1997PASJ…49L…1T. doi:10.1093/pasj/49.1.l1.
  215. ^ «Stargazers prepare for daylight view of Jupiter». ABC News. June 16, 2005. Archived from the original on May 12, 2011. Retrieved February 28, 2008.
  216. ^ a b Rogers, J. H. (1998). «Origins of the ancient constellations: I. The Mesopotamian traditions». Journal of the British Astronomical Association. 108: 9–28. Bibcode:1998JBAA..108….9R.
  217. ^ Waerden, B. L. (1974). «Old-Babylonian Astronomy» (PDF). Science Awakening II. Dordrecht: Springer: 46–59. doi:10.1007/978-94-017-2952-9_3. ISBN 978-90-481-8247-3. Archived (PDF) from the original on March 21, 2022. Retrieved March 21, 2022.
  218. ^ «Greek Names of the Planets». April 25, 2010. Retrieved July 14, 2012. In Greek the name of the planet Jupiter is Dias, the Greek name of god Zeus. See also the Greek article about the planet.
  219. ^ Cicero, Marcus Tullius (1888). Cicero’s Tusculan Disputations; also, Treatises on The Nature of the Gods, and on The Commonwealth. Translated by Yonge, Charles Duke. New York, NY: Harper & Brothers. p. 274 – via Internet Archive.
  220. ^ Cicero, Marcus Tullus (1967) [1933]. Warmington, E. H. (ed.). De Natura Deorum [On The Nature of the Gods]. Cicero. Vol. 19. Translated by Rackham, H. Cambridge, MA: Cambridge University Press. p. 175 – via Internet Archive.
  221. ^ Zolotnikova, O. (2019). «Mythologies in contact: Syro-Phoenician traits in Homeric Zeus». The Scientific Heritage. 41 (5): 16–24. Retrieved April 26, 2022.
  222. ^ Tarnas, R. (2009). «The planets». Archai: The Journal of Archetypal Cosmology. 1 (1): 36–49. CiteSeerX 10.1.1.456.5030.
  223. ^ Harper, Douglas (November 2001). «Jupiter». Online Etymology Dictionary. Retrieved February 23, 2007.
  224. ^ «Guru». Indian Divinity.com. Retrieved February 14, 2007.
  225. ^ Sanathana, Y. S.; Manjil, Hazarika1 (November 27, 2020). «Astrolatry in the Brahmaputra Valley: Reflecting upon the Navagraha Sculptural Depiction» (PDF). Heritage: Journal of Multidisciplinary Studies in Archaeology. 8 (2): 157–174. Archived (PDF) from the original on October 9, 2022. Retrieved July 4, 2022.[dead link]
  226. ^ «Türk Astrolojisi-2» (in Turkish). NTV. Archived from the original on January 4, 2013. Retrieved April 23, 2010.
  227. ^ De Groot, Jan Jakob Maria (1912). Religion in China: universism. a key to the study of Taoism and Confucianism. American lectures on the history of religions. Vol. 10. G.P. Putnam’s Sons. p. 300. Retrieved January 8, 2010.
  228. ^ Crump, Thomas (1992). The Japanese numbers game: the use and understanding of numbers in modern Japan. Nissan Institute/Routledge Japanese studies series. Routledge. pp. 39–40. ISBN 978-0-415-05609-0.
  229. ^ Hulbert, Homer Bezaleel (1909). The passing of Korea. Doubleday, Page & Company. p. 426. Retrieved January 8, 2010.
  230. ^ Dubs, Homer H. (1958). «The Beginnings of Chinese Astronomy». Journal of the American Oriental Society. 78 (4): 295–300. doi:10.2307/595793. JSTOR 595793.
  231. ^ Wong, Mike; Kocz, Amanda (May 11, 2021). «By Jove! Jupiter Shows Its Stripes and Colors» (Press release). NOIRLab. National Science Foundation. Retrieved June 17, 2021.
  232. ^ Roth, Lorenz; Downer, Bethany (October 14, 2021). «Hubble Finds Evidence of Persistent Water Vapour Atmosphere on Europa» (Press release). ESA Hubble. European Space Agency. Retrieved October 26, 2021.
  233. ^ Overbye, Dennis (August 23, 2022). «How the Webb Telescope Expanded My Universe – As new images of Jupiter and a galactic survey spring forth from NASA’s new observatory, our cosmic affairs correspondent confesses he didn’t anticipate their power». The New York Times. Retrieved August 24, 2022.

External links

  • Lohninger, Hans; et al. (November 2, 2005). «Jupiter, As Seen By Voyager 1». A Trip into Space. Virtual Institute of Applied Science. Retrieved March 9, 2007.
  • Dunn, Tony (2006). «The Jovian System». Gravity Simulator. Retrieved March 9, 2007. – A simulation of the 62 moons of Jupiter.
  • Jupiter in Motion, album of Juno imagery stitched into short videos
  • June 2010 impact video
  • Photographs of Jupiter circa 1920s from the Lick Observatory Records Digital Archive, UC Santa Cruz Library’s Digital Collections Archived September 4, 2015, at the Wayback Machine
  • Interactive 3D gravity simulation of the Jovian system Archived June 11, 2020, at the Wayback Machine
  • Video (animation; 4:00): Flyby of Ganymede and Jupiter (NASA; 15 July 2021).
Jupiter ♃

see caption

Full disk view of Jupiter in natural color, with the shadow of its largest moon Ganymede cast onto it and the Great Red Spot at the left horizon.

Designations
Pronunciation (listen)[1]

Named after

Jupiter
Adjectives Jovian
Orbital characteristics[7]
Epoch J2000
Aphelion 816.363 Gm (5.4570 AU)
Perihelion 740.595 Gm (4.9506 AU)

Semi-major axis

778.479 Gm (5.2038 AU)
Eccentricity 0.0489

Orbital period (sidereal)

  • 11.862 yr
  • 4,332.59 d
  • 10,476.8 Jovian solar days[2]

Orbital period (synodic)

398.88 d

Average orbital speed

13.07 km/s (8.12 mi/s)

Mean anomaly

20.020°[3]
Inclination
  • 1.303° to ecliptic[3]
  • 6.09° to Sun’s equator[3]
  • 0.32° to invariable plane[4]

Longitude of ascending node

100.464°

Time of perihelion

21 January 2023[5]

Argument of perihelion

273.867°[3]
Known satellites 84 (as of 2023)[6]
Physical characteristics[7][13][14]

Mean radius

69,911 km (43,441 mi)[a]
10.973 of Earth’s

Equatorial radius

71,492 km (44,423 mi)[a]
11.209 of Earth’s

Polar radius

66,854 km (41,541 mi)[a]
10.517 of Earth’s
Flattening 0.06487

Surface area

6.1469×1010 km2 (2.3733×1010 sq mi)
120.4 of Earth’s
Volume 1.4313×1015 km3 (3.434×1014 cu mi)[a]
1,321 of Earth’s
Mass 1.8982×1027 kg (4.1848×1027 lb)

  • 317.8 of Earth’s
  • 1/1047 of Sun’s[8]

Mean density

1,326 kg/m3 (2,235 lb/cu yd)[b]

Surface gravity

24.79 m/s2 (81.3 ft/s2)[a]
2.528 g

Moment of inertia factor

0.2756±0.0006[9]

Escape velocity

59.5 km/s (37.0 mi/s)[a]

Synodic rotation period

9.9258 h (9 h 55 m 33 s)[2]

Sidereal rotation period

9.9250 hours (9 h 55 m 30 s)

Equatorial rotation velocity

12.6 km/s (7.8 mi/s; 45,000 km/h)

Axial tilt

3.13° (to orbit)

North pole right ascension

268.057°; 17h 52m 14s

North pole declination

64.495°
Albedo 0.503 (Bond)[10]
0.538 (geometric)[11]
Temperature 88 K (−185 °C) (blackbody temperature)
Surface temp. min mean max
1 bar 165 K
0.1 bar 78 K 128 K

Apparent magnitude

−2.94[12] to −1.66[12]

Angular diameter

29.8″ to 50.1″
Atmosphere[7]

Surface pressure

200–600 kPa (30–90 psi)
(opaque cloud deck)[15]

Scale height

27 km (17 mi)
Composition by volume
  • 89%±2.0% hydrogen
  • 10%±2.0% helium
  • 0.3%±0.1% methane
  • 0.026%±0.004% ammonia
  • 0.0028%±0.001% hydrogen deuteride
  • 0.0006%±0.0002% ethane
  • 0.0004%±0.0004% water

Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, while being slightly less than one-thousandth the mass of the Sun. Jupiter is the third brightest natural object in the Earth’s night sky after the Moon and Venus, and it has been observed since prehistoric times. It was named after Jupiter, the chief deity of ancient Roman religion.

Jupiter is primarily composed of hydrogen, but helium constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but (like the Solar System’s other giant planets) lacks a well-defined solid surface. The ongoing contraction of Jupiter’s interior generates more heat than the planet receives from the Sun. Because of its rapid rotation, the planet’s shape is an oblate spheroid, having a slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries. A prominent result of this is the Great Red Spot, a giant storm which has been observed since at least 1831.

Jupiter is surrounded by a faint planetary ring system and a powerful magnetosphere. The planet’s magnetic tail is nearly 800 million kilometres (5.3 astronomical units; 500 million miles) long, covering nearly the entire distance to Saturn’s orbit. Jupiter has 84 known moons and likely many more, including the four large moons discovered by Galileo Galilei in 1610: Io, Europa, Ganymede, and Callisto. Io and Europa are about the size of Earth’s Moon, Ganymede is larger than the planet Mercury, and Callisto slightly smaller than Ganymede.

Pioneer 10 was the first spacecraft to visit Jupiter, making its closest approach to the planet in December 1973. Jupiter has since been explored by multiple robotic spacecraft, beginning with the Pioneer and Voyager flyby missions from 1973 to 1979, and later with the Galileo orbiter in 1995. In 2007, New Horizons visited Jupiter using its gravity to increase its speed, bending its trajectory en route to Pluto. The latest probe to visit Jupiter, Juno, entered its orbit in July 2016. Future targets for exploration in the Jupiter system include Europa, which likely has an ice-covered liquid ocean.

Name and symbol

In both the ancient Greek and Roman civilizations, Jupiter was named after the chief god of the divine pantheon: Zeus for the Greeks and Jupiter for the Romans. The International Astronomical Union formally adopted the name Jupiter for the planet in 1976, and has since named newly discovered satellites for the god’s lovers, favourites, and descendants.[16] The planetary symbol for Jupiter, ♃, descends from a Greek zeta with a horizontal stroke, ⟨Ƶ⟩, as an abbreviation for Zeus.[17][18]

In Germanic mythology, Jupiter is equated to Thor, the namesake of Thursday.[19] It has been theorized that this replaced the Latin name for the day, i.e. Dies Iovi (‘Day of Jupiter’).[20] The Latin name Iovis is associated with the etymology of Zeus (‘sky father’). The English equivalent, Jove, is only known to have come into use as a poetic name for the planet around the 14th century.[21]

The original Greek deity Zeus supplies the root zeno-, which is used to form some Jupiter-related words, such as zenographic.[c] Jovian is the adjectival form of Jupiter. The older adjectival form jovial, employed by astrologers in the Middle Ages, has come to mean ‘happy’ or ‘merry’, moods ascribed to Jupiter’s influence in astrology.[22]

Formation and migration

Jupiter is believed to be the oldest planet in the Solar System.[23] Current models of Solar System formation suggest that Jupiter formed at or beyond the snow line: a distance from the early Sun where the temperature is sufficiently cold for volatiles such as water to condense into solids.[24] The planet began as a solid core, which then accumulated its gaseous atmosphere. As a consequence, the planet must have formed before the solar nebula was fully dispersed.[25] During its formation, Jupiter’s mass gradually increased until it had 20 times the mass of the Earth (about half of which was made up of silicates, ices and other heavy-element constituents). When the proto-Jupiter grew larger than 50 Earth masses it created a gap in the solar nebula. Thereafter, the growing planet reached its final masses in 3–4 million years.[23]

According to the «grand tack hypothesis», Jupiter began to form at a distance of roughly 3.5 AU (520 million km; 330 million mi) from the Sun. As the young planet accreted mass, interaction with the gas disk orbiting the Sun and orbital resonances with Saturn caused it to migrate inward.[24][26] This upset the orbits of several super-Earths orbiting closer to the Sun, causing them to collide destructively. Saturn would later have begun to migrate inwards too, much faster than Jupiter, until the two planets became captured in a 3:2 mean motion resonance at approximately 1.5 AU (220 million km; 140 million mi) from the Sun. This changed the direction of migration, causing them to migrate away from the Sun and out of the inner system to their current locations.[27] All of this happened over a period of 3–6 million years, with the final migration of Jupiter occurring over several hundred thousand years.[26][28] Jupiter’s departure from the inner solar system eventually allowed the inner planets—including Earth—to form from the rubble.[29]

There are several problems with the grand tack hypothesis. The resulting formation timescales of terrestrial planets appear to be inconsistent with the measured elemental composition.[30] It is likely that Jupiter would have settled into an orbit much closer to the Sun if it had migrated through the solar nebula.[31] Some competing models of Solar System formation predict the formation of Jupiter with orbital properties that are close to those of the present day planet.[25] Other models predict Jupiter forming at distances much farther out, such as 18 AU (2.7 billion km; 1.7 billion mi).[32][33]

Based on Jupiter’s composition, researchers have made the case for an initial formation outside the molecular nitrogen (N2) snowline, which is estimated at 20–30 AU (3.0–4.5 billion km; 1.9–2.8 billion mi) from the Sun,[34][35] and possibly even outside the argon snowline, which may be as far as 40 AU (6.0 billion km; 3.7 billion mi). Having formed at one of these extreme distances, Jupiter would then have migrated inwards to its current location. This inward migration would have occurred over a roughly 700,000-year time period,[32][33] during an epoch approximately 2–3 million years after the planet began to form. In this model, Saturn, Uranus and Neptune would have formed even further out than Jupiter, and Saturn would also have migrated inwards.

Physical characteristics

Jupiter is a gas giant, being primarily composed of gas and liquid rather than solid matter. It is the largest planet in the Solar System, with a diameter of 142,984 km (88,846 mi) at its equator.[36] The average density of Jupiter, 1.326 g/cm3, is about the same as simple syrup (syrup USP),[37] and is lower than those of the four terrestrial planets.[38][39]

Composition

Jupiter’s upper atmosphere is about 90% hydrogen and 10% helium by volume. Since helium atoms are more massive than hydrogen molecules, Jupiter’s atmosphere is approximately 24% helium by mass.[40] The atmosphere contains trace amounts of methane, water vapour, ammonia, and silicon-based compounds. There are also fractional amounts of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found.[41] The interior of Jupiter contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements.[42][43]

The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun.[44] Helium is also reduced to about 80% of the Sun’s helium composition. This depletion is a result of precipitation of these elements as helium-rich droplets, a process that happens deep in the interior of the planet.[45][46]

Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more of the next most common elements, including oxygen, carbon, nitrogen, and sulfur.[47] These planets are known as ice giants, because the majority of their volatile compounds are in solid form.

Size and mass

see caption

Jupiter with its moon Europa on the left. Earth’s diameter is 11 times smaller than Jupiter, and 4 times larger than Europa.

Jupiter’s mass is 2.5 times that of all the other planets in the Solar System combined—so massive that its barycentre with the Sun lies above the Sun’s surface at 1.068 solar radii from the Sun’s centre.[48] Jupiter is much larger than Earth and considerably less dense: it has 1,321 times the volume of the Earth, but only 318 times the mass.[7][49]: 6  Jupiter’s radius is about one tenth the radius of the Sun,[50] and its mass is one thousandth the mass of the Sun, as the densities of the two bodies are similar.[51] A «Jupiter mass» (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. For example, the extrasolar planet HD 209458 b has a mass of 0.69 MJ, while Kappa Andromedae b has a mass of 12.8 MJ.[52]

Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would decrease despite the increasing amount of matter. For smaller changes in its mass, the radius would not change appreciably.[53] As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve.[54] The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved.[55] Although Jupiter would need to be about 75 times more massive to fuse hydrogen and become a star,[56] the smallest red dwarf may be only slightly larger in radius than Saturn.[57]

Jupiter radiates more heat than it receives through solar radiation, due to the Kelvin–Helmholtz mechanism within its contracting interior.[58]: 30 [59] This process causes Jupiter to shrink by about 1 mm (0.039 in)/yr.[60][61] When it formed, Jupiter was hotter and was about twice its current diameter.[62]

Internal structure

Diagram of Jupiter, its interior, surface features, rings, and inner moons.

Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense core, a surrounding layer of liquid metallic hydrogen (with some helium) extending outward to about 80% of the radius of the planet,[63] and an outer atmosphere consisting primarily of molecular hydrogen.[61] Alternatively, if the planet collapsed directly from the gaseous protoplanetary disk, it was expected to completely lack a core, consisting instead of denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the Juno mission showed that Jupiter has a very diffuse core that mixes into its mantle.[64][65][66] This mixing process could have arisen during formation, while the planet accreted solids and gases from the surrounding nebula.[67] Alternatively, it could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter’s formation, which would have disrupted an originally solid Jovian core.[68][69] It is estimated that the core takes up 30–50% of the planet’s radius, and contains heavy elements with a combined mass 7–25 times the Earth.[70]

Outside the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen’s critical pressure of 1.3 MPa and critical temperature of 33 K (−240.2 °C; −400.3 °F).[71] In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. The hydrogen and helium gas extending downward from the cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids.[58]: 22 [72][73][74] Physically, the gas gradually becomes hotter and denser as depth increases.[75][76]

Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere.[45][77] Calculations suggest that helium drops separate from metallic hydrogen at a radius of 60,000 km (37,000 mi) (11,000 km (6,800 mi) below the cloud tops) and merge again at 50,000 km (31,000 mi) (22,000 km (14,000 mi) beneath the clouds).[78] Rainfalls of diamonds have been suggested to occur, as well as on Saturn[79] and the ice giants Uranus and Neptune.[80]

The temperature and pressure inside Jupiter increase steadily inward because the heat of planetary formation can only escape by convection.[46] At a surface depth where the atmospheric pressure level is 1 bar (0.10 MPa), the temperature is around 165 K (−108 °C; −163 °F). The region of supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of 50–400 GPa with temperatures of 5,000–8,400 K (4,730–8,130 °C; 8,540–14,660 °F), respectively. The temperature of Jupiter’s diluted core is estimated to be 20,000 K (19,700 °C; 35,500 °F) with a pressure of around 4,000 GPa.[81]

Atmosphere

Timelapse of Jupiter’s cloud system moving over the course of one month (photographed during Voyager 1 flyby in 1979)

The atmosphere of Jupiter extends to a depth of 3,000 km (2,000 mi) below the cloud layers.[81]

Cloud layers

View of Jupiter’s south pole

Enhanced colour view of Jupiter’s southern storms

Jupiter is perpetually covered with clouds of ammonia crystals, which may contain ammonium hydrosulfide as well.[82] The clouds are located in the tropopause layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 100 metres per second (360 km/h; 220 mph) are common in zonal jet streams.[83] The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them.[49]: 6 

The cloud layer is about 50 km (31 mi) deep, and consists of at least two decks of ammonia clouds: a thin clearer region on top with a thick lower deck. There may be a thin layer of water clouds underlying the ammonia clouds, as suggested by flashes of lightning detected in the atmosphere of Jupiter.[84] These electrical discharges can be up to a thousand times as powerful as lightning on Earth.[85] The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior.[86] The Juno mission revealed the presence of «shallow lightning» which originates from ammonia-water clouds relatively high in the atmosphere.[87] These discharges carry «mushballs» of water-ammonia slushes covered in ice, which fall deep into the atmosphere.[88] Upper-atmospheric lightning has been observed in Jupiter’s upper atmosphere, bright flashes of light that last around 1.4 milliseconds. These are known as «elves» or «sprites» and appear blue or pink due to the hydrogen.[89][90]

The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons.[58]: 39 [91] These colourful compounds, known as chromophores, mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising convection cells form crystallising ammonia that hides the chromophores from view.[92]

Jupiter’s low axial tilt means that the poles always receive less solar radiation than the planet’s equatorial region. Convection within the interior of the planet transports energy to the poles, balancing out the temperatures at the cloud layer.[49]: 54 

Great Red Spot and other vortices

The best known feature of Jupiter is the Great Red Spot,[93] a persistent anticyclonic storm located 22° south of the equator. It is known to have existed since at least 1831,[94] and possibly since 1665.[95][96] Images by the Hubble Space Telescope have shown as many as two «red spots» adjacent to the Great Red Spot.[97][98] The storm is visible through Earth-based telescopes with an aperture of 12 cm or larger.[99] The oval object rotates counterclockwise, with a period of about six days.[100] The maximum altitude of this storm is about 8 km (5 mi) above the surrounding cloud tops.[101] The Spot’s composition and the source of its red colour remain uncertain, although photodissociated ammonia reacting with acetylene is a likely explanation.[102]

The Great Red Spot is larger than the Earth.[103] Mathematical models suggest that the storm is stable and will be a permanent feature of the planet.[104] However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately 41,000 km (25,500 mi) across. By the time of the Voyager flybys in 1979, the storm had a length of 23,300 km (14,500 mi) and a width of approximately 13,000 km (8,000 mi).[105] Hubble observations in 1995 showed it had decreased in size to 20,950 km (13,020 mi), and observations in 2009 showed the size to be 17,910 km (11,130 mi). As of 2015, the storm was measured at approximately 16,500 by 10,940 km (10,250 by 6,800 mi),[105] and was decreasing in length by about 930 km (580 mi) per year.[103][106] In October 2021, a Juno flyby mission measured the depth of the Great Red Spot, putting it at around 300–500 kilometres (190–310 mi).[107]

Juno missions show that there are several polar cyclone groups at Jupiter’s poles. The northern group contains nine cyclones, with a large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one.[108][109] These polar structures are caused by the turbulence in Jupiter’s atmosphere and can be compared with the hexagon at Saturn’s north pole.

Formation of Oval BA from three white ovals

In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named Oval BA. It has since increased in intensity and changed from white to red, earning it the nickname «Little Red Spot».[110][111]

In April 2017, a «Great Cold Spot» was discovered in Jupiter’s thermosphere at its north pole. This feature is 24,000 km (15,000 mi) across, 12,000 km (7,500 mi) wide, and 200 °C (360 °F) cooler than surrounding material. While this spot changes form and intensity over the short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant vortex similar to the Great Red Spot, and appears to be quasi-stable like the vortices in Earth’s thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow.[112]

Magnetosphere

Jupiter’s magnetic field is the strongest of any planet in the Solar System,[92] with a dipole moment of 4.170 gauss (0.4170 mT) that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from 2 gauss (0.20 mT) up to 20 gauss (2.0 mT).[113] This field is thought to be generated by eddy currents—swirling movements of conducting materials—within the liquid metallic hydrogen core. At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter’s magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter’s lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind.[58]: 69 

The volcanoes on the moon Io emit large amounts of sulfur dioxide, forming a gas torus along the moon’s orbit. The gas is ionized in Jupiter’s magnetosphere, producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter’s equatorial plane. The plasma in the sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magnetodisk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30 MHz that are detectable from Earth with consumer-grade shortwave radio receivers.[114][115] As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the radio output of the Sun.[116]

Planetary rings

Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring.[117] These rings appear to be made of dust, while Saturn’s rings are made of ice.[58]: 65  The main ring is most likely made out of material ejected from the satellites Adrastea and Metis, which is drawn into Jupiter because of the planet’s strong gravitational influence. New material is added by additional impacts.[118] In a similar way, the moons Thebe and Amalthea are believed to produce the two distinct components of the dusty gossamer ring.[118] There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon’s orbit.[119]

Orbit and rotation

see caption

Jupiter is the only planet whose barycentre with the Sun lies outside the volume of the Sun, though by only 7% of the Sun’s radius.[120][121] The average distance between Jupiter and the Sun is 778 million km (5.2 AU) and it completes an orbit every 11.86 years. This is approximately two-fifths the orbital period of Saturn, forming a near orbital resonance.[122] The orbital plane of Jupiter is inclined 1.30° compared to Earth. Because the eccentricity of its orbit is 0.049, Jupiter is slightly over 75 million km nearer the Sun at perihelion than aphelion.[7]

The axial tilt of Jupiter is relatively small, only 3.13°, so its seasons are insignificant compared to those of Earth and Mars.[123]

Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours; this creates an equatorial bulge easily seen through an amateur telescope. Because Jupiter is not a solid body, its upper atmosphere undergoes differential rotation. The rotation of Jupiter’s polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere.[124] The planet is an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between its poles.[76] On Jupiter, the equatorial diameter is 9,276 km (5,764 mi) longer than the polar diameter.[7]

Three systems are used as frames of reference for tracking the planetary rotation, particularly when graphing the motion of atmospheric features. System I applies to latitudes from 7° N to 7° S; its period is the planet’s shortest, at 9h 50 m 30.0s. System II applies at latitudes north and south of these; its period is 9h 55 m 40.6s.[125] System III was defined by radio astronomers and corresponds to the rotation of the planet’s magnetosphere; its period is Jupiter’s official rotation.[126]

Observation

see caption

Jupiter and four Galilean moons seen through an amateur telescope

Jupiter is usually the fourth brightest object in the sky (after the Sun, the Moon, and Venus),[92] although at opposition Mars can appear brighter than Jupiter. Depending on Jupiter’s position with respect to the Earth, it can vary in visual magnitude from as bright as −2.94 at opposition down to −1.66 during conjunction with the Sun.[12] The mean apparent magnitude is −2.20 with a standard deviation of 0.33.[12] The angular diameter of Jupiter likewise varies from 50.1 to 30.5 arc seconds.[7] Favourable oppositions occur when Jupiter is passing through the perihelion of its orbit, bringing it closer to Earth.[127] Near opposition, Jupiter will appear to go into retrograde motion for a period of about 121 days, moving backward through an angle of 9.9° before returning to prograde movement.[128]

Because the orbit of Jupiter is outside that of Earth, the phase angle of Jupiter as viewed from Earth is always less than 11.5°; thus, Jupiter always appears nearly fully illuminated when viewed through Earth-based telescopes. It was only during spacecraft missions to Jupiter that crescent views of the planet were obtained.[129] A small telescope will usually show Jupiter’s four Galilean moons and the prominent cloud belts across Jupiter’s atmosphere. A larger telescope with an aperture of 4–6 in (10.16–15.24 cm) will show Jupiter’s Great Red Spot when it faces Earth.[130][131]

History

Pre-telescopic research

Model in the Almagest of the longitudinal motion of Jupiter (☉) relative to Earth (🜨)

Observation of Jupiter dates back to at least the Babylonian astronomers of the 7th or 8th century BC.[132] The ancient Chinese knew Jupiter as the «Suì Star» (Suìxīng 歲星) and established their cycle of 12 earthly branches based on the approximate number of years it takes Jupiter to rotate around the Sun; the Chinese language still uses its name (simplified as ) when referring to years of age. By the 4th century BC, these observations had developed into the Chinese zodiac,[133] and each year became associated with a Tai Sui star and god controlling the region of the heavens opposite Jupiter’s position in the night sky. These beliefs survive in some Taoist religious practices and in the East Asian zodiac’s twelve animals. The Chinese historian Xi Zezong has claimed that Gan De, an ancient Chinese astronomer,[134] reported a small star «in alliance» with the planet,[135] which may indicate a sighting of one of Jupiter’s moons with the unaided eye. If true, this would predate Galileo’s discovery by nearly two millennia.[136][137]

A 2016 paper reports that trapezoidal rule was used by Babylonians before 50 BCE for integrating the velocity of Jupiter along the ecliptic.[138] In his 2nd century work the Almagest, the Hellenistic astronomer Claudius Ptolemaeus constructed a geocentric planetary model based on deferents and epicycles to explain Jupiter’s motion relative to Earth, giving its orbital period around Earth as 4332.38 days, or 11.86 years.[139]

Ground-based telescope research

Galileo’s drawings of Jupiter and its «Medicean Stars» from Sidereus Nuncius

In 1610, Italian polymath Galileo Galilei discovered the four largest moons of Jupiter (now known as the Galilean moons) using a telescope. This is thought to be the first telescopic observation of moons other than Earth’s. Just one day after Galileo, Simon Marius independently discovered moons around Jupiter, though he did not publish his discovery in a book until 1614.[140] It was Marius’s names for the major moons, however, that stuck: Io, Europa, Ganymede, and Callisto. The discovery was a major point in favour of Copernicus’ heliocentric theory of the motions of the planets; Galileo’s outspoken support of the Copernican theory led to him being tried and condemned by the Inquisition.[141]

During the 1660s, Giovanni Cassini used a new telescope to discover spots and colourful bands in Jupiter’s atmosphere, observe that the planet appeared oblate, and estimate its rotation period.[142] In 1692, Cassini noticed that the atmosphere undergoes differential rotation.[143]

The Great Red Spot may have been observed as early as 1664 by Robert Hooke and in 1665 by Cassini, although this is disputed. The pharmacist Heinrich Schwabe produced the earliest known drawing to show details of the Great Red Spot in 1831.[144] The Red Spot was reportedly lost from sight on several occasions between 1665 and 1708 before becoming quite conspicuous in 1878.[145] It was recorded as fading again in 1883 and at the start of the 20th century.[146]

Both Giovanni Borelli and Cassini made careful tables of the motions of Jupiter’s moons, which allowed predictions of when the moons would pass before or behind the planet. By the 1670s, Cassini observed that when Jupiter was on the opposite side of the Sun from Earth, these events would occur about 17 minutes later than expected. Ole Rømer deduced that light does not travel instantaneously (a conclusion that Cassini had earlier rejected),[43] and this timing discrepancy was used to estimate the speed of light.[147][148]

In 1892, E. E. Barnard observed a fifth satellite of Jupiter with the 36-inch (910 mm) refractor at Lick Observatory in California. This moon was later named Amalthea.[149] It was the last planetary moon to be discovered directly by a visual observer through a telescope.[150] An additional eight satellites were discovered before the flyby of the Voyager 1 probe in 1979.[d]

Jupiter viewed in infrared by JWST
(July 14, 2022)

In 1932, Rupert Wildt identified absorption bands of ammonia and methane in the spectra of Jupiter.[151] Three long-lived anticyclonic features called «white ovals» were observed in 1938. For several decades they remained as separate features in the atmosphere, sometimes approaching each other but never merging. Finally, two of the ovals merged in 1998, then absorbed the third in 2000, becoming Oval BA.[152]

Space-based telescope research

On July 14, 2022, NASA presented images of Jupiter and related areas captured, for the first time, and including infrared views, by the James Webb Space Telescope (JWST).[153]

Radiotelescope research

Image of Jupiter and its radiation belts in radio

In 1955, Bernard Burke and Kenneth Franklin discovered that Jupiter emits bursts of radio waves at a frequency of 22.2 MHz.[58]: 36  The period of these bursts matched the rotation of the planet, and they used this information to determine a more precise value for Jupiter’s rotation rate. Radio bursts from Jupiter were found to come in two forms: long bursts (or L-bursts) lasting up to several seconds, and short bursts (or S-bursts) lasting less than a hundredth of a second.[154]

Scientists have discovered three forms of radio signals transmitted from Jupiter:

  • Decametric radio bursts (with a wavelength of tens of metres) vary with the rotation of Jupiter, and are influenced by the interaction of Io with Jupiter’s magnetic field.[155]
  • Decimetric radio emission (with wavelengths measured in centimetres) was first observed by Frank Drake and Hein Hvatum in 1959.[58]: 36  The origin of this signal is a torus-shaped belt around Jupiter’s equator, which generates cyclotron radiation from electrons that are accelerated in Jupiter’s magnetic field.[156]
  • Thermal radiation is produced by heat in the atmosphere of Jupiter.[58]: 43 

Exploration

Jupiter has been visited by automated spacecraft since 1973, when the space probe Pioneer 10 passed close enough to Jupiter to send back revelations about its properties and phenomena.[157][158] Missions to Jupiter are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, or delta-v. Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s,[159] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit.[160] Gravity assists through planetary flybys can be used to reduce the energy required to reach Jupiter.[161]

Flyby missions

Spacecraft Closest
approach
Distance
Pioneer 10 December 3, 1973 130,000 km
Pioneer 11 December 4, 1974 34,000 km
Voyager 1 March 5, 1979 349,000 km
Voyager 2 July 9, 1979 570,000 km
Ulysses February 8, 1992[162] 408,894 km
February 4, 2004[162] 120,000,000 km
Cassini December 30, 2000 10,000,000 km
New Horizons February 28, 2007 2,304,535 km

Beginning in 1973, several spacecraft have performed planetary flyby manoeuvres that brought them within observation range of Jupiter. The Pioneer missions obtained the first close-up images of Jupiter’s atmosphere and several of its moons. They discovered that the radiation fields near the planet were much stronger than expected, but both spacecraft managed to survive in that environment. The trajectories of these spacecraft were used to refine the mass estimates of the Jovian system. Radio occultations by the planet resulted in better measurements of Jupiter’s diameter and the amount of polar flattening.[49]: 47 [163]

Six years later, the Voyager missions vastly improved the understanding of the Galilean moons and discovered Jupiter’s rings. They also confirmed that the Great Red Spot was anticyclonic. Comparison of images showed that the Spot had changed hue since the Pioneer missions, turning from orange to dark brown. A torus of ionized atoms was discovered along Io’s orbital path, which were found to come from erupting volcanoes on the moon’s surface. As the spacecraft passed behind the planet, it observed flashes of lightning in the night side atmosphere.[49]: 87 [164]

The next mission to encounter Jupiter was the Ulysses solar probe. In February 1992, it performed a flyby manoeuvre to attain a polar orbit around the Sun. During this pass, the spacecraft studied Jupiter’s magnetosphere, although it had no cameras to photograph the planet. The spacecraft passed by Jupiter six years later, this time at a much greater distance.[162]

In 2000, the Cassini probe flew by Jupiter on its way to Saturn, and provided higher-resolution images.[165]

The New Horizons probe flew by Jupiter in 2007 for a gravity assist en route to Pluto.[166] The probe’s cameras measured plasma output from volcanoes on Io and studied all four Galilean moons in detail.[167]

Galileo mission

Galileo in preparation for mating with the rocket, 1989

The first spacecraft to orbit Jupiter was the Galileo mission, which reached the planet on December 7, 1995.[54] It remained in orbit for over seven years, conducting multiple flybys of all the Galilean moons and Amalthea. The spacecraft also witnessed the impact of Comet Shoemaker–Levy 9 when it collided with Jupiter in 1994. Some of the goals for the mission were thwarted due to a malfunction in Galileo’s high-gain antenna.[168]

A 340-kilogram titanium atmospheric probe was released from the spacecraft in July 1995, entering Jupiter’s atmosphere on December 7.[54] It parachuted through 150 km (93 mi) of the atmosphere at a speed of about 2,575 km/h (1600 mph)[54] and collected data for 57.6 minutes until the spacecraft was destroyed.[169] The Galileo orbiter itself experienced a more rapid version of the same fate when it was deliberately steered into the planet on September 21, 2003. NASA destroyed the spacecraft in order to avoid any possibility of the spacecraft crashing into and possibly contaminating the moon Europa, which may harbour life.[168]

Data from this mission revealed that hydrogen composes up to 90% of Jupiter’s atmosphere.[54] The recorded temperature was more than 300 °C (570 °F) and the windspeed measured more than 644 km/h (>400 mph) before the probes vaporized.[54]

Juno mission

see caption

Juno preparing for testing in a rotation stand, 2011

NASA’s Juno mission arrived at Jupiter on July 4, 2016 with the goal of studying the planet in detail from a polar orbit. The spacecraft was originally intended to orbit Jupiter thirty-seven times over a period of twenty months.[170][64][171] During the mission, the spacecraft will be exposed to high levels of radiation from Jupiter’s magnetosphere, which may cause future failure of certain instruments.[172] On August 27, 2016, the spacecraft completed its first fly-by of Jupiter and sent back the first-ever images of Jupiter’s north pole.[173]

Juno completed 12 orbits before the end of its budgeted mission plan, ending July 2018.[174] In June of that year, NASA extended the mission operations plan to July 2021, and in January of that year the mission was extended to September 2025 with four lunar flybys: one of Ganymede, one of Europa, and two of Io.[175][176] When Juno reaches the end of the mission, it will perform a controlled deorbit and disintegrate into Jupiter’s atmosphere. This will avoid the risk of collision with Jupiter’s moons.[177][178]

Cancelled missions and future plans

There is great interest in missions to study Jupiter’s larger icy moons, which may have subsurface liquid oceans. Funding difficulties have delayed progress, causing NASA’s JIMO (Jupiter Icy Moons Orbiter) to be cancelled in 2005.[179] A subsequent proposal was developed for a joint NASA/ESA mission called EJSM/Laplace, with a provisional launch date around 2020. EJSM/Laplace would have consisted of the NASA-led Jupiter Europa Orbiter and the ESA-led Jupiter Ganymede Orbiter.[180] However, the ESA formally ended the partnership in April 2011, citing budget issues at NASA and the consequences on the mission timetable. Instead, ESA planned to go ahead with a European-only mission to compete in its L1 Cosmic Vision selection.[181] These plans have been realized as the European Space Agency’s Jupiter Icy Moon Explorer (JUICE), due to launch in 2023,[182] followed by NASA’s Europa Clipper mission, scheduled for launch in 2024.[183]

Other proposed missions include the Chinese National Space Administration’s Tianwen-4 mission which aims to launch an orbiter to the Jovian system and possibly Callisto around 2035,[184] and CNSA’s Interstellar Express[185] and NASA’s Interstellar Probe,[186] which would both use Jupiter’s gravity to help them reach the edges of the heliosphere.

Moons

Jupiter has 84 known natural satellites.[6] Of these, 68 are less than 10 km in diameter.[6] The four largest moons are Io, Europa, Ganymede, and Callisto, collectively known as the «Galilean moons», and are visible from Earth with binoculars on a clear night.[187]

Galilean moons

The moons discovered by Galileo—Io, Europa, Ganymede, and Callisto—are among the largest in the Solar System. The orbits of Io, Europa, and Ganymede form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes the gravitational effects of the three large moons to distort their orbits into elliptical shapes, because each moon receives an extra tug from its neighbours at the same point in every orbit it makes. The tidal force from Jupiter, on the other hand, works to circularise their orbits.[188]

The eccentricity of their orbits causes regular flexing of the three moons’ shapes, with Jupiter’s gravity stretching them out as they approach it and allowing them to spring back to more spherical shapes as they swing away. The friction created by this tidal flexing generates heat in the interior of the moons.[189] This is seen most dramatically in the volcanic activity of Io (which is subject to the strongest tidal forces),[189] and to a lesser degree in the geological youth of Europa’s surface, which indicates recent resurfacing of the moon’s exterior.[190]

The Galilean moons compared to the Earth’s Moon

Name IPA Diameter Mass Orbital radius Orbital period
km % kg % km % days %
Io /ˈaɪ.oʊ/ 3,643 105 8.9×1022 120 421,700 110 1.77 7
Europa /jʊˈroʊpə/ 3,122 90 4.8×1022 65 671,034 175 3.55 13
Ganymede /ˈɡænimiːd/ 5,262 150 14.8×1022 200 1,070,412 280 7.15 26
Callisto /kəˈlɪstoʊ/ 4,821 140 10.8×1022 150 1,882,709 490 16.69 61

The Galilean moons. From left to right, in order of increasing distance from Jupiter: Io, Europa, Ganymede, Callisto.

The Galilean moons Io, Europa, Ganymede, and Callisto (in order of increasing distance from Jupiter)

Classification

Jupiter’s moons were traditionally classified into four groups of four, based on their similar orbital elements.[191] This picture has been complicated by the discovery of numerous small outer moons since 1999. Jupiter’s moons are currently divided into several different groups, although there are several moons which are not part of any group.[192]

The eight innermost regular moons, which have nearly circular orbits near the plane of Jupiter’s equator, are thought to have formed alongside Jupiter, whilst the remainder are irregular moons and are thought to be captured asteroids or fragments of captured asteroids. The irregular moons within each group may have a common origin, perhaps as a larger moon or captured body that broke up.[193][194]

Regular moons
Inner group The inner group of four small moons all have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree.
Galilean moons[195] These four moons, discovered by Galileo Galilei and by Simon Marius in parallel, orbit between 400,000 and 2,000,000 km, and are some of the largest moons in the Solar System.
Irregular moons
Himalia group A tightly clustered group of moons with orbits around 11,000,000–12,000,000 km from Jupiter.[196]
Ananke group This retrograde orbit group has rather indistinct borders, averaging 21,276,000 km from Jupiter with an average inclination of 149 degrees.[194]
Carme group A fairly distinct retrograde group that averages 23,404,000 km from Jupiter with an average inclination of 165 degrees.[194]
Pasiphae group A dispersed and only vaguely distinct retrograde group that covers all the outermost moons.[197]

Interaction with the Solar System

As the most massive of the eight planets, the gravitational influence of Jupiter has helped shape the Solar System. With the exception of Mercury, the orbits of the system’s planets lie closer to Jupiter’s orbital plane than the Sun’s equatorial plane. The Kirkwood gaps in the asteroid belt are mostly caused by Jupiter,[198] and the planet may have been responsible for the purported Late Heavy Bombardment in the inner Solar System’s history.[199]

In addition to its moons, Jupiter’s gravitational field controls numerous asteroids that have settled around the Lagrangian points that precede and follow the planet in its orbit around the Sun. These are known as the Trojan asteroids, and are divided into Greek and Trojan «camps» to honour the Iliad. The first of these, 588 Achilles, was discovered by Max Wolf in 1906; since then more than two thousand have been discovered.[200] The largest is 624 Hektor.[201]

The Jupiter family is defined as comets that have a semi-major axis smaller than Jupiter’s; most short-period comets belong to this group. Members of the Jupiter family are thought to form in the Kuiper belt outside the orbit of Neptune. During close encounters with Jupiter, they are perturbed into orbits with a smaller period, which then becomes circularised by regular gravitational interaction with the Sun and Jupiter.[202]

Impacts

Jupiter has been called the Solar System’s vacuum cleaner[203] because of its immense gravity well and location near the inner Solar System. There are more impacts on Jupiter, such as comets, than on any other planet in the Solar System.[204] For example, Jupiter experiences about 200 times more asteroid and comet impacts than Earth.[54] In the past, scientists believed that Jupiter partially shielded the inner system from cometary bombardment.[54] However, computer simulations in 2008 suggest that Jupiter does not cause a net decrease in the number of comets that pass through the inner Solar System, as its gravity perturbs their orbits inward roughly as often as it accretes or ejects them.[205] This topic remains controversial among scientists, as some think it draws comets towards Earth from the Kuiper belt, while others believes that Jupiter protects Earth from the Oort cloud.[206]

In July 1994, the Comet Shoemaker–Levy 9 comet collided with Jupiter.[207][208] The impacts were closely observed by observatories around the world, including the Hubble Space Telescope and Galileo spacecraft.[209][210][211][212] The event was widely covered by the media.[213]

Surveys of early astronomical records and drawings produced eight examples of potential impact observations between 1664 and 1839. However, a 1997 review determined that these observations had little or no possibility of being the results of impacts. Further investigation by this team revealed a dark surface feature discovered by astronomer Giovanni Cassini in 1690 may have been an impact scar.[214]

In culture

Jupiter, woodcut from a 1550 edition of Guido Bonatti’s Liber Astronomiae

The planet Jupiter has been known since ancient times. It is visible to the naked eye in the night sky and can occasionally be seen in the daytime when the Sun is low.[215] To the Babylonians, this planet represented their god Marduk,[216] chief of their pantheon from the Hammurabi period.[217] They used Jupiter’s roughly 12-year orbit along the ecliptic to define the constellations of their zodiac.[216]

The mythical Greek name for this planet is Zeus (Ζεύς), also referred to as Dias (Δίας), the planetary name of which is retained in modern Greek.[218] The ancient Greeks knew the planet as Phaethon (Φαέθων), meaning «shining one» or «blazing star».[219][220] The Greek myths of Zeus from the Homeric period showed particular similarities to certain Near-Eastern gods, including the Semitic El and Baal, the Sumerian Enlil, and the Babylonian god Marduk.[221] The association between the planet and the Greek deity Zeus was drawn from Near Eastern influences and was fully established by the fourth century BCE, as documented in the Epinomis of Plato and his contemporaries.[222]

The god Jupiter is the Roman counterpart of Zeus, and he is the principal god of Roman mythology. The Romans originally called Jupiter the «star of Jupiter» (Iuppiter Stella),» as they believed it to be sacred to its namesake god. This name comes from the Proto-Indo-European vocative compound *Dyēu-pəter (nominative: *Dyēus-pətēr, meaning «Father Sky-God», or «Father Day-God»).[223] As the supreme god of the Roman pantheon, Jupiter was the god of thunder, lightning, and storms, and appropriately called the god of light and sky.

In Vedic astrology, Hindu astrologers named the planet after Brihaspati, the religious teacher of the gods, and often called it «Guru», which means the «Teacher».[224][225] In Central Asian Turkic myths, Jupiter is called Erendiz or Erentüz, from eren (of uncertain meaning) and yultuz («star»). The Turks calculated the period of the orbit of Jupiter as 11 years and 300 days. They believed that some social and natural events connected to Erentüz’s movements on the sky.[226] The Chinese, Vietnamese, Koreans, and Japanese called it the «wood star» (Chinese: 木星; pinyin: mùxīng), based on the Chinese Five Elements.[227][228][229] In China it became known as the «Year-star» (Sui-sing) as Chinese astronomers noted that it jumped one zodiac constellation each year (with corrections). In some ancient Chinese writings the years were named, at least in principle, in correlation with the Jovian zodiacal signs.[230]

Gallery

  • Infrared view of Jupiter, imaged by the Gemini North telescope in Hawaiʻi, January 11, 2017

    Infrared view of Jupiter, imaged by the Gemini North telescope in Hawaiʻi, January 11, 2017

  • Ultraviolet view of Jupiter by Hubble, January 11, 2017[231]

    Ultraviolet view of Jupiter by Hubble, January 11, 2017[231]

  • Jupiter and Europa, taken by Hubble on 25 August 2020, when the planet was 653 million kilometres from Earth.[232]

    Jupiter and Europa, taken by Hubble on 25 August 2020, when the planet was 653 million kilometres from Earth.[232]

See also

  • Outline of Jupiter – Overview of and topical guide to Jupiter
  • Eccentric Jupiter – Jovian planet that orbits its star in an eccentric orbit
  • Hot Jupiter – Class of high mass planets orbiting close to a star
  • Super-Jupiter – Class of planets with more mass than Jupiter
  • Jovian–Plutonian gravitational effect – Astronomical hoax
  • List of gravitationally rounded objects of the Solar System

Notes

  1. ^ a b c d e f Refers to the level of 1 bar atmospheric pressure
  2. ^ Based on the volume within the level of 1 bar atmospheric pressure
  3. ^ See for example: «IAUC 2844: Jupiter; 1975h». International Astronomical Union. October 1, 1975. Retrieved October 24, 2010. That particular word has been in use since at least 1966. See: «Query Results from the Astronomy Database». Smithsonian/NASA. Retrieved July 29, 2007.
  4. ^ See Moons of Jupiter for details and cites

References

  1. ^ Simpson, J. A.; Weiner, E. S. C. (1989). «Jupiter». Oxford English Dictionary. Vol. 8 (2nd ed.). Clarendon Press. ISBN 978-0-19-861220-9.
  2. ^ a b Seligman, Courtney. «Rotation Period and Day Length». Retrieved August 13, 2009.
  3. ^ a b c d Simon, J. L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). «Numerical expressions for precession formulae and mean elements for the Moon and planets». Astronomy and Astrophysics. 282 (2): 663–683. Bibcode:1994A&A…282..663S.
  4. ^ Souami, D.; Souchay, J. (July 2012). «The solar system’s invariable plane». Astronomy & Astrophysics. 543: 11. Bibcode:2012A&A…543A.133S. doi:10.1051/0004-6361/201219011. A133.
  5. ^ «HORIZONS Planet-center Batch call for January 2023 Perihelion». ssd.jpl.nasa.gov (Perihelion for Jupiter’s planet-centre (599) occurs on 2023-Jan-21 at 4.9510113au during a rdot flip from negative to positive). NASA/JPL. Retrieved September 7, 2021.
  6. ^ a b c Sheppard, Scott S. «Moons of Jupiter». Earth & Planets Laboratory. Carnegie Institution for Science. Retrieved December 20, 2022.
  7. ^ a b c d e f g Williams, David R. (December 23, 2021). «Jupiter Fact Sheet». NASA. Retrieved October 13, 2017.
  8. ^ «Astrodynamic Constants». JPL Solar System Dynamics. February 27, 2009. Retrieved August 8, 2007.
  9. ^ Ni, D. (2018). «Empirical models of Jupiter’s interior from Juno data». Astronomy & Astrophysics. 613: A32. Bibcode:2018A&A…613A..32N. doi:10.1051/0004-6361/201732183.
  10. ^ Li, Liming; Jiang, X.; West, R. A.; Gierasch, P. J.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Fletcher, L. N.; Fortney, J. J.; Knowles, B.; Porco, C. C.; Baines, K. H.; Fry, P. M.; Mallama, A.; Achterberg, R. K.; Simon, A. A.; Nixon, C. A.; Orton, G. S.; Dyudina, U. A.; Ewald, S. P.; Schmude, R. W. (2018). «Less absorbed solar energy and more internal heat for Jupiter». Nature Communications. 9 (1): 3709. Bibcode:2018NatCo…9.3709L. doi:10.1038/s41467-018-06107-2. PMC 6137063. PMID 30213944.
  11. ^ Mallama, Anthony; Krobusek, Bruce; Pavlov, Hristo (2017). «Comprehensive wide-band magnitudes and albedos for the planets, with applications to exo-planets and Planet Nine». Icarus. 282: 19–33. arXiv:1609.05048. Bibcode:2017Icar..282…19M. doi:10.1016/j.icarus.2016.09.023. S2CID 119307693.
  12. ^ a b c d Mallama, A.; Hilton, J. L. (2018). «Computing Apparent Planetary Magnitudes for The Astronomical Almanac». Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C….25…10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809.
  13. ^ Seidelmann, P. Kenneth; Archinal, Brent A.; A’Hearn, Michael F.; Conrad, Albert R.; Consolmagno, Guy J.; Hestroffer, Daniel; Hilton, James L.; Krasinsky, Georgij A.; Neumann, Gregory A.; Oberst, Jürgen; Stooke, Philip J.; Tedesco, Edward F.; Tholen, David J.; Thomas, Peter C.; Williams, Iwan P. (2007). «Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006». Celestial Mechanics and Dynamical Astronomy. 98 (3): 155–180. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y.
  14. ^ de Pater, Imke; Lissauer, Jack J. (2015). Planetary Sciences (2nd updated ed.). New York: Cambridge University Press. p. 250. ISBN 978-0-521-85371-2.
  15. ^ Bjoraker, G. L.; Wong, M. H.; de Pater, I.; Ádámkovics, M. (September 2015). «Jupiter’s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes». The Astrophysical Journal. 810 (2): 10. arXiv:1508.04795. Bibcode:2015ApJ…810..122B. doi:10.1088/0004-637X/810/2/122. S2CID 55592285. 122.
  16. ^ «Naming of Astronomical Objects». International Astronomical Union. Retrieved March 23, 2022.
  17. ^ Jones, Alexander (1999). Astronomical papyri from Oxyrhynchus. pp. 62–63. ISBN 978-0-87169-233-7. It is now possible to trace the medieval symbols for at least four of the five planets to forms that occur in some of the latest papyrus horoscopes ([ P.Oxy. ] 4272, 4274, 4275 […]). That for Jupiter is an obvious monogram derived from the initial letter of the Greek name.
  18. ^ Maunder, A. S. D. (August 1934). «The origin of the symbols of the planets». The Observatory. 57: 238–247. Bibcode:1934Obs….57..238M.
  19. ^ Falk, Michael; Koresko, Christopher (2004). «Astronomical Names for the Days of the Week». Journal of the Royal Astronomical Society of Canada. 93: 122–133. arXiv:astro-ph/0307398. Bibcode:1999JRASC..93..122F. doi:10.1016/j.newast.2003.07.002. S2CID 118954190.
  20. ^ Simek, Rudolf (1993) [1984]. Dictionary of Northern Mythology. Translated by Hall, Angela. D. S. Brewer. p. 371. ISBN 978-0-85991-513-7.
  21. ^ Harper, Douglas. Jove. Online Etymology Dictionary. Retrieved March 22, 2022.
  22. ^ «Jovial». Dictionary.com. Retrieved July 29, 2007.
  23. ^ a b Kruijer, Thomas S.; Burkhardt, Christoph; Budde, Gerrit; Kleine, Thorsten (June 2017). «Age of Jupiter inferred from the distinct genetics and formation times of meteorites». Proceedings of the National Academy of Sciences. 114 (26): 6712–6716. Bibcode:2017PNAS..114.6712K. doi:10.1073/pnas.1704461114. PMC 5495263. PMID 28607079.
  24. ^ a b Bosman, A. D.; Cridland, A. J.; Miguel, Y. (December 2019). «Jupiter formed as a pebble pile around the N2 ice line». Astronomy & Astrophysics. 632: 5. arXiv:1911.11154. Bibcode:2019A&A…632L..11B. doi:10.1051/0004-6361/201936827. S2CID 208291392. L11.
  25. ^ a b D’Angelo, G.; Weidenschilling, S. J.; Lissauer, J. J.; Bodenheimer, P. (2021). «Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch». Icarus. 355: 114087. arXiv:2009.05575. Bibcode:2021Icar..35514087D. doi:10.1016/j.icarus.2020.114087. S2CID 221654962.
  26. ^ a b Walsh, K. J.; Morbidelli, A.; Raymond, S. N.; O’Brien, D. P.; Mandell, A. M. (2011). «A low mass for Mars from Jupiter’s early gas-driven migration». Nature. 475 (7355): 206–209. arXiv:1201.5177. Bibcode:2011Natur.475..206W. doi:10.1038/nature10201. PMID 21642961. S2CID 4431823.
  27. ^ Batygin, Konstantin (2015). «Jupiter’s decisive role in the inner Solar System’s early evolution». Proceedings of the National Academy of Sciences. 112 (14): 4214–4217. arXiv:1503.06945. Bibcode:2015PNAS..112.4214B. doi:10.1073/pnas.1423252112. PMC 4394287. PMID 25831540.
  28. ^ Haisch Jr., K. E.; Lada, E. A.; Lada, C. J. (2001). «Disc Frequencies and Lifetimes in Young Clusters». The Astrophysical Journal. 553 (2): 153–156. arXiv:astro-ph/0104347. Bibcode:2001ApJ…553L.153H. doi:10.1086/320685. S2CID 16480998.
  29. ^ Fazekas, Andrew (March 24, 2015). «Observe: Jupiter, Wrecking Ball of Early Solar System». National Geographic. Archived from the original on March 14, 2017. Retrieved April 18, 2021.
  30. ^ Zube, N.; Nimmo, F.; Fischer, R.; Jacobson, S. (2019). «Constraints on terrestrial planet formation timescales and equilibration processes in the Grand Tack scenario from Hf-W isotopic evolution». Earth and Planetary Science Letters. 522 (1): 210–218. arXiv:1910.00645. Bibcode:2019E&PSL.522..210Z. doi:10.1016/j.epsl.2019.07.001. PMC 7339907. PMID 32636530. S2CID 199100280.
  31. ^ D’Angelo, G.; Marzari, F. (2012). «Outward Migration of Jupiter and Saturn in Evolved Gaseous Disks». The Astrophysical Journal. 757 (1): 50 (23 pp.). arXiv:1207.2737. Bibcode:2012ApJ…757…50D. doi:10.1088/0004-637X/757/1/50. S2CID 118587166.
  32. ^ a b Pirani, S.; Johansen, A.; Bitsch, B.; Mustill, A.J.; Turrini, D. (March 2019). «Consequences of planetary migration on the minor bodies of the early solar system». Astronomy & Astrophysics. 623: A169. arXiv:1902.04591. Bibcode:2019A&A…623A.169P. doi:10.1051/0004-6361/201833713.
  33. ^ a b «Jupiter’s Unknown Journey Revealed». ScienceDaily. Lund University. March 22, 2019. Retrieved March 25, 2019.
  34. ^ Öberg, K.I.; Wordsworth, R. (2019). «Jupiter’s Composition Suggests its Core Assembled Exterior to the N_{2} Snowline». The Astronomical Journal. 158 (5). arXiv:1909.11246. doi:10.3847/1538-3881/ab46a8. S2CID 202749962.
  35. ^ Öberg, K.I.; Wordsworth, R. (2020). «Erratum: «Jupiter’s Composition Suggests Its Core Assembled Exterior to the N2 Snowline»«. The Astronomical Journal. 159 (2): 78. doi:10.3847/1538-3881/ab6172. S2CID 214576608.
  36. ^ Denecke, Edward J. (January 7, 2020). Regents Exams and Answers: Earth Science—Physical Setting 2020. Barrons Educational Series. p. 419. ISBN 978-1-5062-5399-2.
  37. ^ Swarbrick, James (2013). Encyclopedia of Pharmaceutical Technology. Vol. 6. CRC Press. p. 3601. ISBN 978-1-4398-0823-8. Syrup USP (1.31 g/cm3)
  38. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen’s Astrophysical Quantities. Springer. pp. 295–296. ISBN 978-0-387-98746-0.
  39. ^ Polyanin, Andrei D.; Chernoutsan, Alexei (October 18, 2010). A Concise Handbook of Mathematics, Physics, and Engineering Sciences. CRC Press. p. 1041. ISBN 978-1-4398-0640-1.
  40. ^ Guillot, Tristan; Gautier, Daniel; Hubbard, William B (December 1997). «NOTE: New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models». Icarus. 130 (2): 534–539. arXiv:astro-ph/9707210. Bibcode:1997Icar..130..534G. doi:10.1006/icar.1997.5812. S2CID 5466469.
  41. ^ Kim, S. J.; Caldwell, J.; Rivolo, A. R.; Wagner, R. (1985). «Infrared Polar Brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS Experiment». Icarus. 64 (2): 233–248. Bibcode:1985Icar…64..233K. doi:10.1016/0019-1035(85)90201-5.
  42. ^ Gautier, D.; Conrath, B.; Flasar, M.; Hanel, R.; Kunde, V.; Chedin, A.; Scott, N. (1981). «The helium abundance of Jupiter from Voyager». Journal of Geophysical Research. 86 (A10): 8713–8720. Bibcode:1981JGR….86.8713G. doi:10.1029/JA086iA10p08713. hdl:2060/19810016480. S2CID 122314894.
  43. ^ a b Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bézard, B.; Strobel, D. F.; et al. (September 10, 2004). «Jupiter’s Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment». Science. 305 (5690): 1582–1586. Bibcode:2004Sci…305.1582K. doi:10.1126/science.1100240. PMID 15319491. S2CID 45296656. Retrieved April 4, 2007.
  44. ^ Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; et al. (1996). «The Galileo Probe Mass Spectrometer: Composition of Jupiter’s Atmosphere». Science. 272 (5263): 846–849. Bibcode:1996Sci…272..846N. doi:10.1126/science.272.5263.846. PMID 8629016. S2CID 3242002.
  45. ^ a b von Zahn, U.; Hunten, D. M.; Lehmacher, G. (1998). «Helium in Jupiter’s atmosphere: Results from the Galileo probe Helium Interferometer Experiment». Journal of Geophysical Research. 103 (E10): 22815–22829. Bibcode:1998JGR…10322815V. doi:10.1029/98JE00695.
  46. ^ a b Stevenson, David J. (May 2020). «Jupiter’s Interior as Revealed by Juno». Annual Review of Earth and Planetary Sciences. 48: 465–489. Bibcode:2020AREPS..48..465S. doi:10.1146/annurev-earth-081619-052855. S2CID 212832169. Archived from the original on May 7, 2020. Retrieved March 18, 2022.
  47. ^ Ingersoll, A. P.; Hammel, H. B.; Spilker, T. R.; Young, R. E. (June 1, 2005). «Outer Planets: The Ice Giants» (PDF). Lunar & Planetary Institute. Archived (PDF) from the original on October 9, 2022. Retrieved February 1, 2007.
  48. ^ MacDougal, Douglas W. (2012). «A Binary System Close to Home: How the Moon and Earth Orbit Each Other». Newton’s Gravity. Undergraduate Lecture Notes in Physics. Springer New York. pp. 193–211. doi:10.1007/978-1-4614-5444-1_10. ISBN 978-1-4614-5443-4. the barycentre is 743,000 km from the centre of the Sun. The Sun’s radius is 696,000 km, so it is 47,000 km above the surface.
  49. ^ a b c d e Burgess, Eric (1982). By Jupiter: Odysseys to a Giant. New York: Columbia University Press. ISBN 978-0-231-05176-7.
  50. ^ Shu, Frank H. (1982). The physical universe: an introduction to astronomy. Series of books in astronomy (12th ed.). University Science Books. p. 426. ISBN 978-0-935702-05-7.
  51. ^ Davis, Andrew M.; Turekian, Karl K. (2005). Meteorites, comets, and planets. Treatise on geochemistry. Vol. 1. Elsevier. p. 624. ISBN 978-0-08-044720-9.
  52. ^ Schneider, Jean (2009). «The Extrasolar Planets Encyclopedia: Interactive Catalogue». Paris Observatory.
  53. ^ Seager, S.; Kuchner, M.; Hier-Majumder, C. A.; Militzer, B. (2007). «Mass-Radius Relationships for Solid Exoplanets». The Astrophysical Journal. 669 (2): 1279–1297. arXiv:0707.2895. Bibcode:2007ApJ…669.1279S. doi:10.1086/521346. S2CID 8369390.
  54. ^ a b c d e f g h How the Universe Works 3. Vol. Jupiter: Destroyer or Savior?. Discovery Channel. 2014.
  55. ^ Guillot, Tristan (1999). «Interiors of Giant Planets Inside and Outside the Solar System» (PDF). Science. 286 (5437): 72–77. Bibcode:1999Sci…286…72G. doi:10.1126/science.286.5437.72. PMID 10506563. Archived (PDF) from the original on October 9, 2022. Retrieved April 24, 2022.
  56. ^ Burrows, Adam; Hubbard, W. B.; Lunine, J. I.; Liebert, James (July 2001). «The theory of brown dwarfs and extrasolar giant planets». Reviews of Modern Physics. 73 (3): 719–765. arXiv:astro-ph/0103383. Bibcode:2001RvMP…73..719B. doi:10.1103/RevModPhys.73.719. S2CID 204927572. Hence the HBMM at solar metallicity and Yα = 50.25 is 0.07 – 0.074 M, … while the HBMM at zero metallicity is 0.092 M
  57. ^ von Boetticher, Alexander; Triaud, Amaury H. M. J.; Queloz, Didier; Gill, Sam; Lendl, Monika; Delrez, Laetitia; Anderson, David R.; Collier Cameron, Andrew; Faedi, Francesca; Gillon, Michaël; Gómez Maqueo Chew, Yilen; Hebb, Leslie; Hellier, Coel; Jehin, Emmanuël; Maxted, Pierre F. L.; Martin, David V.; Pepe, Francesco; Pollacco, Don; Ségransan, Damien; Smalley, Barry; Udry, Stéphane; West, Richard (August 2017). «The EBLM project. III. A Saturn-size low-mass star at the hydrogen-burning limit». Astronomy & Astrophysics. 604: 6. arXiv:1706.08781. Bibcode:2017A&A…604L…6V. doi:10.1051/0004-6361/201731107. S2CID 54610182. L6.
  58. ^ a b c d e f g h Elkins-Tanton, Linda T. (2011). Jupiter and Saturn (revised ed.). New York: Chelsea House. ISBN 978-0-8160-7698-7.
  59. ^ Irwin, Patrick (2003). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. Springer Science & Business Media. p. 62. ISBN 978-3-540-00681-7.
  60. ^ Irwin, Patrick G. J. (2009) [2003]. Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (Second ed.). Springer. p. 4. ISBN 978-3-642-09888-8. the radius of Jupiter is estimated to be currently shrinking by approximately 1 mm/yr.
  61. ^ a b Guillot, Tristan; Stevenson, David J.; Hubbard, William B.; Saumon, Didier (2004). «Chapter 3: The Interior of Jupiter». In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 978-0-521-81808-7.
  62. ^ Bodenheimer, P. (1974). «Calculations of the early evolution of Jupiter». Icarus. 23. 23 (3): 319–325. Bibcode:1974Icar…23..319B. doi:10.1016/0019-1035(74)90050-5.
  63. ^ Smoluchowski, R. (1971). «Metallic interiors and magnetic fields of Jupiter and Saturn». The Astrophysical Journal. 166: 435. Bibcode:1971ApJ…166..435S. doi:10.1086/150971.
  64. ^ a b Chang, Kenneth (July 5, 2016). «NASA’s Juno Spacecraft Enters Jupiter’s Orbit». The New York Times. Retrieved July 5, 2016.
  65. ^ Wall, Mike (May 26, 2017). «More Jupiter Weirdness: Giant Planet May Have Huge, ‘Fuzzy’ Core». space.com. Retrieved April 20, 2021.
  66. ^ Weitering, Hanneke (January 10, 2018). «‘Totally Wrong’ on Jupiter: What Scientists Gleaned from NASA’s Juno Mission». space.com. Retrieved February 26, 2021.
  67. ^ Stevenson, D. J.; Bodenheimer, P.; Lissauer, J. J.; D’Angelo, G. (2022). «Mixing of Condensable Constituents with H-He during the Formation and Evolution of Jupiter». The Planetary Science Journal. 3 (4): id.74. arXiv:2202.09476. Bibcode:2022PSJ…..3…74S. doi:10.3847/PSJ/ac5c44. S2CID 247011195.
  68. ^ Liu, S. F.; Hori, Y.; Müller, S.; Zheng, X.; Helled, R.; Lin, D.; Isella, A. (2019). «The formation of Jupiter’s diluted core by a giant impact». Nature. 572 (7769): 355–357. arXiv:2007.08338. Bibcode:2019Natur.572..355L. doi:10.1038/s41586-019-1470-2. PMID 31413376. S2CID 199576704.
  69. ^ Guillot, T. (2019). «Signs that Jupiter was mixed by a giant impact». Nature. 572 (7769): 315–317. Bibcode:2019Natur.572..315G. doi:10.1038/d41586-019-02401-1. PMID 31413374.
  70. ^ Wahl, S. M.; Hubbard, William B.; Militzer, B.; Guillot, Tristan; Miguel, Y.; Movshovitz, N.; Kaspi, Y.; Helled, R.; Reese, D.; Galanti, E.; Levin, S.; Connerney, J. E.; Bolton, S. J. (2017). «Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core». Geophysical Research Letters. 44 (10): 4649–4659. arXiv:1707.01997. Bibcode:2017GeoRL..44.4649W. doi:10.1002/2017GL073160.
  71. ^ Trachenko, K.; Brazhkin, V. V.; Bolmatov, D. (March 2014). «Dynamic transition of supercritical hydrogen: Defining the boundary between interior and atmosphere in gas giants». Physical Review E. 89 (3): 032126. arXiv:1309.6500. Bibcode:2014PhRvE..89c2126T. doi:10.1103/PhysRevE.89.032126. PMID 24730809. S2CID 42559818. 032126.
  72. ^ Coulter, Dauna. «A Freaky Fluid inside Jupiter?». NASA. Retrieved December 8, 2021.
  73. ^ Bwaldwin, Emily. «Oceans of diamond possible on Uranus and Neptune». Astronomy Now. Retrieved December 8, 2021.
  74. ^ «NASA System Exploration Jupiter». NASA. Retrieved December 8, 2021.
  75. ^ Guillot, T. (1999). «A comparison of the interiors of Jupiter and Saturn». Planetary and Space Science. 47 (10–11): 1183–1200. arXiv:astro-ph/9907402. Bibcode:1999P&SS…47.1183G. doi:10.1016/S0032-0633(99)00043-4. S2CID 19024073.
  76. ^ a b Lang, Kenneth R. (2003). «Jupiter: a giant primitive planet». NASA. Archived from the original on May 14, 2011. Retrieved January 10, 2007.
  77. ^ Lodders, Katharina (2004). «Jupiter Formed with More Tar than Ice» (PDF). The Astrophysical Journal. 611 (1): 587–597. Bibcode:2004ApJ…611..587L. doi:10.1086/421970. S2CID 59361587. Archived from the original (PDF) on April 12, 2020.
  78. ^ Brygoo, S.; Loubeyre, P.; Millot, M.; Rygg, J. R.; Celliers, P. M.; Eggert, J. H.; Jeanloz, R.; Collins, G. W. (2021). «Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions». Nature. 593 (7860): 517–521. Bibcode:2021Natur.593..517B. doi:10.1038/s41586-021-03516-0. OSTI 1820549. PMID 34040210. S2CID 235217898.
  79. ^ Kramer, Miriam (October 9, 2013). «Diamond Rain May Fill Skies of Jupiter and Saturn». Space.com. Retrieved August 27, 2017.
  80. ^ Kaplan, Sarah (August 25, 2017). «It rains solid diamonds on Uranus and Neptune». The Washington Post. Retrieved August 27, 2017.
  81. ^ a b Guillot, Tristan; Stevenson, David J.; Hubbard, William B.; Saumon, Didier (2004). «The interior of Jupiter». In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). Jupiter. The planet, satellites and magnetosphere. Cambridge planetary science. Vol. 1. Cambridge, UK: Cambridge University Press. p. 45. Bibcode:2004jpsm.book…35G. ISBN 0-521-81808-7.
  82. ^ Loeffler, Mark J.; Hudson, Reggie L. (March 2018). «Coloring Jupiter’s clouds: Radiolysis of ammonium hydrosulfide (NH4SH)» (PDF). Icarus. 302: 418–425. Bibcode:2018Icar..302..418L. doi:10.1016/j.icarus.2017.10.041. Archived (PDF) from the original on October 9, 2022. Retrieved April 25, 2022.
  83. ^ Ingersoll, Andrew P.; Dowling, Timothy E.; Gierasch, Peter J.; Orton, Glenn S.; Read, Peter L.; Sánchez-Lavega, Agustin; Showman, Adam P.; Simon-Miller, Amy A.; Vasavada, Ashwin R. (2004). Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). «Dynamics of Jupiter’s Atmosphere» (PDF). Jupiter. The Planet, Satellites and Magnetosphere. Cambridge planetary science. Cambridge, UK: Cambridge University Press. 1: 105–128. ISBN 0-521-81808-7. Archived (PDF) from the original on October 9, 2022. Retrieved March 8, 2022.
  84. ^ Aglyamov, Yury S.; Lunine, Jonathan; Becker, Heidi N.; Guillot, Tristan; Gibbard, Seran G.; Atreya, Sushil; Bolton, Scott J.; Levin, Steven; Brown, Shannon T.; Wong, Michael H. (February 2021). «Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter». Journal of Geophysical Research: Planets. 126 (2). arXiv:2101.12361. Bibcode:2021JGRE..12606504A. doi:10.1029/2020JE006504. S2CID 231728590. e06504.
  85. ^ Watanabe, Susan, ed. (February 25, 2006). «Surprising Jupiter: Busy Galileo spacecraft showed jovian system is full of surprises». NASA. Retrieved February 20, 2007.
  86. ^ Kerr, Richard A. (2000). «Deep, Moist Heat Drives Jovian Weather». Science. 287 (5455): 946–947. doi:10.1126/science.287.5455.946b. S2CID 129284864. Retrieved April 26, 2022.
  87. ^ Becker, Heidi N.; Alexander, James W.; Atreya, Sushil K.; Bolton, Scott J.; Brennan, Martin J.; Brown, Shannon T.; Guillaume, Alexandre; Guillot, Tristan; Ingersoll, Andrew P.; Levin, Steven M.; Lunine, Jonathan I.; Aglyamov, Yury S.; Steffes, Paul G. (2020). «Small lightning flashes from shallow electrical storms on Jupiter». Nature. 584 (7819): 55–58. Bibcode:2020Natur.584…55B. doi:10.1038/s41586-020-2532-1. ISSN 0028-0836. PMID 32760043. S2CID 220980694.
  88. ^ Guillot, Tristan; Stevenson, David J.; Atreya, Sushil K.; Bolton, Scott J.; Becker, Heidi N. (2020). «Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of «Mushballs»«. Journal of Geophysical Research: Planets. 125 (8): e2020JE006403. arXiv:2012.14316. Bibcode:2020JGRE..12506403G. doi:10.1029/2020JE006404. S2CID 226194362.
  89. ^ Giles, Rohini S.; Greathouse, Thomas K.; Bonfond, Bertrand; Gladstone, G. Randall; Kammer, Joshua A.; Hue, Vincent; Grodent, Denis C.; Gérard, Jean-Claude; Versteeg, Maarten H.; Wong, Michael H.; Bolton, Scott J.; Connerney, John E. P.; Levin, Steven M. (2020). «Possible Transient Luminous Events Observed in Jupiter’s Upper Atmosphere». Journal of Geophysical Research: Planets. 125 (11): e06659. arXiv:2010.13740. Bibcode:2020JGRE..12506659G. doi:10.1029/2020JE006659. S2CID 225075904. e06659.
  90. ^ Greicius, Tony, ed. (October 27, 2020). «Juno Data Indicates ‘Sprites’ or ‘Elves’ Frolic in Jupiter’s Atmosphere». NASA. Retrieved December 30, 2020.
  91. ^ Strycker, P. D.; Chanover, N.; Sussman, M.; Simon-Miller, A. (2006). A Spectroscopic Search for Jupiter’s Chromophores. DPS meeting #38, #11.15. American Astronomical Society. Bibcode:2006DPS….38.1115S.
  92. ^ a b c Gierasch, Peter J.; Nicholson, Philip D. (2004). «Jupiter». World Book @ NASA. Archived from the original on January 5, 2005. Retrieved August 10, 2006.
  93. ^ Chang, Kenneth (December 13, 2017). «The Great Red Spot Descends Deep into Jupiter». The New York Times. Retrieved December 15, 2017.
  94. ^ Denning, William F. (1899). «Jupiter, early history of the great red spot on». Monthly Notices of the Royal Astronomical Society. 59 (10): 574–584. Bibcode:1899MNRAS..59..574D. doi:10.1093/mnras/59.10.574.
  95. ^ Kyrala, A. (1982). «An explanation of the persistence of the Great Red Spot of Jupiter». Moon and the Planets. 26 (1): 105–107. Bibcode:1982M&P….26..105K. doi:10.1007/BF00941374. S2CID 121637752.
  96. ^ Oldenburg, Henry, ed. (1665–1666). «Philosophical Transactions of the Royal Society». Project Gutenberg. Retrieved December 22, 2011.
  97. ^ Wong, M.; de Pater, I. (May 22, 2008). «New Red Spot Appears on Jupiter». HubbleSite. NASA. Retrieved December 12, 2013.
  98. ^ Simon-Miller, A.; Chanover, N.; Orton, G. (July 17, 2008). «Three Red Spots Mix It Up on Jupiter». HubbleSite. NASA. Retrieved April 26, 2015.
  99. ^ Covington, Michael A. (2002). Celestial Objects for Modern Telescopes. Cambridge University Press. p. 53. ISBN 978-0-521-52419-3.
  100. ^ Cardall, C. Y.; Daunt, S. J. «The Great Red Spot». University of Tennessee. Retrieved February 2, 2007.
  101. ^ Jupiter, the Giant of the Solar System. The Voyager Mission. NASA. 1979. p. 5.
  102. ^ Sromovsky, L. A.; Baines, K. H.; Fry, P. M.; Carlson, R. W. (July 2017). «A possibly universal red chromophore for modeling colour variations on Jupiter». Icarus. 291: 232–244. arXiv:1706.02779. Bibcode:2017Icar..291..232S. doi:10.1016/j.icarus.2016.12.014. S2CID 119036239.
  103. ^ a b White, Greg (November 25, 2015). «Is Jupiter’s Great Red Spot nearing its twilight?». Space.news. Retrieved April 13, 2017.
  104. ^
  105. ^ a b Simon, Amy A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S. (March 2015). Dramatic Change in Jupiter’s Great Red Spot. 46th Lunar and Planetary Science Conference. March 16–20, 2015. The Woodlands, Texas. Bibcode:2015LPI….46.1010S.
  106. ^ Doctor, Rina Marie (October 21, 2015). «Jupiter’s Superstorm Is Shrinking: Is Changing Red Spot Evidence Of Climate Change?». Tech Times. Retrieved April 13, 2017.
  107. ^ Grush, Loren (October 28, 2021). «NASA’s Juno spacecraft finds just how deep Jupiter’s Great Red Spot goes». The Verge. Retrieved October 28, 2021.
  108. ^ Adriani, Alberto; Mura, A.; Orton, G.; Hansen, C.; Altieri, F.; et al. (March 2018). «Clusters of cyclones encircling Jupiter’s poles». Nature. 555 (7695): 216–219. Bibcode:2018Natur.555..216A. doi:10.1038/nature25491. PMID 29516997. S2CID 4438233.
  109. ^ Starr, Michelle (December 13, 2017). «NASA Just Watched a Mass of Cyclones on Jupiter Evolve Into a Mesmerising Hexagon». Science Alert.
  110. ^ Steigerwald, Bill (October 14, 2006). «Jupiter’s Little Red Spot Growing Stronger». NASA. Retrieved February 2, 2007.
  111. ^ Wong, Michael H.; de Pater, Imke; Asay-Davis, Xylar; Marcus, Philip S.; Go, Christopher Y. (September 2011). «Vertical structure of Jupiter’s Oval BA before and after it reddened: What changed?» (PDF). Icarus. 215 (1): 211–225. Bibcode:2011Icar..215..211W. doi:10.1016/j.icarus.2011.06.032. Archived (PDF) from the original on October 9, 2022. Retrieved April 27, 2022.
  112. ^ Stallard, Tom S.; Melin, Henrik; Miller, Steve; Moore, Luke; O’Donoghue, James; Connerney, John E. P.; Satoh, Takehiko; West, Robert A.; Thayer, Jeffrey P.; Hsu, Vicki W.; Johnson, Rosie E. (April 10, 2017). «The Great Cold Spot in Jupiter’s upper atmosphere». Geophysical Research Letters. 44 (7): 3000–3008. Bibcode:2017GeoRL..44.3000S. doi:10.1002/2016GL071956. PMC 5439487. PMID 28603321.
  113. ^ Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M. (May 26, 2017). «A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits» (PDF). Geophysical Research Letters. 45 (6): 2590–2596. Bibcode:2018GeoRL..45.2590C. doi:10.1002/2018GL077312. Archived (PDF) from the original on October 9, 2022.
  114. ^ Brainerd, Jim (November 22, 2004). «Jupiter’s Magnetosphere». The Astrophysics Spectator. Archived from the original on January 25, 2021. Retrieved August 10, 2008.
  115. ^ «Receivers for Radio JOVE». NASA. March 1, 2017. Archived from the original on January 26, 2021. Retrieved September 9, 2020.
  116. ^ Phillips, Tony; Horack, John M. (February 20, 2004). «Radio Storms on Jupiter». NASA. Archived from the original on February 13, 2007. Retrieved February 1, 2007.
  117. ^ Showalter, M. A.; Burns, J. A.; Cuzzi, J. N.; Pollack, J. B. (1987). «Jupiter’s ring system: New results on structure and particle properties». Icarus. 69 (3): 458–498. Bibcode:1987Icar…69..458S. doi:10.1016/0019-1035(87)90018-2.
  118. ^ a b Burns, J. A.; Showalter, M. R.; Hamilton, D. P.; Nicholson, P. D.; de Pater, I.; Ockert-Bell, M. E.; Thomas, P. C. (1999). «The Formation of Jupiter’s Faint Rings». Science. 284 (5417): 1146–1150. Bibcode:1999Sci…284.1146B. doi:10.1126/science.284.5417.1146. PMID 10325220. S2CID 21272762.
  119. ^ Fieseler, P. D.; Adams, O. W.; Vandermey, N.; Theilig, E. E.; Schimmels, K. A.; Lewis, G. D.; Ardalan, S. M.; Alexander, C. J. (2004). «The Galileo Star Scanner Observations at Amalthea». Icarus. 169 (2): 390–401. Bibcode:2004Icar..169..390F. doi:10.1016/j.icarus.2004.01.012.
  120. ^ Herbst, T. M.; Rix, H.-W. (1999). «Star Formation and Extrasolar Planet Studies with Near-Infrared Interferometry on the LBT». In Guenther, Eike; Stecklum, Bringfried; Klose, Sylvio (eds.). Optical and Infrared Spectroscopy of Circumstellar Matter. ASP Conference Series. Vol. 188. San Francisco, Calif.: Astronomical Society of the Pacific. pp. 341–350. Bibcode:1999ASPC..188..341H. ISBN 978-1-58381-014-9. – See section 3.4.
  121. ^ MacDougal, Douglas W. (December 16, 2012). Newton’s Gravity: An Introductory Guide to the Mechanics of the Universe. Springer New York. p. 199. ISBN 978-1-4614-5444-1.
  122. ^ Michtchenko, T. A.; Ferraz-Mello, S. (February 2001). «Modeling the 5:2 Mean-Motion Resonance in the Jupiter–Saturn Planetary System». Icarus. 149 (2): 77–115. Bibcode:2001Icar..149..357M. doi:10.1006/icar.2000.6539.
  123. ^ «Interplanetary Seasons». Science@NASA. Archived from the original on October 16, 2007. Retrieved February 20, 2007.
  124. ^ Ridpath, Ian (1998). Norton’s Star Atlas (19th ed.). Prentice Hall. ISBN 978-0-582-35655-9.[page needed]
  125. ^ Hide, R. (January 1981). «On the rotation of Jupiter». Geophysical Journal. 64: 283–289. Bibcode:1981GeoJ…64..283H. doi:10.1111/j.1365-246X.1981.tb02668.x.
  126. ^ Russell, C. T.; Yu, Z. J.; Kivelson, M. G. (2001). «The rotation period of Jupiter» (PDF). Geophysical Research Letters. 28 (10): 1911–1912. Bibcode:2001GeoRL..28.1911R. doi:10.1029/2001GL012917. S2CID 119706637. Archived (PDF) from the original on October 9, 2022. Retrieved April 28, 2022.
  127. ^ Rogers, John H. (July 20, 1995). «Appendix 3». The giant planet Jupiter. Cambridge University Press. ISBN 978-0-521-41008-3.
  128. ^ Price, Fred W. (October 26, 2000). The Planet Observer’s Handbook. Cambridge University Press. p. 140. ISBN 978-0-521-78981-3.
  129. ^ Fimmel, Richard O.; Swindell, William; Burgess, Eric (1974). «8. Encounter with the Giant». Pioneer Odyssey (Revised ed.). NASA History Office. Retrieved February 17, 2007.
  130. ^ Chaple, Glenn F. (2009). Jones, Lauren V.; Slater, Timothy F. (eds.). Outer Planets. Greenwood Guides to the Universe. ABC-CLIO. p. 47. ISBN 978-0-313-36571-3.
  131. ^ North, Chris; Abel, Paul (October 31, 2013). The Sky at Night: How to Read the Solar System. Ebury Publishing. p. 183. ISBN 978-1-4481-4130-2.
  132. ^ Sachs, A. (May 2, 1974). «Babylonian Observational Astronomy». Philosophical Transactions of the Royal Society of London. 276 (1257): 43–50 (see p. 44). Bibcode:1974RSPTA.276…43S. doi:10.1098/rsta.1974.0008. JSTOR 74273. S2CID 121539390.
  133. ^ Dubs, Homer H. (1958). «The Beginnings of Chinese Astronomy». Journal of the American Oriental Society. 78 (4): 295–300. doi:10.2307/595793. JSTOR 595793.
  134. ^ Chen, James L.; Chen, Adam (2015). A Guide to Hubble Space Telescope Objects: Their Selection, Location, and Significance. Springer International Publishing. p. 195. ISBN 978-3-319-18872-0.
  135. ^ Seargent, David A. J. (September 24, 2010). «Facts, Fallacies, Unusual Observations, and Other Miscellaneous Gleanings». Weird Astronomy: Tales of Unusual, Bizarre, and Other Hard to Explain Observations. Astronomers’ Universe. pp. 221–282. ISBN 978-1-4419-6424-3.
  136. ^ Xi, Z. Z. (1981). «The Discovery of Jupiter’s Satellite Made by Gan-De 2000 Years Before Galileo». Acta Astrophysica Sinica. 1 (2): 87. Bibcode:1981AcApS…1…85X.
  137. ^ Dong, Paul (2002). China’s Major Mysteries: Paranormal Phenomena and the Unexplained in the People’s Republic. China Books. ISBN 978-0-8351-2676-2.
  138. ^ Ossendrijver, Mathieu (January 29, 2016). «Ancient Babylonian astronomers calculated Jupiter’s position from the area under a time-velocity graph». Science. 351 (6272): 482–484. Bibcode:2016Sci…351..482O. doi:10.1126/science.aad8085. PMID 26823423. S2CID 206644971.
  139. ^ Pedersen, Olaf (1974). A Survey of the Almagest. Odense University Press. pp. 423, 428. ISBN 9788774920878.
  140. ^ Pasachoff, Jay M. (2015). «Simon Marius’s Mundus Iovialis: 400th Anniversary in Galileo’s Shadow». Journal for the History of Astronomy. 46 (2): 218–234. Bibcode:2015AAS…22521505P. doi:10.1177/0021828615585493. S2CID 120470649.
  141. ^ Westfall, Richard S. «Galilei, Galileo». The Galileo Project. Rice University. Retrieved January 10, 2007.
  142. ^ O’Connor, J. J.; Robertson, E. F. (April 2003). «Giovanni Domenico Cassini». University of St. Andrews. Retrieved February 14, 2007.
  143. ^ Atkinson, David H.; Pollack, James B.; Seiff, Alvin (September 1998). «The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter». Journal of Geophysical Research. 103 (E10): 22911–22928. Bibcode:1998JGR…10322911A. doi:10.1029/98JE00060.
  144. ^ Murdin, Paul (2000). Encyclopedia of Astronomy and Astrophysics. Bristol: Institute of Physics Publishing. ISBN 978-0-12-226690-4.
  145. ^ Rogers, John H. (1995). The giant planet Jupiter. Cambridge University Press. pp. 188–189. ISBN 978-0-521-41008-3.
  146. ^ Fimmel, Richard O.; Swindell, William; Burgess, Eric (August 1974). «Jupiter, Giant of the Solar System». Pioneer Odyssey (Revised ed.). NASA History Office. Retrieved August 10, 2006.
  147. ^ Brown, Kevin (2004). «Roemer’s Hypothesis». MathPages. Retrieved January 12, 2007.
  148. ^ Bobis, Laurence; Lequeux, James (July 2008). «Cassini, Rømer, and the velocity of light». Journal of Astronomical History and Heritage. 11 (2): 97–105. Bibcode:2008JAHH…11…97B.
  149. ^ Tenn, Joe (March 10, 2006). «Edward Emerson Barnard». Sonoma State University. Archived from the original on September 17, 2011. Retrieved January 10, 2007.
  150. ^ «Amalthea Fact Sheet». NASA/JPL. October 1, 2001. Archived from the original on November 24, 2001. Retrieved February 21, 2007.
  151. ^ Dunham Jr., Theodore (1933). «Note on the Spectra of Jupiter and Saturn». Publications of the Astronomical Society of the Pacific. 45 (263): 42–44. Bibcode:1933PASP…45…42D. doi:10.1086/124297.
  152. ^ Youssef, A.; Marcus, P. S. (2003). «The dynamics of jovian white ovals from formation to merger». Icarus. 162 (1): 74–93. Bibcode:2003Icar..162…74Y. doi:10.1016/S0019-1035(02)00060-X.
  153. ^ Chang, Kenneth (July 15, 2022). «NASA Shows Webb’s View of Something Closer to Home: Jupiter – The powerful telescope will help scientists make discoveries both within our solar system and well beyond it». The New York Times. Retrieved July 16, 2022.
  154. ^ Weintraub, Rachel A. (September 26, 2005). «How One Night in a Field Changed Astronomy». NASA. Retrieved February 18, 2007.
  155. ^ Garcia, Leonard N. «The Jovian Decametric Radio Emission». NASA. Retrieved February 18, 2007.
  156. ^ Klein, M. J.; Gulkis, S.; Bolton, S. J. (1996). «Jupiter’s Synchrotron Radiation: Observed Variations Before, During and After the Impacts of Comet SL9». Conference at University of Graz. NASA: 217. Bibcode:1997pre4.conf..217K. Retrieved February 18, 2007.
  157. ^ «The Pioneer Missions». NASA. March 26, 2007. Retrieved February 26, 2021.
  158. ^ «NASA Glenn Pioneer Launch History». NASA – Glenn Research Center. March 7, 2003. Retrieved December 22, 2011.
  159. ^ Fortescue, Peter W.; Stark, John; Swinerd, Graham (2003). Spacecraft systems engineering (3rd ed.). John Wiley and Sons. p. 150. ISBN 978-0-470-85102-9.
  160. ^ Hirata, Chris. «Delta-V in the Solar System». California Institute of Technology. Archived from the original on July 15, 2006. Retrieved November 28, 2006.
  161. ^ Wong, Al (May 28, 1998). «Galileo FAQ: Navigation». NASA. Archived from the original on January 5, 1997. Retrieved November 28, 2006.
  162. ^ a b c Chan, K.; Paredes, E. S.; Ryne, M. S. (2004). «Ulysses Attitude and Orbit Operations: 13+ Years of International Cooperation». Space OPS 2004 Conference. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2004-650-447.
  163. ^ Lasher, Lawrence (August 1, 2006). «Pioneer Project Home Page». NASA Space Projects Division. Archived from the original on January 1, 2006. Retrieved November 28, 2006.
  164. ^ «Jupiter». NASA/JPL. January 14, 2003. Retrieved November 28, 2006.
  165. ^ Hansen, C. J.; Bolton, S. J.; Matson, D. L.; Spilker, L. J.; Lebreton, J.-P. (2004). «The Cassini–Huygens flyby of Jupiter». Icarus. 172 (1): 1–8. Bibcode:2004Icar..172….1H. doi:10.1016/j.icarus.2004.06.018.
  166. ^ «Pluto-Bound New Horizons Sees Changes in Jupiter System». NASA. October 9, 2007. Retrieved February 26, 2021.
  167. ^ «Pluto-Bound New Horizons Provides New Look at Jupiter System». NASA. May 1, 2007. Retrieved July 27, 2007.
  168. ^ a b McConnell, Shannon (April 14, 2003). «Galileo: Journey to Jupiter». NASA/JPL. Archived from the original on November 3, 2004. Retrieved November 28, 2006.
  169. ^ Magalhães, Julio (December 10, 1996). «Galileo Probe Mission Events». NASA Space Projects Division. Archived from the original on January 2, 2007. Retrieved February 2, 2007.
  170. ^ Goodeill, Anthony (March 31, 2008). «New Frontiers – Missions – Juno». NASA. Archived from the original on February 3, 2007. Retrieved January 2, 2007.
  171. ^ «Juno, NASA’s Jupiter probe». The Planetary Society. Retrieved April 27, 2022.
  172. ^ Jet Propulsion Laboratory (June 17, 2016). «NASA’s Juno spacecraft to risk Jupiter’s fireworks for science». phys.org. Retrieved April 10, 2022.
  173. ^ Firth, Niall (September 5, 2016). «NASA’s Juno probe snaps first images of Jupiter’s north pole». New Scientist. Retrieved September 5, 2016.
  174. ^ Clark, Stephen (February 21, 2017). «NASA’s Juno spacecraft to remain in current orbit around Jupiter». Spaceflight Now. Retrieved April 26, 2017.
  175. ^ Agle, D. C.; Wendel, JoAnna; Schmid, Deb (June 6, 2018). «NASA Re-plans Juno’s Jupiter Mission». NASA/JPL. Retrieved January 5, 2019.
  176. ^ Talbert, Tricia (January 8, 2021). «NASA Extends Exploration for Two Planetary Science Missions». NASA. Retrieved January 11, 2021.
  177. ^ Dickinson, David (February 21, 2017). «Juno Will Stay in Current Orbit Around Jupiter». Sky & Telescope. Retrieved January 7, 2018.
  178. ^ Bartels, Meghan (July 5, 2016). «To protect potential alien life, NASA will destroy its $1 billion Jupiter spacecraft on purpose». Business Insider. Retrieved January 7, 2018.
  179. ^ Berger, Brian (February 7, 2005). «White House scales back space plans». MSNBC. Retrieved January 2, 2007.
  180. ^ «Laplace: A mission to Europa & Jupiter system». European Space Agency. Retrieved January 23, 2009.
  181. ^ Favata, Fabio (April 19, 2011). «New approach for L-class mission candidates». European Space Agency.
  182. ^ «ESA Science & Technology – JUICE». ESA. November 8, 2021. Retrieved November 10, 2021.
  183. ^ Foust, Jeff (July 10, 2020). «Cost growth prompts changes to Europa Clipper instruments». Space News. Retrieved July 10, 2020.
  184. ^ Jones, Andrew (January 12, 2021). «Jupiter Mission by China Could Include Callisto Landing». The Planetary Society. Retrieved April 27, 2020.
  185. ^ Jones, Andrew (April 16, 2021). «China to launch a pair of spacecraft towards the edge of the solar system». Space News. Retrieved April 27, 2020.
  186. ^ Billings, Lee (November 12, 2019). «Proposed Interstellar Mission Reaches for the Stars, One Generation at a Time». Scientific American. Retrieved April 27, 2020.
  187. ^ Carter, Jamie (2015). A Stargazing Program for Beginners. Springer International Publishing. p. 104. ISBN 978-3-319-22072-7.
  188. ^ Musotto, S.; Varadi, F.; Moore, W. B.; Schubert, G. (2002). «Numerical simulations of the orbits of the Galilean satellites». Icarus. 159 (2): 500–504. Bibcode:2002Icar..159..500M. doi:10.1006/icar.2002.6939. Archived from the original on August 10, 2011. Retrieved February 19, 2007.
  189. ^ a b Lang, Kenneth R. (March 3, 2011). The Cambridge Guide to the Solar System. Cambridge University Press. p. 304. ISBN 978-1-139-49417-5.
  190. ^ McFadden, Lucy-Ann; Weissmann, Paul; Johnson, Torrence (2006). Encyclopedia of the Solar System. Elsevier Science. p. 446. ISBN 978-0-08-047498-4.
  191. ^ Kessler, Donald J. (October 1981). «Derivation of the collision probability between orbiting objects: the lifetimes of jupiter’s outer moons». Icarus. 48 (1): 39–48. Bibcode:1981Icar…48…39K. doi:10.1016/0019-1035(81)90151-2. Retrieved December 30, 2020.
  192. ^ Hamilton, Thomas W. M. (2013). Moons of the Solar System. SPBRA. p. 14. ISBN 978-1-62516-175-8.
  193. ^ Jewitt, D. C.; Sheppard, S.; Porco, C. (2004). Bagenal, F.; Dowling, T.; McKinnon, W. (eds.). Jupiter: The Planet, Satellites and Magnetosphere (PDF). Cambridge University Press. ISBN 978-0-521-81808-7. Archived from the original (PDF) on March 26, 2009.
  194. ^ a b c Nesvorný, D.; Alvarellos, J. L. A.; Dones, L.; Levison, H. F. (2003). «Orbital and Collisional Evolution of the Irregular Satellites» (PDF). The Astronomical Journal. 126 (1): 398–429. Bibcode:2003AJ….126..398N. doi:10.1086/375461. S2CID 8502734.
  195. ^ Showman, A. P.; Malhotra, R. (1999). «The Galilean Satellites». Science. 286 (5437): 77–84. Bibcode:1999Sci…296…77S. doi:10.1126/science.286.5437.77. PMID 10506564. S2CID 9492520.
  196. ^ Sheppard, Scott S.; Jewitt, David C. (May 2003). «An abundant population of small irregular satellites around Jupiter» (PDF). Nature. 423 (6937): 261–263. Bibcode:2003Natur.423..261S. doi:10.1038/nature01584. PMID 12748634. S2CID 4424447. Archived from the original (PDF) on August 13, 2006.
  197. ^ Nesvorný, David; Beaugé, Cristian; Dones, Luke; Levison, Harold F. (July 2003). «Collisional Origin of Families of Irregular Satellites» (PDF). The Astronomical Journal. 127 (3): 1768–1783. Bibcode:2004AJ….127.1768N. doi:10.1086/382099. S2CID 27293848. Archived (PDF) from the original on October 9, 2022.
  198. ^ Ferraz-Mello, S. (1994). Milani, Andrea; Di Martino, Michel; Cellino, A. (eds.). Kirkwood Gaps and Resonant Groups. Asteroids, Comets, Meteors 1993: Proceedings of the 160th Symposium of the International Astronomical Union, held in Belgirate, Italy, June 14–18, 1993, International Astronomical Union. Symposium no. 160. Dordrecht: Kluwer Academic Publishers. p. 175. Bibcode:1994IAUS..160..175F.
  199. ^ Kerr, Richard A. (2004). «Did Jupiter and Saturn Team Up to Pummel the Inner Solar System?». Science. 306 (5702): 1676. doi:10.1126/science.306.5702.1676a. PMID 15576586. S2CID 129180312.
  200. ^ «List Of Jupiter Trojans». IAU Minor Planet Center. Retrieved October 24, 2010.
  201. ^ Cruikshank, D. P.; Dalle Ore, C. M.; Geballe, T. R.; Roush, T. L.; Owen, T. C.; Cash, Michele; de Bergh, C.; Hartmann, W. K. (October 2000). «Trojan Asteroid 624 Hektor: Constraints on Surface Composition». Bulletin of the American Astronomical Society. 32: 1027. Bibcode:2000DPS….32.1901C.
  202. ^ Quinn, T.; Tremaine, S.; Duncan, M. (1990). «Planetary perturbations and the origins of short-period comets». Astrophysical Journal, Part 1. 355: 667–679. Bibcode:1990ApJ…355..667Q. doi:10.1086/168800.
  203. ^ «Caught in the act: Fireballs light up Jupiter». ScienceDaily. September 10, 2010. Retrieved April 26, 2022.
  204. ^ Nakamura, T.; Kurahashi, H. (1998). «Collisional Probability of Periodic Comets with the Terrestrial Planets: An Invalid Case of Analytic Formulation». Astronomical Journal. 115 (2): 848–854. Bibcode:1998AJ….115..848N. doi:10.1086/300206.
  205. ^ Horner, J.; Jones, B. W. (2008). «Jupiter – friend or foe? I: the asteroids». International Journal of Astrobiology. 7 (3–4): 251–261. arXiv:0806.2795. Bibcode:2008IJAsB…7..251H. doi:10.1017/S1473550408004187. S2CID 8870726.
  206. ^ Overbye, Dennis (July 25, 2009). «Jupiter: Our Comic Protector?». The New York Times. Retrieved July 27, 2009.
  207. ^ «In Depth | P/Shoemaker-Levy 9». NASA Solar System Exploration. Retrieved December 3, 2021.
  208. ^ Howell, Elizabeth (January 24, 2018). «Shoemaker-Levy 9: Comet’s Impact Left Its Mark on Jupiter». Space.com. Retrieved December 3, 2021.
  209. ^ information@eso.org. «The Big Comet Crash of 1994 – Intensive Observational Campaign at ESO». www.eso.org. Retrieved December 3, 2021.
  210. ^ «Top 20 Comet Shoemaker-Levy Images». www2.jpl.nasa.gov. Retrieved December 3, 2021.
  211. ^ information@eso.org. «Comet P/Shoemaker-Levy 9 «Gang Of Four»«. www.spacetelescope.org. Retrieved December 3, 2021.
  212. ^ Savage, Donald; Elliott, Jim; Villard, Ray (December 30, 2004). «Hubble Observations Shed New Light on Jupiter Collision». nssdc.gsfc.nasa.gov. Retrieved December 3, 2021.
  213. ^ «NASA TV Coverage on Comet Shoemaker-Levy». www2.jpl.nasa.gov. Retrieved December 3, 2021.
  214. ^ Tabe, Isshi; Watanabe, Jun-ichi; Jimbo, Michiwo (February 1997). «Discovery of a Possible Impact SPOT on Jupiter Recorded in 1690». Publications of the Astronomical Society of Japan. 49: L1–L5. Bibcode:1997PASJ…49L…1T. doi:10.1093/pasj/49.1.l1.
  215. ^ «Stargazers prepare for daylight view of Jupiter». ABC News. June 16, 2005. Archived from the original on May 12, 2011. Retrieved February 28, 2008.
  216. ^ a b Rogers, J. H. (1998). «Origins of the ancient constellations: I. The Mesopotamian traditions». Journal of the British Astronomical Association. 108: 9–28. Bibcode:1998JBAA..108….9R.
  217. ^ Waerden, B. L. (1974). «Old-Babylonian Astronomy» (PDF). Science Awakening II. Dordrecht: Springer: 46–59. doi:10.1007/978-94-017-2952-9_3. ISBN 978-90-481-8247-3. Archived (PDF) from the original on March 21, 2022. Retrieved March 21, 2022.
  218. ^ «Greek Names of the Planets». April 25, 2010. Retrieved July 14, 2012. In Greek the name of the planet Jupiter is Dias, the Greek name of god Zeus. See also the Greek article about the planet.
  219. ^ Cicero, Marcus Tullius (1888). Cicero’s Tusculan Disputations; also, Treatises on The Nature of the Gods, and on The Commonwealth. Translated by Yonge, Charles Duke. New York, NY: Harper & Brothers. p. 274 – via Internet Archive.
  220. ^ Cicero, Marcus Tullus (1967) [1933]. Warmington, E. H. (ed.). De Natura Deorum [On The Nature of the Gods]. Cicero. Vol. 19. Translated by Rackham, H. Cambridge, MA: Cambridge University Press. p. 175 – via Internet Archive.
  221. ^ Zolotnikova, O. (2019). «Mythologies in contact: Syro-Phoenician traits in Homeric Zeus». The Scientific Heritage. 41 (5): 16–24. Retrieved April 26, 2022.
  222. ^ Tarnas, R. (2009). «The planets». Archai: The Journal of Archetypal Cosmology. 1 (1): 36–49. CiteSeerX 10.1.1.456.5030.
  223. ^ Harper, Douglas (November 2001). «Jupiter». Online Etymology Dictionary. Retrieved February 23, 2007.
  224. ^ «Guru». Indian Divinity.com. Retrieved February 14, 2007.
  225. ^ Sanathana, Y. S.; Manjil, Hazarika1 (November 27, 2020). «Astrolatry in the Brahmaputra Valley: Reflecting upon the Navagraha Sculptural Depiction» (PDF). Heritage: Journal of Multidisciplinary Studies in Archaeology. 8 (2): 157–174. Archived (PDF) from the original on October 9, 2022. Retrieved July 4, 2022.[dead link]
  226. ^ «Türk Astrolojisi-2» (in Turkish). NTV. Archived from the original on January 4, 2013. Retrieved April 23, 2010.
  227. ^ De Groot, Jan Jakob Maria (1912). Religion in China: universism. a key to the study of Taoism and Confucianism. American lectures on the history of religions. Vol. 10. G.P. Putnam’s Sons. p. 300. Retrieved January 8, 2010.
  228. ^ Crump, Thomas (1992). The Japanese numbers game: the use and understanding of numbers in modern Japan. Nissan Institute/Routledge Japanese studies series. Routledge. pp. 39–40. ISBN 978-0-415-05609-0.
  229. ^ Hulbert, Homer Bezaleel (1909). The passing of Korea. Doubleday, Page & Company. p. 426. Retrieved January 8, 2010.
  230. ^ Dubs, Homer H. (1958). «The Beginnings of Chinese Astronomy». Journal of the American Oriental Society. 78 (4): 295–300. doi:10.2307/595793. JSTOR 595793.
  231. ^ Wong, Mike; Kocz, Amanda (May 11, 2021). «By Jove! Jupiter Shows Its Stripes and Colors» (Press release). NOIRLab. National Science Foundation. Retrieved June 17, 2021.
  232. ^ Roth, Lorenz; Downer, Bethany (October 14, 2021). «Hubble Finds Evidence of Persistent Water Vapour Atmosphere on Europa» (Press release). ESA Hubble. European Space Agency. Retrieved October 26, 2021.
  233. ^ Overbye, Dennis (August 23, 2022). «How the Webb Telescope Expanded My Universe – As new images of Jupiter and a galactic survey spring forth from NASA’s new observatory, our cosmic affairs correspondent confesses he didn’t anticipate their power». The New York Times. Retrieved August 24, 2022.

External links

  • Lohninger, Hans; et al. (November 2, 2005). «Jupiter, As Seen By Voyager 1». A Trip into Space. Virtual Institute of Applied Science. Retrieved March 9, 2007.
  • Dunn, Tony (2006). «The Jovian System». Gravity Simulator. Retrieved March 9, 2007. – A simulation of the 62 moons of Jupiter.
  • Jupiter in Motion, album of Juno imagery stitched into short videos
  • June 2010 impact video
  • Photographs of Jupiter circa 1920s from the Lick Observatory Records Digital Archive, UC Santa Cruz Library’s Digital Collections Archived September 4, 2015, at the Wayback Machine
  • Interactive 3D gravity simulation of the Jovian system Archived June 11, 2020, at the Wayback Machine
  • Video (animation; 4:00): Flyby of Ganymede and Jupiter (NASA; 15 July 2021).

Содержание

  1. Основные характеристики
  2. Строение Юпитера
  3. Атмосфера и температура планеты Юпитер
  4. Состав Юпитера
  5. Магнитное поле Юпитера
  6. Кольца
  7. Спутники Юпитера
  8. Столкновения небесных тел с Юпитером
  9. Краткая история изучения
  10. Любительские наблюдения
  11. Гипотезы о существовании жизни на Юпитере
  12. Юпитер в культуре
  13. Интересные факты

Юпитер — крупнейшая планета Солнечной системы, пятая по удалённости от Солнца. Наряду с Сатурном, Ураном и Нептуном, Юпитер классифицируется как газовый гигант.

Планета была известна с древних времен и ее назвали в честь римского бога. В то время у планеты было много имен и на протяжении всей истории Римской империи ему оказывали наибольшее внимание. Римляне назвали планету именем их царя богов, Юпитера, который также был богом неба и грома.

Юпитер находится за поясом астероидов и почти полностью состоит из газов, преимущественно – водорода и гелия. Масса Юпитера настолько огромна (М = 1,9∙1027 кг), что почти в 2,5 раза превышает массу всех вместе взятых планет солнечной системы.

Основные характеристики

Масса:  1,9*1027 кг (в 318 раз больше массы Земли)
Диаметр на экваторе: 142984 км (в 11,3 раза больше диаметра Земли)
Диаметр на полюсе: 133708 км
Наклон оси: 3,1°
Плотность: 1,33 г/см3
Температура верхних слоев около –160 °C
Период обращения вокруг оси (сутки): 9,93 ч;

вокруг Солнца по орбите (год): 11,86 лет

Расстояние от Солнца (среднее): 5,203 а. е. или 778 млн. км
Скорость вращения по орбите:

Наклон орбиты к эклиптике:

13,1 км/с

i = 1°

Ускорение свободного падения 24,8 м/c2
Спутники: 79 спутников — Европа, Ио, Ганимед, Калисто и др.

Строение Юпитера

Ядро планеты, что весьма интересно, является каменным. Его диаметр около 20 тысяч километров. Затем следует слой металлического водорода, имеющий вдвое больший диаметр, нежели ядро.  Оно возникает при больших давлениях (около миллиона атмосфер) и высоких температурах, которая колеблется от 6 до 20 тысяч градусов.

Мощные электротоки, возникающие в этом слое, порождают гигантское магнитное поле Юпитера

Следующий слой составляет субстанция из водорода, гелия, аммиака, воды и другого. Её толщина также около 20 тысяч километров. Что интересно, у поверхности этот слой имеет газообразную форму, но потом постепенно переходит в жидкую.

Внутреннее строение Юпитера

Ну и последний, внешний слой — состоит, по большей части, из водорода. Также есть некоторая часть гелия и чуть меньше — других элементов. Этот слой газообразный.

Почему Юпитер не звезда?

Юпитер-очень большая планета. Однако ему все же  не хватает массы и тепла, необходимого для начала слияния атомов водорода в гелий, поэтому он не может стать звездой. Ученые подсчитали, что Юпитер должен увеличить свою текущую массу, примерно, в 80 раз для того, чтобы зажечь термоядерный синтез. Но тем не менее, планета выделяет тепло за счет гравитационного сжатия. Это сокращение объема, в конечном итоге и нагревает планету

Атмосфера и температура планеты Юпитер

Атмосфера планеты является крупнейшей в Солнечной системе и состоит из  90% водорода и 10% гелия. В отличие от Земли, Юпитер — газовый гигант и не имеет четкой границы между атмосферой и остальной частью планеты. Если бы вы смогли опуститься вниз, к центру планеты, то плотность и температура водорода и гелия стали бы изменяться.

Поверхность Юпитера

Ученые выделяют слои на основе этих особенностей,  в порядке их убывания от ядра:

  • тропосфера;
  • стратосфера;
  • термосфера;
  • экзосфера

У Юпитера нет твердой поверхности, поэтому за некую условную «поверхность» ученые определяют нижнюю границу его атмосферы в точке, где давление составляет 1 бар.

Температура атмосферы в этой точке, как и у Земли, уменьшается с высотой, пока не достигнет минимума.

Тропопауза определяет границу между тропосферой и стратосферой — это около 50 км над условной «поверхностью» планеты.

Стратосфера поднимается на высоту 320 км, и давление продолжает снижаться, в то время как температура возрастает. Эта высота отмечает границу между стратосферой и термосферой. Температура термосферы поднимается до 1000 К на высоте 1000 км.

Все облака и штормы, которые мы можем видеть, расположены в нижней части тропосферы и формируются из аммиака, сероводорода и воды.

Вы, возможно, заметили, что в его атмосфере существуют различные овалы и круги — это вихри и штормы, которые бушуют в крайне нестабильной атмосфере.

Большое Красное Пятно

Большое Красное Пятно Юпитера (БКП) это атмосферный шторм, который бушует в Южном полушарии вот уже 400 лет.

Он настолько огромен, что его можно наблюдать даже из земных телескопов. Многие считают, что Джованни Кассини впервые наблюдал его в конце 1600-х годов, но ученые сомневаются, что он сформировался в то время. Около 100 лет назад, эта буря имела размер более 40000 км в поперечнике.

Не известно точно, что вызывает такой цвет Большого Красного Пятна. Наиболее популярная теория, которую поддерживают лабораторные эксперименты, гласит, что цвет может быть вызван сложными органическими молекулами, например, красным фосфором или соединениями серы.

В настоящее время его размер сокращается. При нынешних темпах сокращения, оно может стать круговым к 2040 году. Ученые сомневаются, что это произойдет, потому что влияние соседних струйных течений может полностью изменить картину. Пока не известно, как долго будет длиться изменение его размера. Как видите, красное пятно это довольно загадочный объект, оно является предметом будущего большого исследования.

Малое Красное Пятно

Другое крупное красное пятно было найдено в 2000 году и с тех пор неуклонно растет. Как и Большое Красное Пятно, оно также антициклоническое. Из-за своего сходства с БКП, это красное пятно (которое носит официальное имя Овал) часто называют «Маленькое Красное Пятно» или «Little Red Spot».

Большое и Малое красное пятно

В отличие от вихрей, которые сохраняются в течение длительного времени, бури более кратковременны. Многие из них могут существовать в течение нескольких месяцев, но, в среднем, они длятся в течение 4 дней. Возникновение бурь в атмосфере достигает кульминации каждые 15-17 лет. Бури сопровождаются молниями, так же, как и на Земле.

Состав Юпитера

Юпитер содержит небольшие количества таких соединений как метан, аммиак, сероводород, и вода. Эта смесь химических соединений и элементов, вносит свой вклад в формирование красочных облаков, которые мы можем наблюдать в телескопы. Однозначно сказать какого цвета Юпитер нельзя, но примерно он рыже-белый в полоску.

Диоксид углерода, моноксид углерода и вода в верхней части атмосферы, как полагают, своим присутствием обязаны столкновениям с атмосферой Юпитера комет, таких, например, как комета Шумейкеров-Леви 9.

Облака аммиака, которые видны в атмосфере планеты, образуют совокупность параллельных полос. Темные полосы называют поясами и чередуются с светлым, которые известны как зоны. Это зоны, как считается, состоят из аммиака. Пока не известно, что вызывает темный цвет полос.

Поскольку цвет может сильно варьироваться, предполагается, что химический состав атмосферы также различен в разных местах. Например, имеются «сухие» и «мокрые» области с разным содержанием водяного пара.

Магнитное поле Юпитера

Магнитное поле Юпитера настолько огромно, что выходит даже за орбиту Сатурна и составляет около 650 000 000 км. Оно превышает земное почти в 12 раз, а наклон магнитной оси, составляет 11° относительно оси вращения.

Форма магнитного поля у Юпитера сильно сплюснута и напоминает диск (в отличие от каплевидной у Земли).

Металлический водород, присутствующий в недрах планеты и объясняет наличие столь мощного магнитного поля. Он является отличным проводником и, вращаясь с огромной скоростью, образует магнитные поля. На Юпитере, как и на Земле, тоже имеются 2 магнитных инвертированных полюса. Но стрелка компаса на газообразном гиганте всегда показывает на юг.

Вокруг Юпитера, как и вокруг большинства планет Солнечной системы, существует магнитосфера — область, в которой поведение заряженных частиц, плазмы, определяется магнитным полем. Для Юпитера источниками таких частиц являются солнечный ветер и его спутник Ио.

Радиационные пояса

Юпитер обладает мощными радиационными поясами. При сближении с Юпитером «Галилео» получил дозу радиации, в 25 раз превышающую смертельную дозу для человека.

Излучение радиационного пояса Юпитера в радиодиапазоне впервые было обнаружено в 1955 году.

Радиоизлучение обладает огромной энергией. Поток электронов в радиационных поясах Юпитера может представлять серьёзную опасность для космических аппаратов ввиду большого риска повреждения аппаратуры радиацией. Вообще, радиоизлучение Юпитера не является строго однородным и постоянным — как по времени, так и по частоте.

Юпитер окружён ионосферой протяжённостью 3000 км.

Полярные сияния

На Юпитере образуются яркие устойчивые сияния вокруг обоих полюсов. В отличие от таких же на Земле, которые появляются в периоды повышенной солнечной активности, полярные сияния Юпитера являются постоянными, хотя их интенсивность меняется изо дня в день.

Размеры и положение полярных сияний также зависит от вращения многочисленных спутников Юпитера.

Большое рентгеновское пятно

Орбитальным телескопом «Чандра» в декабре 2000 года на полюсах Юпитера обнаружен источник пульсирующего рентгеновского излучения, названный Большим рентгеновским пятном. Главным образом оно получило распространение на северном полюсе планеты.

Причины этого излучения пока представляют загадку

Кольца

Кольца Юпитера слабые и состоят из пыли, образующейся при столкновении спутников.

Кольцевая система имеет следующее строение:

  • кольцо-гало, представляющее собой толстый слой пыли;
  • тонкое и яркое Главное кольцо;
  • 2 внешних «паутинных» кольца.

Главное и гало-кольца образовались из пыли от спутников Метида и Адрастея, а паутинные кольца Юпитера сформировались благодаря Альматеи и Фиве.

По предположительным данным, существует еще одно тонкое и слабое кольцо рядом со спутников Гималаи, возникшее после его столкновения с более мелким спутником.

Спутники Юпитера

Спутники Юпитера — естественные спутники Юпитера, самой большой планеты Солнечной системы.

По данным на июль 2018 года, у Юпитера известно 79 спутников — второе значение среди планет Солнечной системы  после Сатурна. Есть мнение, что их может быть не менее сотни. Спутникам даны в основном имена различных мифических персонажей, так или иначе связанных с Зевсом-Юпитером. 

Кроме того, у Юпитера есть и система пылевых колец, о которой мало кто слышал. Впрочем, эти кольца не такие мощные, как знаменитые кольца Сатурна и в телескоп они не видны.

Спутники Юпитера принято делить на две группы — внутренние и внешние.

Спутники Юпитера

Внутренние спутники

8 спутников, галилеевы и негалилеевы внутренние спутники

Первая подгруппа группа Амальтеи, самые близкие  к Юпитеру спутники в порядке удаления :

  • Метида,
  • Адрастея,
  • Амальтея,
  • Теба.

Они вращаются по орбитам с радиусом 2-3 радиуса Юпитера от его центра. Это небольшие спутники, диаметром от 20 до 250 км.

Вторая подгруппагруппа Галилеевых спутников, это самые большие спутники Юпитера. Они также вращаются по круговым орбитам, сравнительно недалеко от Юпитера. Такое прозвище они получили потому, что были найдены Галилео Галилеем в 1610 году, когда он впервые использовал телескоп для наблюдения за Юпитером. Это, в порядке удаления от планеты, Ио, Европа, Ганимед и Каллисто — четыре главных спутника Юпитера.

Внешние спутники

В основном, это небольшие спутники, размером несколько километров, редко больше. Самый крупный из них — Гималия, её наибольший размер — около 170 км. Известны 71 спутников Юпитера, размером от одного километра и до более чем пяти тысяч.

Внешние спутники Юпитера вращаются на значительном удалении от Юпитера по эллиптическим орбитам, которые находятся под значительными углами к экватору Юпитера. Любопытно, что если внутренние спутники вращаются вокруг Юпитера в одну с ним сторону, то внешние спутники вращаются в основном в противоположном направлении. Такие орбиты называются ретроградными.

Для определённости, собственные имена таких спутников всегда оканчиваются на «е», независимо от того, в честь кого названы ( Карме, Синопе, Ананке, Пасифе и другие).

Спутники Юпитера исследованы мало, за исключением Галилеевых. Коротко посмотрим, чем же они примечательны.

Ганимед

Ганимед — крупнейший спутник Юпитера и вообще, крупнейший из спутников планет в Солнечной системе, его диаметр — 5262 км. с Земли его можно увидеть даже в самый небольшой бинокль. Его диаметр на 8% превышает диаметр Меркурия, и если бы Ганимед вдруг отправился в свободное плавание, мы бы считали его отдельной планетой.

На поверхности Ганимеда наблюдаются два типа ландшафта. Треть поверхности спутника занимают тёмные области, испещрённые ударными кратерами. Их возраст доходит до четырёх миллиардов лет. Остальную площадь занимают более молодые светлые области, покрытые бороздами и хребтами. Вероятно, их образование связано с тектонической активностью, вызванной приливным нагревом.

У Ганимеда есть расплавленное ядро, магнитосфера, зачатки атмосферы со следами кислорода и мощный слой водяного льда, под которым предположительно находится водный океан.

Ганимед интересен тем, что является единственным спутником в Солнечной системе, обладающим собственной магнитосферой.

Одним словом, если бы не радиация Юпитера, то Ганимед был бы интересным местом для освоения.

Каллисто

Каллисто лишь немного уступает Ганимеду размерами, — её диаметр 4820,6 км. Он является наиболее удаленным от планеты крупным спутником.

Подобно Ганимеду, она покрыта толстым слоем водяного льда — около 200 км. Но, в отличие от Ганимеда, у которого есть расплавленное жидкое ядро, Каллисто мертва с точки зрения геологии — её ядро выражено слабо, а густая россыпь кратеров и слой пыли говорят об отсутствии тектонических процессов.

Именно эта стабильность и делает Каллисто наиболее привлекательным объектом, для дальнейших исследований. Спутник находится вне зоны действия радиационного пояса Юпитера, потому, если человечество решит осваивать систему Юпитера, то вероятнее всего именно Каллисто послужит ему для этого передовой базой.

Европа

Европа  — самый маленький галилеев спутник Юпитера. Диаметр Европы — 3138 км. Поверхность Европы покрыта мощным ледяным панцирем, толщина которого достигает 100 километров. На ней почти нет кратеров, но много трещин. Все данные указывают на то, что под толщей льда находится океан, глубина которого достигает 100 километров и в котором содержится больше воды, чем во всех земных водоемах вместе взятых.

Многие ученые надеются, что в этих глубинах может существовать жизнь и в настоящее время прорабатывается возможность отправить к Европе аппарат, который бы занялся исследованием ее океана.

Правда, существует одно обстоятельство, которое может серьезно осложнить любые попытки человечества в будущем достичь Европы. Поскольку спутник находится достаточно близко к Юпитеру, он подвергается воздействию его мощных радиационных поясов. Рискнувший прогуляться по поверхности Европы космонавт получит смертельную дозу за несколько часов.

Ио

Ио —   расположена ближе всего к планете. Диаметр его составляет  3642 км.

Отличительная особенность Ио — сильная вулканическая деятельность, там расположено около 400 вулканов. Такая близость приводит к тому, что мощная гравитация газового гиганта держит ее недра в буквально расплавленном состоянии. 10% объема мантии Ио занимает разогретый до температуры свыше 1200 градусов Цельсия лавовый океан, чье содержимое постоянно выбрасывается на поверхность через четыре сотни вулканов.

Рельеф спутника представляет собой причудливую смесь из  гладких равнин и гор высотой до 18 километров.

По поверхности Ио текут огромные лавовые потоки, протяженность которых может достигать 500 километров, имеются огромные лавовые озера, а остальная часть спутника покрыта замороженными соединениями серы, которые в зависимости от состава, окрашивают местность в различные оттенки жёлтого, белого, красного, чёрного и зелёного.

Столкновения небесных тел с Юпитером

Комета Шумейкеров — Леви

В июле 1992 года к Юпитеру приблизилась комета. Следует отметить, что планета захватила комету примерно за 20-30 лет до столкновения, и она вращалась по орбите гиганта с тех пор.Она прошла на расстоянии около 15 тысяч километров от верхней границы облаков, и мощное гравитационное воздействие планеты-гиганта разорвало её ядро на 21 большую часть.

Падение кометы Шумейкера Леви

Комета напоминала нитку жемчуга, когда ее фрагменты врезались в облачный слой планеты 16-22 июля 1994 года. Фрагменты размерами до 2 км каждый вошли в атмосферу со скоростью 60 км/с

Этот грандиозный космический катаклизм наблюдался как с Земли, так и с помощью космических средств, в частности, с помощью космического телескопа «Хаббл», спутника IUE и межпланетной космической станции «Галилео».

Падение ядер сопровождалось вспышками излучения, образованием  газовых выбросов и формированием долгоживущих вихрей, изменением радиационных поясов Юпитера и появлением полярных сияний.  Изучение этого столкновение позволило астрономам сделать несколько новых открытий о планете.

Другие столкновения

  1. 19 июля 2009 года астроном-любитель Энтони Уэсли обнаружил тёмное пятно в районе Южного полюса Юпитера. В дальнейшем эту находку подтвердили в обсерватории на Гавайях. Анализ полученных данных указал, что наиболее вероятным телом, упавшим в атмосферу Юпитера, был каменный астероид.
  2. 3 июня 2010 года  два независимых наблюдателя  засняли вспышку над атмосферой Юпитера, что, скорее всего, является падением нового, ранее неизвестного тела на Юпитер. Через сутки после данного события новые тёмные пятна в атмосфере Юпитера не обнаружены, что подтвердиди наблюдения НАСА.
  3. 20 августа 2010 года произошла вспышка над облачным покровом Юпитера, которую обнаружили астрономы-любители. Предположительно, это могло быть падение астероида или кометы в атмосферу планеты-гиганта.
  4. Астрономом-любителем Герритом Кернбауэром 17 марта 2016 года на 20-сантиметровом телескопе были сделаны снимки столкновения Юпитера с космическим объектом (предположительно, кометой). По мнению астрономов, в результате столкновения произошёл колоссальный выброс энергии, равный 12,5 мегатонны в тротиловом эквиваленте.

Краткая история изучения

Из-зa cвoeго большого размера плaнeту мoжнo былo oтыcкaть в нeбe бeз пpибopoв, пoэтoму o cущecтвoвaнии знaли дaвнo.

Пepвыe упoминaния пoявилиcь в Baвилoнe в 7-8 вeкe дo н.э. Птoлeмeй вo 2-м вeкe coздaл cвoю гeoцeнтpичecкую мoдeль, гдe вывeл opбитaльный пepиoд вoкpуг нac – 4ЗЗ2.З8 днeй. Этoй мoдeлью в 499 гoду вocпoльзoвaлcя мaтeмaтик Apиaбxaтa, и пoлучил peзультaт в 4ЗЗ2.2722 днeй. B 1610 гoду Гaлилeo Гaлилeй иcпoльзoвaл cвoй инcтpумeнт и впepвыe cумeл paccмoтpeть гaзoвoгo гигaнтa.

Открытие 4-х кpупнeйшиx cпутников Юпитера стало важным подтверждением гeлиoцeнтpичecкoй мoдeли мира.

Hoвым тeлecкoпoм в 1660-x гг. пoльзoвaлcя Kaccини, кoтopый xoтeл изучить пятнa и яpкиe пoлocы нa плaнeтe. Oн oбнapужил, чтo пepeд нaми пpиплюcнутый cфepoид. B 1690-м eму удaлocь изучит вращение aтмocфepы.

Дeтaли Бoльшoгo Kpacнoгo Пятнa впepвыe изoбpaзил Гeнpиx Швaбe в 18З1 гoду.

B 1892 гoду зa пятoй лунoй нaблюдaл Э. Э. Бepнapд. Этo былa Aльмaтeя, кoтopaя cтaлa пocлeдним cпутникoм, oткpытым в визуaльнoм oбзope. Пoлocы впитывaния aммиaкa и мeтaнa изучил Pупepт Bильдт в 19З2 гoду, a в 19З8-м oтcлeживaл тpи длитeльныe «бeлыe oвaлы».

Mнoгиe гoды oни ocтaвaлиcь oтдeльными фopмиpoвaниями, нo в 1998 гoду двoe cлилиcь в eдиный oбъeкт, a в 2000-м пoглoтили тpeтий.

В 1950-x годах началось изучение Юпитера с помощью радиотелескопов.  Пepвыe cигнaлы улoвили в 1955-м гoду. Этo были вcплecки paдиoвoлн, cooтвeтcтвующиx плaнeтapнoму вpaщeнию, чтo пoзвoлилo вычиcлить cкopocть. Пoзжe иccлeдoвaтeли изучали типы сигналов от планеты и ее спутников.

Непосредственно Юпитер изучался исключительно аппаратами НАСА США.

В конце 1980-х—начале 1990-х гг. был разработан проект советской АМС «Циолковский» для исследования Солнца и Юпитера, планировавшийся к запуску в 1990-х гг., но нереализованный ввиду распада СССР.

Первым окружение Юпитера посетил зонд NASA «Pioneer 10».

Всего систему Юпитера посетили  семь аппаратов пролетной траектории («Pioneer 10», «Pioneer 11», «Voyager-1», «Voyager-2», «Ulysses», «Cassini», «New Horizons») и два орбитальных («Galileo» и «Juno»). В настоящее время активно проводятся исследования Юпитера как с помощью наземных, так и с помощью космических телескопов, в частности телескопа «Hubble».

Любительские наблюдения

Haблюдeния Юпитepa нe вызывaют cepьeзныx тpуднocтeй дaжe у нaчинaющиx acтpoнoмoв. Пpи мaкcимaльнoм уpoвнe блecкa oн уcтупaeт пo яpкocти лишь Beнepe, Лунe и Coлнцу. Oптимaльный пepиoд eгo иccлeдoвaний нacтупaeт в мoмeнт пpoтивocтoяния, кoтopoe пpoиcxoдит кaждый гoд co cмeщeниeм в oдин мecяц oт пpoшлoгoднeй дaты. Oбычнo вo вpeмя лeтнeгo пpoтивocтoяния Юпитep нe oтxoдит дaлeкo oт гopизoнтa.

Юпитер из телескопа с Земли

B Poccии этo paccтoяниe paвнo 20-З0˚. B cвязи c этим лучшee вpeмя для eгo нaблюдeний пpиxoдитcя нa пepиoд зимнeгo пpoтивocтoяния. Toгдa плaнeтa зaнимaeт выcoкoe пoлoжeниe нa нeбocклoнe и ocтaeтcя тaм нa пpoтяжeнии вceй нoчи. Ecли вы нe бoитecь зимниx мopoзoв, тo мoжeтe зa oдну нoчь пpoнaблюдaть пoлный oбopoт Юпитepa вoкpуг cвoeй ocи.

Гипотезы о существовании жизни на Юпитере

В настоящее время наличие жизни на Юпитере представляется маловероятным: низкая концентрация воды в атмосфере, отсутствие твёрдой поверхности и т. д.

Однако ещё в 1970-х годах американский астроном Карл Саган высказывался по поводу возможности существования в верхних слоях атмосферы Юпитера жизни на основе аммиака.

Следует отметить, что даже на небольшой глубине в юпитерианской атмосфере температура и плотность достаточно высоки, и возможность, по крайней мере, химической эволюции исключать нельзя, поскольку существуют благоприятные факторы.

Однако возможно существование на Юпитере и водно-углеводородной жизни: в слое атмосферы, содержащем облака из водяного пара, температура и давление также весьма благоприятны.

Карл Саган совместно с Э. Э. Солпитером, проделав вычисления в рамках законов химии и физики, описали три воображаемые формы жизни, способные существовать в атмосфере Юпитера:

  1. Синкеры  — крошечные организмы, размножение которых происходит очень быстро и которые дают большое количество потомков. Это позволяет выжить части из них при наличии опасных конвекторных потоков, способных унести синкеров в горячие нижние слои атмосферы;
  2. Флоатеры — гигантские (величиной с земной город) организмы, подобные воздушным шарам. Флоатер откачивает из воздушного мешка гелий и оставляет водород, что позволяет ему держаться в верхних слоях атмосферы. Он может питаться органическими молекулами или вырабатывать их самостоятельно, подобно земным растениям;
  3. Хантеры  — хищные организмы, охотники на флоатеров.

Юпитер в культуре

Как яркое небесное тело, Юпитер привлекал внимание наблюдателей с древности и, соответственно, становился объектом поклонения. Например, с ним связан культ семитского божества Гада, индийский религиозный праздник Кумбха-мела, китайское божество Тай-Суй (см. также Три звёздных старца). Своё современное название планета несёт со времён Древнего Рима, жители которого так называли своего верховного бога.

Юпитер играет одну из ключевых ролей в астрологии, символизируя собой мощь, процветание, удачу.

Символ — ♃ (U+2643 в Юникоде).

Согласно представлениям астрологов, Юпитер является царём планет. Древние тюрки и монголы полагали, что эта планета способна влиять на природные и общественные процессы.

Планета также широко присутствует в целом ряде современных художественных произведений:

  • «Путешествия в другие миры » Джона Джекоба Астора IV (1894);
  • «Завоевание двух миров» Эдмонда Гамильтона (1932);
  • «Люди-скелеты Юпитера» Эдгара Райса Берроуза (1943);
  • Б. Красногорского и Д. Святского «Острова эфирного океана»(1914);
  • «Покупаем Юпитер» Айзека Азимова (1958);
  • «Кража Юпитера» Дональда Моффита;
  • В период с 1983 по 2001 гг. свет увидела целая серия под названием «Биография космического тирана» (автор — Пирс Энтони);
  • «Путь на Амальтею» Аркадия и Бориса Стругацких (1959);
  • Трилогия «Золотой век» Джона Райта (2002—2003);
  • «Дар Юпитера» Тимоти Зана (2002)

Также Юпитер не обойдён вниманием и такими жанрами, как комиксы и манга. В частности, в манге «Battle Angel» Юкито Кисиро среди прочего описывается сфера Дайсона, построенная вокруг Юпитера. В комиксе «2000 год нашей эры»  главный персонаж, Дан Дар, вместе со своими союзниками сражается против коварной цивилизации инопланетян, разместивших свою базу на Юпитере. В манге и аниме-мультсериале «Сейлор Мун» планету Юпитер олицетворяет девушка-воительница Сейлор Юпитер, она же Макото Кино.

Планета играет важную роль и в сюжетах некоторых теле- и кинофильмов. В их числе, телесериал «Космический патруль», в совместном японо-американском фильме 1965 года «Годзилла против Монстра Зеро», в «Космической одиссее» режиссёра Стенли Кубрика, в японском научно-фантастическом фильме по роману Сакё Комацу «Прощай, Юпитер»и других.

Интересные факты

  • В 1970-х годах американский астроном Карл Саган высказывался по поводу возможности существования в верхних слоях атмосферы Юпитера жизни на основе аммиака.
  • Своим мощным гравитационным полем он защищает планеты внутренней группы, в том числе Землю, от прилетающих извне комет и астероидов.
  • Если бы в момент формирования ему удалось бы нарастить массу в 80 раз больше нынешней, в Солнечной системе возникла бы вторая звезда. Она классифицировалась бы как коричневый карлик.
  • Большое красное пятно – это уникальный долгоживущий и самый гигантский ураган Солнечной системы. Его текущий диаметр 15 000 x 30 000 километров (для сравнения, диаметр Земли составляет около 12 700 километров).
  • Точный химический состав внутренних слоев Юпитера невозможно определить современными методами наблюдений.
  • В областях Юпитера, на которые падают тени от его крупных спутников, температура поверхности повышается, а не понижается, как можно было бы ожидать.
  • Спутники Юпитера, названия которых заканчиваются на букву «е» (Карме, Синопе, Ананке, Пасифе и другие), обращаются вокруг планеты в обратном (ретроградном) направлении.
  • Теоретически, человек массой в 80 кг на юпитерианской поверхности  будет весить 192 кг. Это связано с тем, что гравитация на газовом гиганте в 2,4 раза больше земной.
  • Самая большая планета Солнечной системы излучает самые мощные радиоволны. Их можно уловить даже коротковолновыми антеннами на Земле. Они трансформируются в довольно необычный аудиосигнал, который некоторые принимают за сигналы от пришельцев.

Видео



Источники

    https://ru.wikipedia.org/wiki/Юпитер

    https://v-kosmose.com/planeta-yupiter-2/

    https://spacegid.com/yupiter.html

    https://in-space.ru/planeta-yupiter/

    https://spaceworlds.ru/solnechnaya-sistema/planeta-jupiter/kharakteristika-yupitera.html

    https://kosmos-gid.ru/solar_system/jupiter/

    Четыре главных спутника Юпитера

    https://kosmoved.ru/sputniki_yupiter.shtml

    https://ru.wikipedia.org/wiki/Юпитер_в_культуре

     

  • Краткий смысл сказки о мертвой царевне и семи богатырях
  • Краткий рассказ произведения выстрел
  • Краткий рассказ про шуберта
  • Краткий рассказ яблоки гесперид
  • Краткий рассказ про шопена