Молярная концентрация как пишется

«Molarity» redirects here. Not to be confused with Molality or Morality.

Molar concentration

Common symbols

c
SI unit mol/m3

Other units

mol/L

Derivations from
other quantities

c = n/V
Dimension {displaystyle {mathsf {L}}^{-3}{mathsf {N}}}

Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm3 in SI unit. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M.

Definition[edit]

Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution.[1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c:[2]

{displaystyle c={frac {n}{V}}={frac {N}{N_{text{A}},V}}={frac {C}{N_{text{A}}}}.}

Here, n is the amount of the solute in moles,[3] N is the number of constituent particles present in volume V (in litres) of the solution, and N_{{text{A}}} is the Avogadro constant, since 2019 defined as exactly 6.02214076×1023 mol−1. The ratio {displaystyle {frac {N}{V}}} is the number density C.

In thermodynamics the use of molar concentration is often not convenient because the volume of most solutions slightly depends on temperature due to thermal expansion. This problem is usually resolved by introducing temperature correction factors, or by using a temperature-independent measure of concentration such as molality.[3]

The reciprocal quantity represents the dilution (volume) which can appear in Ostwald’s law of dilution.

Formality or analytical concentration

If a molecular entity dissociates in solution, the concentration refers to the original chemical formula in solution, the molar concentration is sometimes called formal concentration or formality (FA) or analytical concentration (cA). For example, if a sodium carbonate solution (Na2CO3) has a formal concentration of c(Na2CO3) = 1 mol/L, the molar concentrations are c(Na+) = 2 mol/L and c(CO2−3) = 1 mol/L because the salt dissociates into these ions.[4]

Units[edit]

In the International System of Units (SI) the coherent unit for molar concentration is mol/m3. However, this is inconvenient for most laboratory purposes and most chemical literature traditionally uses mol/dm3, which is the same as mol/L. This traditional unit is often called a molar and denoted by the letter M, for example:

mol/m3 = 10−3 mol/dm3 = 10−3 mol/L = 10−3 M = 1 mM = 1 mmol/L.

To avoid confusion with SI prefix mega, which has the same abbreviation, small caps ᴍ or italicized M are also used in journals and textbooks.[5]

Sub-multiples such as millimolar consist of the unit preceded by an SI prefix:

Name Abbreviation Concentration
(mol/L) (mol/m3)
millimolar mM 10−3 100=1
micromolar μM 10−6 10−3
nanomolar nM 10−9 10−6
picomolar pM 10−12 10−9
femtomolar fM 10−15 10−12
attomolar aM 10−18 10−15
zeptomolar zM 10−21 10−18
yoctomolar yM[6] 10−24
(6 particles per 10 L)
10−21

[edit]

Number concentration[edit]

The conversion to number concentration C_{i} is given by

{displaystyle C_{i}=c_{i}N_{text{A}},}

where N_{{text{A}}} is the Avogadro constant.

Mass concentration[edit]

The conversion to mass concentration rho _{i} is given by

{displaystyle rho _{i}=c_{i}M_{i},}

where M_{i} is the molar mass of constituent i.

Mole fraction[edit]

The conversion to mole fraction x_{i} is given by

{displaystyle x_{i}=c_{i}{frac {overline {M}}{rho }},}

where {overline {M}} is the average molar mass of the solution, rho is the density of the solution.

A simpler relation can be obtained by considering the total molar concentration, namely, the sum of molar concentrations of all the components of the mixture:

{displaystyle x_{i}={frac {c_{i}}{c}}={frac {c_{i}}{sum _{j}c_{j}}}.}

Mass fraction[edit]

The conversion to mass fraction w_{i} is given by

{displaystyle w_{i}=c_{i}{frac {M_{i}}{rho }}.}

Molality[edit]

For binary mixtures, the conversion to molality b_{2} is

{displaystyle b_{2}={frac {c_{2}}{rho -c_{1}M_{1}}},}

where the solvent is substance 1, and the solute is substance 2.

For solutions with more than one solute, the conversion is

{displaystyle b_{i}={frac {c_{i}}{rho -sum _{jneq i}c_{j}M_{j}}}.}

Properties[edit]

Sum of molar concentrations – normalizing relations[edit]

The sum of molar concentrations gives the total molar concentration, namely the density of the mixture divided by the molar mass of the mixture or by another name the reciprocal of the molar volume of the mixture. In an ionic solution, ionic strength is proportional to the sum of the molar concentration of salts.

Sum of products of molar concentrations and partial molar volumes[edit]

The sum of products between these quantities equals one:

{displaystyle sum _{i}c_{i}{overline {V_{i}}}=1.}

Dependence on volume[edit]

The molar concentration depends on the variation of the volume of the solution due mainly to thermal expansion. On small intervals of temperature, the dependence is

{displaystyle c_{i}={frac {c_{i,T_{0}}}{1+alpha Delta T}},}

where c_{i,T_0} is the molar concentration at a reference temperature, alpha is the thermal expansion coefficient of the mixture.

Examples[edit]

  • 11.6 g of NaCl is dissolved in 100 g of water. The final mass concentration ρ(NaCl) is
    ρ(NaCl) = 11.6 g/11.6 g + 100 g = 0.104 g/g = 10.4 %.

    The density of such a solution is 1.07 g/mL, thus its volume is

    V = 11.6 g + 100 g/1.07 g/mL = 104.3 mL.

    The molar concentration of NaCl in the solution is therefore

    c(NaCl) = 11.6 g/58 g/mol / 104.3 mL = 0.00192 mol/mL = 1.92 mol/L.

    Here, 58 g/mol is the molar mass of NaCl.

  • A typical task in chemistry is the preparation of 100 mL (= 0.1 L) of a 2 mol/L solution of NaCl in water. The mass of salt needed is
    m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g.

    To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL.

  • The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is
    c(H2O) = 1000 g/L/18.02 g/mol ≈ 55.5 mol/L.

    Likewise, the concentration of solid hydrogen (molar mass = 2.02 g/mol) is

    c(H2) = 88 g/L/2.02 g/mol = 43.7 mol/L.

    The concentration of pure osmium tetroxide (molar mass = 254.23 g/mol) is

    c(OsO4) = 5.1 kg/L/254.23 g/mol = 20.1 mol/L.
  • A typical protein in bacteria, such as E. coli, may have about 60 copies, and the volume of a bacterium is about 10−15 L. Thus, the number concentration C is
    C = 60 / (10−15 L) = 6×1016 L−1.

    The molar concentration is

    c = C/NA = 6×1016 L−1/6×1023 mol−1 = 10−7 mol/L = 100 nmol/L.
  • Reference ranges for blood tests, sorted by molar concentration:

See also[edit]

  • Molality
  • Orders of magnitude (molar concentration)

References[edit]

  1. ^ Tro, Nivaldo J. (6 January 2014). Introductory chemistry essentials (Fifth ed.). Boston. p. 457. ISBN 9780321919052. OCLC 857356651.
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the «Gold Book») (1997). Online corrected version: (2006–) «amount concentration, c«. doi:10.1351/goldbook.A00295
  3. ^ a b Kaufman, Myron (2002). Principles of thermodynamics. CRC Press. p. 213. ISBN 0-8247-0692-7.
  4. ^ Harvey, David (2020-06-15). «2.2: Concentration». Chemistry LibreTexts. Retrieved 2021-12-15.
  5. ^ «Typography of unit symbols for Molar and Liter in siunitx». TeX — LaTeX Stack Exchange.
  6. ^ David Bradley. «How low can you go? The Y to Y».

External links[edit]

  • Molar Solution Concentration Calculator
  • Experiment to determine the molar concentration of vinegar by titration

«Molarity» redirects here. Not to be confused with Molality or Morality.

Molar concentration

Common symbols

c
SI unit mol/m3

Other units

mol/L

Derivations from
other quantities

c = n/V
Dimension {displaystyle {mathsf {L}}^{-3}{mathsf {N}}}

Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm3 in SI unit. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M.

Definition[edit]

Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution.[1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c:[2]

{displaystyle c={frac {n}{V}}={frac {N}{N_{text{A}},V}}={frac {C}{N_{text{A}}}}.}

Here, n is the amount of the solute in moles,[3] N is the number of constituent particles present in volume V (in litres) of the solution, and N_{{text{A}}} is the Avogadro constant, since 2019 defined as exactly 6.02214076×1023 mol−1. The ratio {displaystyle {frac {N}{V}}} is the number density C.

In thermodynamics the use of molar concentration is often not convenient because the volume of most solutions slightly depends on temperature due to thermal expansion. This problem is usually resolved by introducing temperature correction factors, or by using a temperature-independent measure of concentration such as molality.[3]

The reciprocal quantity represents the dilution (volume) which can appear in Ostwald’s law of dilution.

Formality or analytical concentration

If a molecular entity dissociates in solution, the concentration refers to the original chemical formula in solution, the molar concentration is sometimes called formal concentration or formality (FA) or analytical concentration (cA). For example, if a sodium carbonate solution (Na2CO3) has a formal concentration of c(Na2CO3) = 1 mol/L, the molar concentrations are c(Na+) = 2 mol/L and c(CO2−3) = 1 mol/L because the salt dissociates into these ions.[4]

Units[edit]

In the International System of Units (SI) the coherent unit for molar concentration is mol/m3. However, this is inconvenient for most laboratory purposes and most chemical literature traditionally uses mol/dm3, which is the same as mol/L. This traditional unit is often called a molar and denoted by the letter M, for example:

mol/m3 = 10−3 mol/dm3 = 10−3 mol/L = 10−3 M = 1 mM = 1 mmol/L.

To avoid confusion with SI prefix mega, which has the same abbreviation, small caps ᴍ or italicized M are also used in journals and textbooks.[5]

Sub-multiples such as millimolar consist of the unit preceded by an SI prefix:

Name Abbreviation Concentration
(mol/L) (mol/m3)
millimolar mM 10−3 100=1
micromolar μM 10−6 10−3
nanomolar nM 10−9 10−6
picomolar pM 10−12 10−9
femtomolar fM 10−15 10−12
attomolar aM 10−18 10−15
zeptomolar zM 10−21 10−18
yoctomolar yM[6] 10−24
(6 particles per 10 L)
10−21

[edit]

Number concentration[edit]

The conversion to number concentration C_{i} is given by

{displaystyle C_{i}=c_{i}N_{text{A}},}

where N_{{text{A}}} is the Avogadro constant.

Mass concentration[edit]

The conversion to mass concentration rho _{i} is given by

{displaystyle rho _{i}=c_{i}M_{i},}

where M_{i} is the molar mass of constituent i.

Mole fraction[edit]

The conversion to mole fraction x_{i} is given by

{displaystyle x_{i}=c_{i}{frac {overline {M}}{rho }},}

where {overline {M}} is the average molar mass of the solution, rho is the density of the solution.

A simpler relation can be obtained by considering the total molar concentration, namely, the sum of molar concentrations of all the components of the mixture:

{displaystyle x_{i}={frac {c_{i}}{c}}={frac {c_{i}}{sum _{j}c_{j}}}.}

Mass fraction[edit]

The conversion to mass fraction w_{i} is given by

{displaystyle w_{i}=c_{i}{frac {M_{i}}{rho }}.}

Molality[edit]

For binary mixtures, the conversion to molality b_{2} is

{displaystyle b_{2}={frac {c_{2}}{rho -c_{1}M_{1}}},}

where the solvent is substance 1, and the solute is substance 2.

For solutions with more than one solute, the conversion is

{displaystyle b_{i}={frac {c_{i}}{rho -sum _{jneq i}c_{j}M_{j}}}.}

Properties[edit]

Sum of molar concentrations – normalizing relations[edit]

The sum of molar concentrations gives the total molar concentration, namely the density of the mixture divided by the molar mass of the mixture or by another name the reciprocal of the molar volume of the mixture. In an ionic solution, ionic strength is proportional to the sum of the molar concentration of salts.

Sum of products of molar concentrations and partial molar volumes[edit]

The sum of products between these quantities equals one:

{displaystyle sum _{i}c_{i}{overline {V_{i}}}=1.}

Dependence on volume[edit]

The molar concentration depends on the variation of the volume of the solution due mainly to thermal expansion. On small intervals of temperature, the dependence is

{displaystyle c_{i}={frac {c_{i,T_{0}}}{1+alpha Delta T}},}

where c_{i,T_0} is the molar concentration at a reference temperature, alpha is the thermal expansion coefficient of the mixture.

Examples[edit]

  • 11.6 g of NaCl is dissolved in 100 g of water. The final mass concentration ρ(NaCl) is
    ρ(NaCl) = 11.6 g/11.6 g + 100 g = 0.104 g/g = 10.4 %.

    The density of such a solution is 1.07 g/mL, thus its volume is

    V = 11.6 g + 100 g/1.07 g/mL = 104.3 mL.

    The molar concentration of NaCl in the solution is therefore

    c(NaCl) = 11.6 g/58 g/mol / 104.3 mL = 0.00192 mol/mL = 1.92 mol/L.

    Here, 58 g/mol is the molar mass of NaCl.

  • A typical task in chemistry is the preparation of 100 mL (= 0.1 L) of a 2 mol/L solution of NaCl in water. The mass of salt needed is
    m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g.

    To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL.

  • The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is
    c(H2O) = 1000 g/L/18.02 g/mol ≈ 55.5 mol/L.

    Likewise, the concentration of solid hydrogen (molar mass = 2.02 g/mol) is

    c(H2) = 88 g/L/2.02 g/mol = 43.7 mol/L.

    The concentration of pure osmium tetroxide (molar mass = 254.23 g/mol) is

    c(OsO4) = 5.1 kg/L/254.23 g/mol = 20.1 mol/L.
  • A typical protein in bacteria, such as E. coli, may have about 60 copies, and the volume of a bacterium is about 10−15 L. Thus, the number concentration C is
    C = 60 / (10−15 L) = 6×1016 L−1.

    The molar concentration is

    c = C/NA = 6×1016 L−1/6×1023 mol−1 = 10−7 mol/L = 100 nmol/L.
  • Reference ranges for blood tests, sorted by molar concentration:

See also[edit]

  • Molality
  • Orders of magnitude (molar concentration)

References[edit]

  1. ^ Tro, Nivaldo J. (6 January 2014). Introductory chemistry essentials (Fifth ed.). Boston. p. 457. ISBN 9780321919052. OCLC 857356651.
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the «Gold Book») (1997). Online corrected version: (2006–) «amount concentration, c«. doi:10.1351/goldbook.A00295
  3. ^ a b Kaufman, Myron (2002). Principles of thermodynamics. CRC Press. p. 213. ISBN 0-8247-0692-7.
  4. ^ Harvey, David (2020-06-15). «2.2: Concentration». Chemistry LibreTexts. Retrieved 2021-12-15.
  5. ^ «Typography of unit symbols for Molar and Liter in siunitx». TeX — LaTeX Stack Exchange.
  6. ^ David Bradley. «How low can you go? The Y to Y».

External links[edit]

  • Molar Solution Concentration Calculator
  • Experiment to determine the molar concentration of vinegar by titration

В уроке 15 «Моляльность и молярность» из курса «Химия для чайников» рассмотрим понятия растворитель и растворенное вещество научимся выполнять расчет молярной и моляльной концентрации, а также разбавлять растворы. Невозможно объяснить что такое моляльность и молярность, если вы не знакомы с понятием моль вещества, поэтому не поленитесь и прочитайте предыдущие уроки. Кстати, в прошлом уроке мы разбирали задачи на выход реакции, посмотрите если вам интересно.

Химикам нередко приходится работать с жидкими растворами, так как это благоприятная среда для протекания химических реакций. Жидкости легко смешивать, в отличие от кристаллических тел, а также жидкость занимает меньший объем, по сравнению с газом. Благодаря этим достоинствам, химические реакции могут осуществляться гораздо быстрее, так как исходные реагенты в жидкой среде часто сближаются и сталкиваются друг с другом. В прошлых уроках мы отмечали, что вода относится к полярным жидкостям, и потому является неплохим растворителем для проведения химических реакций. Молекулы H2O, а также ионы H+ и OH, на которых вода диссоциирована в небольшой степени, могут способствовать запуску химические реакций, благодаря поляризации связей в других молекулах или ослаблению связи между атомами. Вот почему жизнь на Земле зародилась не на суше или в атмосфере, а именно в воде.

Содержание

  • Растворитель и растворенное вещество
  • Расчет концентрации раствора
    • Молярная концентрация
    • Моляльная концентрация
  • Разбавление растворов

Растворитель и растворенное вещество

Раствор может быть образован путем растворения газа в жидкости или твердого тела в жидкости. В обоих случаях жидкость является растворителем, а другой компонент — растворенное вещество. Когда раствор образован путем смешивания двух жидкостей, растворителем считается та жидкость, которая находится в большем количестве, иначе говоря имеет бОльшую концентрацию.

Расчет концентрации раствора

Молярная концентрация

Концентрацию можно выражать по разному, но наиболее распространенный способ — указание его молярностиМолярная концентрация (молярность) — это число молей растворенного вещества в 1 литре раствора. Единица молярности обозначается символом M. Например два моля соляной кислоты на 1 литр раствора обозначается 2 М HCl. Кстати, если на 1 литр раствора приходится 1 моль растворенного вещества, тогда раствор называется одномолярным. Молярная концентрация раствора обозначается различными символами:

  • cx, Смx, [x], где x — растворенное вещество

Формула для вычисления молярной концентрации (молярности):

  • См = n/V, моль/л

где n — количество растворенного вещества в молях, V — объем раствора в литрах.

Пару слов о технике приготовления растворов нужной молярности. Очевидно, что если добавить к одному литру растворителя 1 моль вещества, общий объем раствора будет чуть больше одного литра, и потому будет ошибкой считать полученный раствор одномолярным. Чтобы этого избежать, первым делом добавляем вещество, а только потом доливаем воду, пока суммарный объем раствора не будет равным 1 л. Полезно будет запомнить приближенное правило аддитивности объемов, которое гласит, что объем раствора приближенно равен сумме объемов растворителя и растворенного вещества. Растворы многих солей приближенно подчиняются данному правилу.

Молярная концентрация раствора

Пример 1. Химичка дала задание растворить в литре воды 264 г сульфата аммония (NH4)2SO4, а затем вычислить молярность полученного раствора и его объем, основываясь на предположении об аддитивности объемов. Плотность сульфата аммония равна 1,76 г/мл.

Решение:

Определим объем (NH4)2SO4 до растворения:

  • 264 г / 1,76 г/мл = 150 мл = 0,150 л

Пользуясь правилом аддитивности объемов, найдем окончательный объем раствора:

  • 1,000 л + 0,150 л = 1,150 л

Число молей растворенного сульфата аммония равно:

  • 264 г / 132 г/моль = 2,00 моля (NH4)2SO4

Завершающий шаг! Молярность раствора равна:

  • 2,000 / 1,150 л = 1,74 моль/л, т.е 1,74 М (NH4)2SO4

Приближенным правилом аддитивности объемов можно пользоваться только для грубой предварительной оценки молярности раствора. Например, в примере 1, объем полученного раствора на самом деле имеет молярную концентрацию равную 1,8 М, т.е погрешность наших расчетов составляет 3,3%.

Моляльная концентрация

Наряду с молярностью, химики используют моляльность, или моляльную концентрацию, в основе которой учитывается количество использованного растворителя, а не количество образующегося раствора. Моляльная концентрация — это число молей растворенного вещества в 1 кг растворителя (а не раствора!). Моляльность выражается в моль/кг и обозначается маленькой буквой m. Формула для вычисления моляльной концентрации:

  • m = n/m

где nколичество растворенного вещества в молях, m — масса растворителя в кг

Для справки отметим, что 1 л воды = 1 кг воды, и еще, 1 г/мл = 1 кг/л.

Моляльная концентрация раствора

Пример 2. Химичка попросила определить моляльность раствора, полученного при растворении 5 г уксусной кислоты C2H4O2 в 1 л этанола. Плотность этанола равна 0,789 г/мл.

Решение:

Число молей уксусной кислоты в 5 г равно:

  • 5,00 г / 60,05 г/моль = 0,833 моля C2H4O2

Масса 1 л этанола равна:

  • 1,000 л × 0,789 кг/л = 0,789 кг этанола

Последний этап. Найдем моляльность полученного раствора:

  • 0,833 моля / 0,789 кг растворителя = 0,106 моль/кг

Единица моляльности обозначается Мл, поэтому ответ также можно записать 0,106 Мл.

Разбавление растворов

В химической практике часто занимаются разбавлением растворов, т.е добавлением растворителя. Просто нужно запомнить, что число молей растворенного вещества при разбавлении раствора остается неизменным. И еще запомните формулу правильного разбавления раствора:

  • Число молей растворенного вещества = c1V1 = c2V2

где с1 и V1 — молярная концентрация и объем раствора до разбавления, с2 и V2 — молярная концентрация и объем раствора после разбавления. Рассмотрите задачи на разбавление растворов:

Разбавление растворов

Пример 3. Определите молярность раствора, полученного разбавлением 175 мл 2,00 М раствора до 1,00 л.

Решение:

В условие задача указаны значения с1, V1 и V2, поэтому пользуясь формулой разбавления растворов, выразим молярную концентрацию полученного раствора с2

  • с2 = c1V1 / V= (2,00 М × 175 мл) / 1000 мл = 0,350 М

Пример 4 самостоятельно. До какого объема следует разбавить 5,00 мл 6,00 М раствора HCl, чтобы его молярность стала 0,1 М?

Ответ: V2 = 300 мл

Без сомнения, вы и сами догадались, что урок 15 «Моляльность и молярность» очень важный, ведь 90% все лабораторных по химии связаны с приготовлением растворов нужной концентрации. Поэтому проштудируйте материал от корки до корки. Если у вас возникли вопросы, пишите их в комментарии.

Молярная концентрация

Основные понятия и определения

Под раствором в химии понимают твёрдую или жидкую однородную систему, состоящую из нескольких компонентов. Вещества образующие раствор разделяются на растворители и растворённые.

Например, сахар, находящийся в воде — такая смесь называется двухгомогенная. Если же в сахарную воду добавить уксус, то полученный раствор уже будет трёхгомогенный. Количество в смеси того или иного разжиженного компонента называется концентрацией. Изменяться она может в широких пределах.

Существует несколько способов выражения концентрации растворов:

Концентрация растворов

Моляльный раствор

  1. Массовый. Обозначается латинской буквой P и определяется количеством растворённого вещества в 100 граммах смеси. Для нахождения массовой концентрации используется формула: P = (n / (n + m)) * 100%, где: n — масса растворяемого вещества, m — масса растворителя, (n + m) — масса раствора. Сумма веществ выражается произведением объёма раствора на его плотность, то есть (n + m) = p * V и измеряется в граммах. Например, 25% раствор обозначает, что в 100 граммах смеси содержится 25 грамм вещества n.
  2. Молярный. Показывает количество моль разжиженного тела в одном кубическом дециметре. Обозначается характеристика латинскими символами Cb и находится из выражения: Cb = v моль / V дм³. То есть запись: 0,6 M NaCl будет означать, что 0,6 моль NaCl растворено в одном кубическом дециметре смеси.
  3. Эквивалентный. Способ ещё называется нормальным. Он так же как и молярный показывает количество растворённого вещества в дециметре кубическом, только используется моль эквивалента. Под последним понимается количество соединений с одним молем атома или замещения при прохождении реакций. Обозначается символом Cэ и находится по формуле Cэ = n / Mэкв * V дм³. Например, 0,1 HCl означает, что 0,1 моль эквивалента соляной кислоты содержится в 1 дм³ раствора.
  4. Моляльный. Используется, чтобы узнать, какое количество моль разжиженного вещества находится в килограмме растворителя. Моляльность рассчитывается с помощью формулы: Cm = (n*100) / (M * m).
  5. Титр раствора. Определяется количеством растворённого вещества, выраженного в одном сантиметре кубическом. Измеряется в граммах: Т = n / V см³.

Молярная масса и доли

Для измерения массы используются граммы, килограммы, тонны, но для обозначения количества вещества они не подходят. В химических процессах принимают участие различные частицы, такие как молекулы, атомы, ионы. Поэтому для того чтобы определить, сколько вещества содержится в той или иной смеси, ввели специальную единицу — моль. Иными словами — это множество, в котором объединены масса с числом.

Молекулы, атомы

Концентрация — это значение количества объёма раствора к растворенному в нём телу. Наиболее часто для измерения применяется массовая доля разжиженного вещества, молярная и нормальная концентрация. Массовая часть — это неизмеряемая величина. Складывается она из двух масс:

  • растворителя — вещества способного ослаблять другие тела;
  • растворимого — разжижающегося состава, поглощаемого растворителем.

Способность же вещества поглощаться другим называют растворимостью. При определении результата взаимодействия растворов находится массовая доля каждого из них.

Молярная масса показывает массу одного моль вещества и измеряется в граммах, делённых на моль. Если необходимо отмерить один моль, то нужно будет взять столько граммов вещества, сколько их содержится в относительной атомной массе или же, относительной молекулярной массе. Один моль всегда содержит постоянное число молекул, называемое константой Авогадро. Равно оно: N = 6 * 1023. Для того чтобы рассчитать число молекул в определённом веществе используют формулу:

Формула Молярная масса

N = Na * n, где Na — постоянная Авогадро, n — количество вещества. То есть моль — это количество в котором содержится 6 * 1023 молекул. Молярная концентрация определяет, сколько моль разжиженного вещества содержится в одном литре раствора.

Считается, что в единице объёма находится некая величина, определяемая числом молекул. Записывается это определение как n = N / V и называется концентрацией молекул. Измеряется она в м3. Важно отметить, что концентрация связана с плотностью соотношением: n = p / m0 и показывает число структурных молекул, находящихся в единице объёме. Поэтому плотность используется при нахождении массы на единицу объёма, а концентрация при вычислении количества молекул.

Массовая доля растворимого часто называется процентной концентрацией. При этом вместо процентного определения используется молярная концентрация. Другими словами, отношение количества к объёму в литрах. Зная число молей в одном литре довольно просто подобрать необходимое число молей используя специальную посуду.

Формулы перехода

Конвертация от массовой доли к молярной массе

Расчёт количества той или иной части концентрированной смеси, возможно, выполнить в различных единицах. Но между тем существуют формулы перехода от одних выражений к другим. При пересчёте происходит округление знака после запятой, поэтому при переходе с одной величины на другую появляется определённая погрешность.

Конвертация от массовой доли к молярной массе выполняется по формуле: Cb = (p * ɷb) / M (B), где: Cb — молярная концентрация, p — плотность, ɷb — массовая доля, M (B) — молярная масса. При этом когда плотность раствора изначально обозначается в грамм на миллилитр, а молярная в грамм на моль, то ответ необходимо умножить на 1 тыс. мл/л. Если же значение доли указано в процентах, то ответ необходимо разделить на 100%.

Для перехода от молярной к нормальной концентрации (молярной концентрации эквивалента), используется выражение: c * ((1 / z) * B) = Cb * z. Где молярность измеряется в моль на литр, а z — число эквивалентности (сопоставимое с одним молем катионов водорода в проходящей реакции). В определённых ситуациях выполняется и перевод массовой доли к титру. Выполняют это по формуле: T = p * ɷ, где p — плотность, измеряемая в граммах, делённых на миллилитры, а ɷ — массовая часть растворённого, в долях.

Перевести можно и молярность к титру.

Перевести можно и молярность к титру. Используют для этого следующую формулу перехода: Т = Cb * M, в которой М — молярная масса разжиженного вещества. В случае же когда концентрация выражается в моль на литр, а масса в грамм на моль, ответ нужно разделить на 1 тыс. миллилитров на литр. Молярность связана с моляльностью формулой: mb = Cb / p, где р — плотность раствора, измеряемая в граммах, делённых на миллилитры.

Самый же сложный перевод происходит при конвертации моляльности к мольной доле. Для решения такой задачи используется формула для мольного элемента: Yb = mb / (mb + 1/ M (A)). В выражении mb обозначает моляльность, а M (A) — молярную массу растворителя. Чтобы ответ получился в одинаковых единицах измерения, цифра один в формуле представляется как 1000 г/кг. Это необходимо, когда моляльность подставляется в моль на килограмм, а масса в грамм на моль.

Вычисление концентрации

Чтобы получить раствор, необходимо между собой смешать растворитель и растворимое. Для того чтобы вычислить концентрацию, нужно знать или найти общий объём смеси, который будет равен сумме элементов, используемых при создании раствора. Измеряться концентрация может в различных величинах. Основные из них:

  • грамм на литр (г/л) — отношение массы к объёму;
  • молярность (моль) — содержание растворенных элементов к объёму раствора;
  • миллионная часть (г / единица раствора) — соотношение растворённых веществ к одному миллиону единиц смеси;
  • проценты (%) — ответ выражается в количестве растворённой доли в граммах к ста частям раствора.

Найти молярность, характеризуемую числом доли растворенных элементов, зная массу и формулу вещества несложно. Если количество растворённой части задано в других единицах, то их преобразуют в граммы.

Вычисление концентрации

Каждый элемент характеризуется молярной массой и определяется отношением массы к числу моль. Равна она атомной массе, которую можно взять из таблицы Менделеева. Для нахождения молярной величины нужно сложить все атомные числа элементов, смешанных в растворе.

Найдя молекулярное значение можно перейти к вычислению количества молей. Делается это с помощью формулы для молярной концентрации: масса растворённого вещества умножается на обратную молярную часть. Результат должен получиться в моль. На следующем этапе находится молярность. Полученное число молей делится на объём, измеряемого в литрах раствора. Обычно объёмом растворённой части пренебрегают.

По аналогии вычисляется концентрация и в процентном составе. Для этого нужно найти массу частей, составляющих раствор. На первом этапе все единицы измерения переводятся в граммы. Находится плотность, затем она умножается на объём и получается масса вещества в граммах. Вычисление концентрации в процентном составе находится как масса растворённого вещества, делённая на сумму массы растворяемого и растворителя, а после результат умножается на сто.

Так как проценты являются сотой долей, то для получения ответа в миллионной доле результат нужно умножить ещё на 10 тысяч.

Примеры расчёта

Определение молярности раствора

Определением молярности раствора занимается химия. В процессах участвуют различные частицы, количество которых даже в малых объёмах велико. Значение молярной концентрации определяется не только количественным, но и качественным составом. Самые простые задачи связаны с нахождением молярной массы. Например, для соединения CH4 она наводится следующим образом:

Мr (CH4) = Ar + 4Ar (H) = 12 + 4 =16

Получается, что масса метана содержит 16 г/моль или 6,02Ч * 1023 молекул. Буква «Ч» используется для обозначения части.

Теперь можно найти массу в объёмном количестве. Например, нужно определить массу метана смешанном в количестве двух моль. Так как для метана его масса составляет 16 г/моль, то ответом будет:

м (метан) = 2 * 16 = 32 г

Много задач встречается на нахождение массовой доли в растворе. Например, в 200 грамм соли добавили 80 грамм воды. Чтобы определить часть соли в полученной смеси необходимо найти первоначальную её долю в растворе: M1 = w * m = 0,14 * 200 = 28 гамм. Затем вычислить массу нового раствора: М2 = 200 + 80 = 280 грамм. И воспользовавшись формулой получить ответ: W = M1 / M2 = 28 / 280 = 0,100.

Немного сложнее задачи на расчёт грамм-эквивалента. Пусть нужно найти нормальность серной кислоты, смешанной с раствором щёлочи. При смешении образуется соединение: NaSO4. Так как при реакции серная кислота нейтрализует гидросульфат натрия только частично то можно записать: Н2SO4 + NaOH = NaHSO4 + Н2О. Серная кислота представляет основу равную единице, поэтому и фактор эквивалентности также будет составлять единицу.

Экв (H2SO4) =1 * ф = 1/1 = 1

Отсюда следует, что значение молярности эквивалента кислоты:

Мэкв (H2SO4) = M * Ф = M/1 = 98/1 = 98 г/экв

Найти массовую часть и молярность эквивалента смеси,

Нужно найти массовую часть и молярность эквивалента смеси, полученной при смешивании 400 мл раствора серной кислоты (p =1, 18 г/мл) и 400 мл восьмипроцентного раствора серной кислоты (p = 1,05 г/мл).

Вначале следует вычислить массу первого раствора и содержание в нём серной кислоты:

m (р-ра) = p (р-ра) * V (р-ра) = 1,18 * 400 = 720 г

m (H2SO4) = V (H2SO4) * м (H2SO4)= С (H2SO4) * V (р-ра) * М (H2SO4) = 720 * 0,2 — 98 = 46 г

Затем определить массу второго раствора и содержание в нём количества серной кислоты:

m (р-ра) = р (р-ра) * V (р-ра) = 1,05 * 400 = 420 г

m = m (р-ра) * (H2SO4)= 420 * 0,08 = 24 г

Часть полученного раствора находится по формуле:

ɷ (H2SO4) = m (H2SO4) / m (р-ра) = (46 + 24) / (720+420) = 0,146

Ответ удобнее записать в процентном соотношении — 14,6%.

КОЛИЧЕСТВО
И КОНЦЕНТРАЦИЯ ВЕЩЕСТВА:

ВЫРАЖЕНИЕ
И ПЕРЕСЧЕТЫ ИЗ ОДНОЙ ФОРМЫ В ДРУГУЮ

Основы
теории

1. Основные
термины и определения

Масса
и количества вещества
.
Массу
вещества (m)
измеряют в граммах, а количество
вещества (n)
в молях. Если обозначить вещество буквой
Х,
то тогда его масса может быть обозначена
как m
(
X),
а количество – n
(
X).

Моль
количество
вещества, которое содержит столько
определенных структурных единиц
(молекул, атомов, ионов и т.д.), сколько
атомов содержится в 0,012 кг изотопа
углерода-12.

При
использовании термина моль
следует указывать частицы, к которым
относится этот термин. Соответственно,
можно говорить «моль молекул», «моль
атомов», «моль ионов» и т.д. (например,
моль молекул водорода, моль атомов
водорода, моль ионов водорода). Так как
0,012 кг углерода-12 содержит ~ 6,022х1023
атомов углерода (постоянная Авогадро),
то моль
– такое количество вещества, которое
содержит 6,022х1023
структурных элементов (молекул, атомов,
ионов и др.).

Отношение
массы вещества к количеству вещества
называют молярной
массой.

M
(
X)
= m (
X)
/ n(
X)

То
есть, молярная
масса
(М)
это масса
одного моля вещества
.
Основной системной 1
единицей молярной массы является
кг/моль, а на практике – г/моль. Например,
молярная масса самого легкого металла
лития М
(Li)
= 6,939 г/моль, молярная масса газа метана
М
(СН4)
= 16,043 г/моль. Молярная масса серной
кислоты рассчитывается следующим
образом M
(
Н24)
=
196 г
/
2 моль
= 96 г/моль.

Любое
соединение (вещество), кроме молярной
массы, характеризуется относительной
молекулярной
или
атомной массой
.
Существует и эквивалентная
масса Е,
равная молекулярной, умноженной на
фактор эквивалентности (см. далее).

Относительная
молекулярная масса

(Mr)
это молярная
масса соединения, отнесенная к 1/12
молярной массы атома углерода-12.

Например, Мr(СН4)
= 16,043. Относительная молекулярная масса
– величина безразмерная.

Относительная
атомная масса

(Ar)
это
молярная масса атома вещества, отнесенная
к 1/12 молярной массы атома углерода-12
.
Например, Ar(Li)
= 6,039.

Концентрация.
Отношение количества или массы вещества,
содержащегося в системе, к объему или
массе этой системы называют концентрацией.
Известно несколько способов выражения
концентрации. В России чаще всего
концентрацию обозначают заглавной
буквой С, имея в виду прежде всего
массовую
концентрацию
,
которая по праву считается наиболее
часто применяемой в экологическом
мониторинге форма выражения концентрации
(именно в ней измеряют величины ПДК).

Массовая
концентрация

или β)

отношение
массы компонента, содержащегося в
системе (растворе), к объему этой системы
(
V).
Это самая распространенная у российских
аналитиков форма выражения концентрации.

β
(Х) =
m
(
X)
/
V
(смеси)

Единица
измерения массовой концентрации –
кг/м3 или
г/м3,
кг/дм3
или г/дм3
(г/л), кг/см3,
или г/см3
(г/мл), мкг/л
или мкг/мл и т.д. Арифметические пересчеты
из одних размерностей в другие не
представляет большой сложности, но
требуют внимательности. Например,
массовая концентрация хлористоводородной
(соляной) кислоты С
(HCl)
= 40 г / 1
л = 40 г/л = 0,04 г/мл = 4·10
5
мкг/л и т.д. Обозначение массовой
концентрации С
нельзя путать с обозначением мольной
концентрации (с),
которая рассматривается далее.

Типичными
являются соотношения β
(Х): 1000 мкг/л = 1 мкг/мл = 0,001 мг/мл.

В
объемном анализе (титриметрии)
употребляется одна из форм массовой
концентрации – титр.
Титр
раствора

(Т) –
это
масса вещества,
содержащегося в одном кубическом
сантиметре или
в
одном миллилитре

раствора
.

Единицы
измерения титра — кг/см3,
г/см3,
г/мл и др.

Моляльность
(
b)
отношение
количества растворенного вещества (
в
молях) к массе растворителя (
в
кг)
.

b(Х)
=
n(X)
/
m
(
растворителя)
=
n(X)
/
m
(
R)

Единица
измерения моляльности
моль/кг. Например, b
(HCl/H2O)
= 2 моль/кг. Моляльная концентрация
применяется в основном для концентрированных
растворов.

Мольная
(!)
доля
(х) –
отношение
количества вещества данного компонента
(в молях), содержащегося в системе, к
общему количеству вещества (в молях).

х
(Х)
=
n(X)
/
n(X)
+
n(Y)

Мольная
доля может быть выражена в долях единицы,
процентах (%), промилле (тысячная часть
%) и в миллионных (млн –1,
ppm),
миллиардных (млрд –1,
ppb),
триллионных (трлн –1,
ppt)
и др. долях, но единицей измерения все
равно является отношение – моль
/ моль.
Например, х
(С2Н6)
= 2 моль / 2 моль + 3 моль = 0,4 (40 %).

Массовая
доля
(ω)
отношение
массы данного компонента, содержащегося
в системе, к общей массе этой системы
.

ω
(
Х)
=
m(X)
/
m(смеси)

Массовая
доля измеряется в отношениях кг/кг
(г/г).
При этом она может быть выражена в долях
единицы, процентах (%), промилле, миллионных,
миллиардных и т.д. долях. Массовая доля
данного компонента, выраженная в
процентах, показывает, сколько граммов
данного компонента содержится в 100 г
раствора.

Например,
условно ω
(
KCl)
=
12 г / 12 г +
28 г = 0,3 (30%).

0бъемная
доля
(φ)
отношение
объема компонента, содержащегося в
системе,
к общему объему системы
.

φ
(
Х)
=
v(X)
/ v(X)
+
v(Y)

Объемная
доля измеряется в отношениях л/л или
мл/мл и тоже может быть выражена в долях
единицы, процентах, промилле, миллионных
и т.д. долях. Например, объемная доля
кислорода газовой смеси составляет φ
(
О2)
=0,15 л / 0,15 л + 0,56 л.

Молярная
(мольная)
концентрация
(с) –
отношение
количества вещества (в молях), содержащегося
в системе (например, в растворе), к объему
V этой системы.

с(Х)
=
n(X)/
V
(смеси)

Единица
измерения молярной концентрации моль/м3
(дольная производная, СИ – моль/л).
Например, c (H2S04)
= 1 моль/л, с (КОН)
= 0,5 моль/л. Раствор, имеющий концентрацию
1 моль/л, называют молярным
раствором
и обозначают как 1 М раствор (не надо
путать эту букву М, стоящую после цифры,
с ранее указанным обозначением молярной
массы, т.е. количества вещества М).
Соответственно раствор, имеющий
концентрацию 0,5 моль/л, обозначают 0,5 М
(полумолярный р-р); 0,1 моль/л – 0,1 М
(децимолярный р.р); 0,01 моль/л – 0,01 М
(сантимолярный р-р) и т.д.

Эта форма выражения
концентрации также очень часто применяется
в аналитике.

Нормальная
(эквивалентная)
концентрация
(N),
молярная
концентрация эквивалента

экв.)
– это отношение
количества вещества эквивалента в
растворе
(моль)
к объему этого раствора
(л).

N
=
Сэкв
(Х)
=
n
(1/Z
X)
/
V
(смеси)

Количество
вещества (в молях), в котором реагирующими
частицами являются эквиваленты,
называется количеством
вещества эквивалента
nэ
(
1/Z
X)
=
nэ
(Х).

Единица
измерения нормальной концентрации
(«нормальности») тоже моль/л (дольная
производная, СИ). Например, Сэкв.(1/3
А1С13)
= 1 моль/л. Раствор, в одном литре которого
содержится 1 моль вещества эквивалентов,
называют нормальным и обозначают 1 н.
Соответственно могут быть 0,5 н
(«пятидецинормальный»); 0,01 н
(сантинормальный») и т.п. растворы.

Следует
отметить, что понятие эквивалентности
реагирующих веществ в химических
реакциях является одним из базовых для
аналитической химии. Именно на
эквивалентности как правило основаны
вычисления результатов химического
анализа (особенно в титриметрии).
Рассмотрим несколько связанных с этим
базовых с т.з. теории аналитики понятий.

Фактор
эквивалентности

– число, обозначающее, какая доля
реальной частицы веществ Х (например,
молекулы вещества X) эквивалентна одному
иону водорода (в данной кислотно-основной
реакции) или одному электрону (в данной
окислительно-восстановнтельной реакции)
Фактор эквивалентности fэкв (Х)
рассчитывают на основании стехиометрии
(соотношении участвующих частиц) в
конкретном химическом процессе:

fэкв (Х)
= 1/ Zx

где
Zx.
— число замещенных
или присоединенных
ионов водорода (для кислотно-основных
реакций) или число отданных или принятых
электронов (для окислительно-восстановительных
реакций);

Х — химическая
формула вещества.

Фактор эквивалентности
всегда равен или меньше единицы. Будучи
умноженным на относительную молекулярную
массу, он дает значение эквивалентной
массы (Е)
.

Для реакции

H24
+
2 NaOH = Na24
+
2 H2

fэкв (H24)
= 1/2, fэкв (NaOH)
= 1

fэкв (H24)
= 1/2, т.е. это означает, что ½ молекулы
серной кислоты дает для данной реакции
1 ион водорода (Н+),
а соответственно fэкв (NaOH)
= 1 означает, что одна молекула NaOH
соединяется в данной реакции с одним
ионом водорода.

Для
реакции

10
FeSО4
+
2 KMnО4
+
8 H24
=
5
Fe2(SО4)3
+ 2 MnSО4
+ K24
+
8 H2О

2     МпО4
+ 8Н+
+5е
→ Мп2+
– 2e
+ 4 Н2О

        5     Fe2+
– 2e
→ Fe3+

fэкв (KMnО4)
= 1/5 (кислая среда), т.е. 1/5 молекулы KMnО4
в данной
реакции
эквивалентна 1 электрону. При этом
fэкв (Fe2+)
= 1, т.е. один ион железа (II)
также эквивалентен 1 электрону.

Эквивалент
вещества Х
– реальная
или условная частица, которая в данной
кислотно-основной реакции эквивалентна
одному нону
водорода или в данной
окислительно-восстановительной реакции
– одному электрону.

Форма
записи эквивалента: fэкв
(Х) Х (см. табл.), или упрощенно Эх,
где Х –химическая формула вещества,
т.е. [Эх =
fэкв
(Х) Х]. Эквивалент безразмерен.

Эквивалент
кислоты
(или
основания) – такая условная частица
данного вещества, которая в данной
реакции титрования высвобождает один
ион водорода или соединяется с ним, или
каким-либо другим образом эквивалентна
ему.

Например,
для первой из вышеуказанных реакций
эквивалент серной кислоты — это условная
частица вида ½ H24
т.е.
fэкв (H24)
= 1/Z=
½;
ЭH24
= ½ H24.

Эквивалент
окисляющегося

(или восстанавливающегося) вещества
— это такая условная частица данного
вещества, которая в данной химической
реакции может присоединять один электрон
или высвобождать его, или быть каким-либо
другим обра­зом эквивалентна этому
одному электрону.

Например,
при окислении перманганатом в кислой
среде эквивалент марганцево­кислого
калия – это условная частица вида 1/5
КМпО4,
т.е. ЭКМпО4
=1/5КМпО4.

Так
как эквивалент вещества может меняться
в зависимости от реакции, в которой это
вещество
участвует, необходимо
указывать соответствующую реакцию.

Например,
для реакции Н3РО4+
NaOH
= NaH24
+ H2O

эквивалент
фосфорной кислоты Э Н3РО4
== 1 Н3РО4.

Для
реакции Н3РО4+
2 NaOH
= Na2
HPО4
+ 2 H2O

ее
эквивалент Э Н3РО4
== ½ Н3РО4,.

Принимая
во внимание, что понятие моля
позволяет пользоваться любыми видами
условных частиц, можно дать понятие
молярной
массы эквивалента вещества

X. Напомним, что моль
– это количество вещества, содержащее
столько реальных или условных частиц,
сколько атомов содержится в 12 г изотопа
углерода 12
С (6,02 10 23).
Под реальными частицами следует понимать
атомы, ионы, молекулы, электроны и т.п.,
а под условными – такие как, например,
1/5 молекулы КМпО4
в случае О/В реакции в кислой среде или
½ молекулы H24
в реакции
с гидроксидом натрия.

Молярная
масса эквивалента вещества

масса
одного моля эквивалентов этого вещества,
равная произведению фактора эквивалентности

fэкв (Х)
на молярную
массу вещества
М
(Х)1.

Молярную
массу эквивалента обозначают как М
[fэкв (Х)
Х] или с учетом равенства Эх
=
fэкв (Х)
Х ее обозначают М [Эх]:

М
х)=
fэкв (Х)
М (Х); М [Эх]
= М (Х) /Z

Например,
молярная масса эквивалента КМпО4

М
(ЭКМпО4)
=1/5КМпО4
= М 1/5
КМпО4
=
31,6 г/моль.

Это
означает, что масса одного моля условных
частиц вида 1/5КМпО4
составляет 31,6 г/моль. По аналогии молярная
масса эквивалента серной кислоты М ½
H24
= 49 г/моль;
фосфорной кислоты М ½
H3
РО4
= 49 г/моль
и т.д.

В
соответствии с требованиями Международной
системы (СИ) именно молярная
концентрация

является основным способом выражения
концентрации растворов, но как уже
отмечалось, на практике чаще применяется
массовая
концентрация
.

Рассмотрим основные
формулы и соотношения между способами
выражения концентрации растворов (см.
табл. 1 и 2).

Таблица 1

Существует множество способов измерить концентрацию раствора. Это так называемые способы выражения концентрации раствора.

Концентрация раствора — это количество вещества, находящегося в единице объема или массы раствора.

Что такое раствор

Среди окружающих нас веществ, лишь немногие представляют собой чистые вещества. Большинство являются смесями, состоящими из нескольких компонентов, которые могут находиться в одном или различных фазовых состояниях.

Смеси, имеющие однородный состав являются гомогенными, неоднородный состав – гетерогенными.

Иначе, гомогенные смеси, называют растворами, в которых одно вещество полностью растворяется в другом (растворителе). Растворитель – это тот компонент раствора, который при образовании раствора сохраняет свое фазовое состояние. Он обычно находится в наибольшем количестве.

Существуют растворы газовые, жидкие и твердые. Но более всего распространены жидкие растворы, поэтому, в данном разделе, именно на них мы сосредоточим свое внимание.

Концентрацию раствора можно охарактеризовать как:

  • качественную
  • количественную.

Качественная концентрация характеризуется такими понятиями, как разбавленный и концентрированный раствор.
С этой точки зрения растворы можно классифицировать на:

  • Насыщенные – растворы с максимально возможным количеством растворенного вещества. Количество растворяемого вещества, необходимое для получения насыщенного раствора определяет растворимость этого вещества.
  • Ненасыщенные – любые растворы, которые все еще могут растворять введенное вещество.
  • Пересыщенные – растворы, в которых растворено больше вещества, чем максимально возможное. Такие растворы очень нестабильны и в определенных условиях растворенное вещество будет выкристаллизовываться из него, до тех пор, пока не образуется насыщенный раствор.

Количественная концентрация выражается через молярную, нормальную (молярную концентрацию эквивалента), процентную, моляльную концентрации, титр и мольную долю.

Способы выражения концентрации растворов

Молярная концентрация растворов (молярность)

Наиболее распространенный способ выражения концентрации растворов –  молярная концентрация или молярность. Она определяется как количество молей n растворенного вещества в одном литре раствора V. Единица измерения молярной концентрации моль/л или моль ·л-1:

См = n/V

Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества,  децимолярным – растворено 0,1 моля вещества, сантимолярным — растворено 0,01 моля вещества, миллимолярным — растворено 0,001 моля вещества.

Термин «молярная концентрация» распространяется на любой вид частиц.

Вместо обозначения единицы измерения — моль/л, возможно такое ее обозначение – М, например, 0,2 М HCl.

Молярная концентрация эквивалента или нормальная концентрация растворов (нормальность).

Понятие эквивалентности мы уже вводили. Напомним, что эквивалент – это условная частица, которая равноценна по химическому действию одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.

Например, эквивалент KMnO4 в окислительно – восстановительной реакции в кислой среде равен 1/5 (KMnO4).

Еще одно необходимое понятие — фактор эквивалентности – это число, обозначающее, какая доля условной частицы реагирует с 1 ионом водорода в данной  кислотоно-основной реакции или с одним электроном в данной окислительно – восстановительной реакции.

Он может быть равен 1 или быть меньше 1. Фактор эквивалентности, например, для KMnO4 в окислительно – восстановительной реакции в кислой среде составляет  fэкв(KMnO4) = 1/5.

Следующее понятие – молярная масса эквивалента вещества х. Это масса 1 моля эквивалента этого вещества, равная произведению фактора эквивалентности на молярную массу вещества х:

Мэ = fэкв· М(х)

Молярная концентрация эквивалента (нормальность) определяется числом молярных масс эквивалентов на 1 литр раствора.

Эквивалент определяется в соответствии с типом рассматриваемой реакции. Единица измерения нормальной концентрации такая же как и у молярной концентрации — моль/л или моль·л-1

Сн = nэ/V

Для обозначения нормальной концентрации допускается сокращение  «н» вместо «моль/л».

Процентная концентрация раствора или массовая доля

Массовая концентрация показывает сколько единиц массы растворенного вещества содержится в 100 единицах массы раствора.

Это отношение массы m(х) вещества x к общей массе m раствора или смеси веществ:

ω(х) = m(х)/m

Массовую долю выражают в долях от единицы или процентах.

Моляльная концентрация раствора

Моляльная концентрация раствора b(x) показывает количество молей n растворенного вещества х в 1 кг. растворителя m. Единица измерения моляльной концентрации — моль/кг :

b(x) = n(x)/m

Титр раствора

Титр раствора показывает массу растворенного вещества х, содержащуюся в 1 мл. раствора. Единица измерения титра — г/мл:

Т(х) = m(х)/V,

Мольная или молярная доля

Мольная или молярная доля α(х) вещества х в растворе равна отношению количества данного вещества n(х) к общему количеству всех веществ, содержащихся в растворе Σn:

α(х) = n(х)/Σn

Между приведенными способами выражения концентраций существует взаимосвязь, которая позволяет, зная одну единицу измерения концентрации  найти (пересчитать) ее в другие единицы. Существуют формулы, позволяющие провести такой пересчет, которые, в случае необходимости, вы сможете найти в сети.  В разделе задач показано, как произвести такой пересчет, не зная формул.

Пример перевода процентной концентрации в молярную, нормальную концентрацию, моляльность, титр

Дан раствор объемом 2 л с массовой долей FeSO2% и плотностью 1029 кг/м3. Определить молярность, нормальность, моляльность и титр этого раствора раствора.

Решение.

1. Рассчитать молярную массу FeSO4:

M (FeSO4) =
56+32+16·4 = 152 г/моль

2. Рассчитать молярную массу эквивалента:

Мэ = fэкв·
М(FeSO4) = 1/2·152
= 76 г/моль

3. Найдем m раствора объемом 2 л

m = V·ρ = 2·10-3 ·1029
= 2,06 кг

4. Найдем массу 2 % раствора по формуле:

m(FeSO4) = ω(FeSO4) · mр-ра 

m(FeSO4) =
0,02·2,06 = 0,0412 кг = 41,2 г

5. Найдем молярность, которая определяется как количество молей растворенного вещества в одном литре раствора:

n = m/М

n = 41,2/152 = 0,27 моль

См = n/V

См  = 0,27/2 = 0,135 моль/л

6. Найдем нормальность:

nэ = m/Мэ

nэ = 41,2/76 = 0,54 моль

Сн = nэ/V

Сн = 0,54/2 = 0,27 моль/л

7. Найдем моляльность раствора. Моляльная концентрация равна:

b (x) = n(x)/m

Масса растворителя, т.е.
воды в растворе равна:

mH2O = 2,06-0,0412
=  2,02 кг

b
(FeSO4) = n(FeSO4)/m = 0,27/2,02 = 0,13 моль/кг

8. Найдем титр раствора, который показывает какая масса вещества содержится в 1 мл раствора:

Т(х) = m (х)/V

Т(FeSO4) = m (FeSO4)/V = 41,2/2000 = 0,0021 г/мл

Еще больше задач приведены в разделе Задачи: Концентрация растворов, Правило креста

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Мольберт или мальберт как правильно пишется
  • Молчок или молчек как пишется правильно
  • Молчиливая или молчаливая как пишется слово
  • Молчать и гибнуть образ желткова сочинение
  • Молчать и гибнуть гранатовый браслет сочинение

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии