Неравенство как пишется в математике

This article is about relations «greater than» and «less than». For the relation «not equal», see Inequation.

In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions.[1] It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities:

  • The notation a < b means that a is less than b.
  • The notation a > b means that a is greater than b.

In either case, a is not equal to b. These relations are known as strict inequalities,[1] meaning that a is strictly less than or strictly greater than b. Equivalence is excluded.

In contrast to strict inequalities, there are two types of inequality relations that are not strict:

  • The notation ab or ab means that a is less than or equal to b (or, equivalently, at most b, or not greater than b).
  • The notation ab or ab means that a is greater than or equal to b (or, equivalently, at least b, or not less than b).

The relation not greater than can also be represented by ab, the symbol for «greater than» bisected by a slash, «not». The same is true for not less than and ab.

The notation ab means that a is not equal to b; this inequation sometimes is considered a form of strict inequality.[2] It does not say that one is greater than the other; it does not even require a and b to be member of an ordered set.

In engineering sciences, less formal use of the notation is to state that one quantity is «much greater» than another,[3] normally by several orders of magnitude.

  • The notation ab means that a is much less than b.[4]
  • The notation ab means that a is much greater than b.[5]

This implies that the lesser value can be neglected with little effect on the accuracy of an approximation (such as the case of ultrarelativistic limit in physics).

In all of the cases above, any two symbols mirroring each other are symmetrical; a < b and b > a are equivalent, etc.

Properties on the number line[edit]

Inequalities are governed by the following properties. All of these properties also hold if all of the non-strict inequalities (≤ and ≥) are replaced by their corresponding strict inequalities (< and >) and — in the case of applying a function — monotonic functions are limited to strictly monotonic functions.

Converse[edit]

The relations ≤ and ≥ are each other’s converse, meaning that for any real numbers a and b:

ab and ba are equivalent.

Transitivity[edit]

The transitive property of inequality states that for any real numbers a, b, c:[6]

If ab and bc, then ac.

If either of the premises is a strict inequality, then the conclusion is a strict inequality:

If ab and b < c, then a < c.

If a < b and bc, then a < c.

Addition and subtraction[edit]

If x < y, then x + a < y + a.

A common constant c may be added to or subtracted from both sides of an inequality.[2] So, for any real numbers a, b, c:

If ab, then a + cb + c and acbc.

In other words, the inequality relation is preserved under addition (or subtraction) and the real numbers are an ordered group under addition.

Multiplication and division[edit]

If x < y and a > 0, then ax < ay.

If x < y and a < 0, then ax > ay.

The properties that deal with multiplication and division state that for any real numbers, a, b and non-zero c:

If ab and c > 0, then acbc and a/cb/c.

If ab and c < 0, then acbc and a/cb/c.

In other words, the inequality relation is preserved under multiplication and division with positive constant, but is reversed when a negative constant is involved. More generally, this applies for an ordered field. For more information, see § Ordered fields.

Additive inverse[edit]

The property for the additive inverse states that for any real numbers a and b:

If ab, then −a ≥ −b.

Multiplicative inverse[edit]

If both numbers are positive, then the inequality relation between the multiplicative inverses is opposite of that between the original numbers. More specifically, for any non-zero real numbers a and b that are both positive (or both negative):

If ab, then 1/a

1/b.

All of the cases for the signs of a and b can also be written in chained notation, as follows:

If 0 < ab, then

1/a

1/b > 0.

If ab < 0, then 0 >

1/a

1/b.

If a < 0 < b, then

1/a < 0 <

1/b.

Applying a function to both sides[edit]

Any monotonically increasing function, by its definition,[7] may be applied to both sides of an inequality without breaking the inequality relation (provided that both expressions are in the domain of that function). However, applying a monotonically decreasing function to both sides of an inequality means the inequality relation would be reversed. The rules for the additive inverse, and the multiplicative inverse for positive numbers, are both examples of applying a monotonically decreasing function.

If the inequality is strict (a < b, a > b) and the function is strictly monotonic, then the inequality remains strict. If only one of these conditions is strict, then the resultant inequality is non-strict. In fact, the rules for additive and multiplicative inverses are both examples of applying a strictly monotonically decreasing function.

A few examples of this rule are:

  • Raising both sides of an inequality to a power n > 0 (equiv., −n < 0), when a and b are positive real numbers:

    0 ≤ ab ⇔ 0 ≤ anbn.

    0 ≤ abanbn ≥ 0.

  • Taking the natural logarithm on both sides of an inequality, when a and b are positive real numbers:

    0 < ab ⇔ ln(a) ≤ ln(b).

    0 < a < b ⇔ ln(a) < ln(b).

    (this is true because the natural logarithm is a strictly increasing function.)

Formal definitions and generalizations[edit]

A (non-strict) partial order is a binary relation ≤ over a set P which is reflexive, antisymmetric, and transitive.[8] That is, for all a, b, and c in P, it must satisfy the three following clauses:

  1. aa (reflexivity)
  2. if ab and ba, then a = b (antisymmetry)
  3. if ab and bc, then ac (transitivity)

A set with a partial order is called a partially ordered set.[9] Those are the very basic axioms that every kind of order has to satisfy. Other axioms that exist for other definitions of orders on a set P include:

  1. For every a and b in P, ab or ba (total order).
  2. For all a and b in P for which a < b, there is a c in P such that a < c < b (dense order).
  3. Every non-empty subset of P with an upper bound has a least upper bound (supremum) in P (least-upper-bound property).

Ordered fields[edit]

If (F, +, ×) is a field and ≤ is a total order on F, then (F, +, ×, ≤) is called an ordered field if and only if:

  • ab implies a + cb + c;
  • 0 ≤ a and 0 ≤ b implies 0 ≤ a × b.

Both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field,[10] because −1 is the square of i and would therefore be positive.

Besides from being an ordered field, R also has the Least-upper-bound property. In fact, R can be defined as the only ordered field with that quality.[11]

Chained notation[edit]

The notation a < b < c stands for «a < b and b < c«, from which, by the transitivity property above, it also follows that a < c. By the above laws, one can add or subtract the same number to all three terms, or multiply or divide all three terms by same nonzero number and reverse all inequalities if that number is negative. Hence, for example, a < b + e < c is equivalent to ae < b < ce.

This notation can be generalized to any number of terms: for instance, a1a2 ≤ … ≤ an means that aiai+1 for i = 1, 2, …, n − 1. By transitivity, this condition is equivalent to aiaj for any 1 ≤ ijn.

When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1/2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1/2.

Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities between adjacent terms. For example, the defining condition of a zigzag poset is written as a1 < a2 > a3 < a4 > a5 < a6 > … . Mixed chained notation is used more often with compatible relations, like <, =, ≤. For instance, a < b = cd means that a < b, b = c, and cd. This notation exists in a few programming languages such as Python. In contrast, in programming languages that provide an ordering on the type of comparison results, such as C, even homogeneous chains may have a completely different meaning.[12]

Sharp inequalities[edit]

An inequality is said to be sharp if it cannot be relaxed and still be valid in general. Formally, a universally quantified inequality φ is called sharp if, for every valid universally quantified inequality ψ, if ψφ holds, then ψφ also holds. For instance, the inequality aR. a2 ≥ 0 is sharp, whereas the inequality aR. a2 ≥ −1 is not sharp.[citation needed]

Inequalities between means[edit]

There are many inequalities between means. For example, for any positive numbers a1, a2, …, an we have HGAQ, where they represent the following means of the sequence:

Harmonic mean
{displaystyle H={frac {n}{{frac {1}{a_{1}}}+{frac {1}{a_{2}}}+cdots +{frac {1}{a_{n}}}}}}
Geometric mean
G={sqrt[{n}]{a_{1}cdot a_{2}cdots a_{n}}}
Arithmetic mean
A={frac {a_{1}+a_{2}+cdots +a_{n}}{n}}
quadratic mean
Q={sqrt {frac {a_{1}^{2}+a_{2}^{2}+cdots +a_{n}^{2}}{n}}}

Cauchy–Schwarz inequality[edit]

The Cauchy–Schwarz inequality states that for all vectors u and v of an inner product space it is true that

{displaystyle |langle mathbf {u} ,mathbf {v} rangle |^{2}leq langle mathbf {u} ,mathbf {u} rangle cdot langle mathbf {v} ,mathbf {v} rangle ,}

where langle cdot ,cdot rangle is the inner product. Examples of inner products include the real and complex dot product; In Euclidean space Rn with the standard inner product, the Cauchy–Schwarz inequality is

{displaystyle left(sum _{i=1}^{n}u_{i}v_{i}right)^{2}leq left(sum _{i=1}^{n}u_{i}^{2}right)left(sum _{i=1}^{n}v_{i}^{2}right).}

Power inequalities[edit]

A «power inequality» is an inequality containing terms of the form ab, where a and b are real positive numbers or variable expressions. They often appear in mathematical olympiads exercises.

Examples[edit]

  • For any real x,

    {displaystyle e^{x}geq 1+x.}

  • If x > 0 and p > 0, then

    {displaystyle {frac {x^{p}-1}{p}}geq ln(x)geq {frac {1-{frac {1}{x^{p}}}}{p}}.}

    In the limit of p → 0, the upper and lower bounds converge to ln(x).

  • If x > 0, then

    {displaystyle x^{x}geq left({frac {1}{e}}right)^{frac {1}{e}}.}

  • If x > 0, then

    {displaystyle x^{x^{x}}geq x.}

  • If x, y, z > 0, then

    {displaystyle left(x+yright)^{z}+left(x+zright)^{y}+left(y+zright)^{x}>2.}

  • For any real distinct numbers a and b,

    {displaystyle {frac {e^{b}-e^{a}}{b-a}}>e^{(a+b)/2}.}

  • If x, y > 0 and 0 < p < 1, then

    {displaystyle x^{p}+y^{p}>left(x+yright)^{p}.}

  • If x, y, z > 0, then

    {displaystyle x^{x}y^{y}z^{z}geq left(xyzright)^{(x+y+z)/3}.}

  • If a, b > 0, then[13]

    {displaystyle a^{a}+b^{b}geq a^{b}+b^{a}.}

  • If a, b > 0, then[14]

    {displaystyle a^{ea}+b^{eb}geq a^{eb}+b^{ea}.}

  • If a, b, c > 0, then

    {displaystyle a^{2a}+b^{2b}+c^{2c}geq a^{2b}+b^{2c}+c^{2a}.}

  • If a, b > 0, then

    {displaystyle a^{b}+b^{a}>1.}

Well-known inequalities[edit]

Mathematicians often use inequalities to bound quantities for which exact formulas cannot be computed easily. Some inequalities are used so often that they have names:

  • Azuma’s inequality
  • Bernoulli’s inequality
  • Bell’s inequality
  • Boole’s inequality
  • Cauchy–Schwarz inequality
  • Chebyshev’s inequality
  • Chernoff’s inequality
  • Cramér–Rao inequality
  • Hoeffding’s inequality
  • Hölder’s inequality
  • Inequality of arithmetic and geometric means
  • Jensen’s inequality
  • Kolmogorov’s inequality
  • Markov’s inequality
  • Minkowski inequality
  • Nesbitt’s inequality
  • Pedoe’s inequality
  • Poincaré inequality
  • Samuelson’s inequality
  • Triangle inequality

Complex numbers and inequalities[edit]

The set of complex numbers ℂ with its operations of addition and multiplication is a field, but it is impossible to define any relation ≤ so that (C, +, ×, ≤) becomes an ordered field. To make (ℂ, +, ×, ≤) an ordered field, it would have to satisfy the following two properties:

  • if ab, then a + cb + c;
  • if 0 ≤ a and 0 ≤ b, then 0 ≤ ab.

Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ −a). In either case 0 ≤ a2; this means that i2 > 0 and 12 > 0; so −1 > 0 and 1 > 0, which means (−1 + 1) > 0; contradiction.

However, an operation ≤ can be defined so as to satisfy only the first property (namely, «if ab, then a + cb + c«). Sometimes the lexicographical order definition is used:

  • ab, if
    • Re(a) < Re(b), or
    • Re(a) = Re(b) and Im(a) ≤ Im(b)

It can easily be proven that for this definition ab implies a + cb + c.

Vector inequalities[edit]

Inequality relationships similar to those defined above can also be defined for column vectors. If we let the vectors {displaystyle x,yin mathbb {R} ^{n}} (meaning that {displaystyle x=(x_{1},x_{2},ldots ,x_{n})^{mathsf {T}}} and {displaystyle y=(y_{1},y_{2},ldots ,y_{n})^{mathsf {T}}}, where x_{i} and y_{i} are real numbers for i=1,ldots ,n), we can define the following relationships:

Similarly, we can define relationships for x>y, {displaystyle xgeq y}, and {displaystyle xgeqq y}. This notation is consistent with that used by Matthias Ehrgott in Multicriteria Optimization (see References).

The trichotomy property (as stated above) is not valid for vector relationships. For example, when {displaystyle x=(2,5)^{mathsf {T}}} and {displaystyle y=(3,4)^{mathsf {T}}}, there exists no valid inequality relationship between these two vectors. However, for the rest of the aforementioned properties, a parallel property for vector inequalities exists.

Systems of inequalities[edit]

Systems of linear inequalities can be simplified by Fourier–Motzkin elimination.[15]

The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them. The complexity of this algorithm is doubly exponential in the number of variables. It is an active research domain to design algorithms that are more efficient in specific cases.

See also[edit]

  • Binary relation
  • Bracket (mathematics), for the use of similar ‹ and › signs as brackets
  • Inclusion (set theory)
  • Inequation
  • Interval (mathematics)
  • List of inequalities
  • List of triangle inequalities
  • Partially ordered set
  • Relational operators, used in programming languages to denote inequality

References[edit]

  1. ^ a b «Inequality Definition (Illustrated Mathematics Dictionary)». www.mathsisfun.com. Retrieved 2019-12-03.
  2. ^ a b «Inequality». www.learnalberta.ca. Retrieved 2019-12-03.
  3. ^ Polyanin, A.D.; Manzhirov, A.V. (2006). Handbook of Mathematics for Engineers and Scientists. CRC Press. p. 29. ISBN 978-1-4200-1051-0. Retrieved 2021-11-19.
  4. ^ Weisstein, Eric W. «Much Less». mathworld.wolfram.com. Retrieved 2019-12-03.
  5. ^ Weisstein, Eric W. «Much Greater». mathworld.wolfram.com. Retrieved 2019-12-03.
  6. ^ Drachman, Bryon C.; Cloud, Michael J. (2006). Inequalities: With Applications to Engineering. Springer Science & Business Media. pp. 2–3. ISBN 0-3872-2626-5.
  7. ^ «ProvingInequalities». www.cs.yale.edu. Retrieved 2019-12-03.
  8. ^ Simovici, Dan A. & Djeraba, Chabane (2008). «Partially Ordered Sets». Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Springer. ISBN 9781848002012.
  9. ^ Weisstein, Eric W. «Partially Ordered Set». mathworld.wolfram.com. Retrieved 2019-12-03.
  10. ^ Feldman, Joel (2014). «Fields» (PDF). math.ubc.ca. Archived (PDF) from the original on 2022-10-09. Retrieved 2019-12-03.
  11. ^ Stewart, Ian (2007). Why Beauty Is Truth: The History of Symmetry. Hachette UK. p. 106. ISBN 978-0-4650-0875-9.
  12. ^ Brian W. Kernighan and Dennis M. Ritchie (Apr 1988). The C Programming Language. Prentice Hall Software Series (2nd ed.). Englewood Cliffs/NJ: Prentice Hall. ISBN 0131103628. Here: Sect.A.7.9 Relational Operators, p.167: Quote: «a<b<c is parsed as (a<b)<c»
  13. ^ Laub, M.; Ilani, Ishai (1990). «E3116». The American Mathematical Monthly. 97 (1): 65–67. doi:10.2307/2324012. JSTOR 2324012.
  14. ^ Manyama, S. (2010). «Solution of One Conjecture on Inequalities with Power-Exponential Functions» (PDF). Australian Journal of Mathematical Analysis and Applications. 7 (2): 1. Archived (PDF) from the original on 2022-10-09.
  15. ^ Gärtner, Bernd; Matoušek, Jiří (2006). Understanding and Using Linear Programming. Berlin: Springer. ISBN 3-540-30697-8.

Sources[edit]

  • Hardy, G., Littlewood J. E., Pólya, G. (1999). Inequalities. Cambridge Mathematical Library, Cambridge University Press. ISBN 0-521-05206-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Beckenbach, E. F., Bellman, R. (1975). An Introduction to Inequalities. Random House Inc. ISBN 0-394-01559-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Drachman, Byron C., Cloud, Michael J. (1998). Inequalities: With Applications to Engineering. Springer-Verlag. ISBN 0-387-98404-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Grinshpan, A. Z. (2005), «General inequalities, consequences, and applications», Advances in Applied Mathematics, 34 (1): 71–100, doi:10.1016/j.aam.2004.05.001
  • Murray S. Klamkin. «‘Quickie’ inequalities» (PDF). Math Strategies. Archived (PDF) from the original on 2022-10-09.
  • Arthur Lohwater (1982). «Introduction to Inequalities». Online e-book in PDF format.
  • Harold Shapiro (2005). «Mathematical Problem Solving». The Old Problem Seminar. Kungliga Tekniska högskolan.
  • «3rd USAMO». Archived from the original on 2008-02-03.
  • Pachpatte, B. G. (2005). Mathematical Inequalities. North-Holland Mathematical Library. Vol. 67 (first ed.). Amsterdam, The Netherlands: Elsevier. ISBN 0-444-51795-2. ISSN 0924-6509. MR 2147066. Zbl 1091.26008.
  • Ehrgott, Matthias (2005). Multicriteria Optimization. Springer-Berlin. ISBN 3-540-21398-8.
  • Steele, J. Michael (2004). The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press. ISBN 978-0-521-54677-5.

External links[edit]

  • «Inequality», Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Graph of Inequalities by Ed Pegg, Jr.
  • AoPS Wiki entry about Inequalities

This article is about relations «greater than» and «less than». For the relation «not equal», see Inequation.

In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions.[1] It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities:

  • The notation a < b means that a is less than b.
  • The notation a > b means that a is greater than b.

In either case, a is not equal to b. These relations are known as strict inequalities,[1] meaning that a is strictly less than or strictly greater than b. Equivalence is excluded.

In contrast to strict inequalities, there are two types of inequality relations that are not strict:

  • The notation ab or ab means that a is less than or equal to b (or, equivalently, at most b, or not greater than b).
  • The notation ab or ab means that a is greater than or equal to b (or, equivalently, at least b, or not less than b).

The relation not greater than can also be represented by ab, the symbol for «greater than» bisected by a slash, «not». The same is true for not less than and ab.

The notation ab means that a is not equal to b; this inequation sometimes is considered a form of strict inequality.[2] It does not say that one is greater than the other; it does not even require a and b to be member of an ordered set.

In engineering sciences, less formal use of the notation is to state that one quantity is «much greater» than another,[3] normally by several orders of magnitude.

  • The notation ab means that a is much less than b.[4]
  • The notation ab means that a is much greater than b.[5]

This implies that the lesser value can be neglected with little effect on the accuracy of an approximation (such as the case of ultrarelativistic limit in physics).

In all of the cases above, any two symbols mirroring each other are symmetrical; a < b and b > a are equivalent, etc.

Properties on the number line[edit]

Inequalities are governed by the following properties. All of these properties also hold if all of the non-strict inequalities (≤ and ≥) are replaced by their corresponding strict inequalities (< and >) and — in the case of applying a function — monotonic functions are limited to strictly monotonic functions.

Converse[edit]

The relations ≤ and ≥ are each other’s converse, meaning that for any real numbers a and b:

ab and ba are equivalent.

Transitivity[edit]

The transitive property of inequality states that for any real numbers a, b, c:[6]

If ab and bc, then ac.

If either of the premises is a strict inequality, then the conclusion is a strict inequality:

If ab and b < c, then a < c.

If a < b and bc, then a < c.

Addition and subtraction[edit]

If x < y, then x + a < y + a.

A common constant c may be added to or subtracted from both sides of an inequality.[2] So, for any real numbers a, b, c:

If ab, then a + cb + c and acbc.

In other words, the inequality relation is preserved under addition (or subtraction) and the real numbers are an ordered group under addition.

Multiplication and division[edit]

If x < y and a > 0, then ax < ay.

If x < y and a < 0, then ax > ay.

The properties that deal with multiplication and division state that for any real numbers, a, b and non-zero c:

If ab and c > 0, then acbc and a/cb/c.

If ab and c < 0, then acbc and a/cb/c.

In other words, the inequality relation is preserved under multiplication and division with positive constant, but is reversed when a negative constant is involved. More generally, this applies for an ordered field. For more information, see § Ordered fields.

Additive inverse[edit]

The property for the additive inverse states that for any real numbers a and b:

If ab, then −a ≥ −b.

Multiplicative inverse[edit]

If both numbers are positive, then the inequality relation between the multiplicative inverses is opposite of that between the original numbers. More specifically, for any non-zero real numbers a and b that are both positive (or both negative):

If ab, then 1/a

1/b.

All of the cases for the signs of a and b can also be written in chained notation, as follows:

If 0 < ab, then

1/a

1/b > 0.

If ab < 0, then 0 >

1/a

1/b.

If a < 0 < b, then

1/a < 0 <

1/b.

Applying a function to both sides[edit]

Any monotonically increasing function, by its definition,[7] may be applied to both sides of an inequality without breaking the inequality relation (provided that both expressions are in the domain of that function). However, applying a monotonically decreasing function to both sides of an inequality means the inequality relation would be reversed. The rules for the additive inverse, and the multiplicative inverse for positive numbers, are both examples of applying a monotonically decreasing function.

If the inequality is strict (a < b, a > b) and the function is strictly monotonic, then the inequality remains strict. If only one of these conditions is strict, then the resultant inequality is non-strict. In fact, the rules for additive and multiplicative inverses are both examples of applying a strictly monotonically decreasing function.

A few examples of this rule are:

  • Raising both sides of an inequality to a power n > 0 (equiv., −n < 0), when a and b are positive real numbers:

    0 ≤ ab ⇔ 0 ≤ anbn.

    0 ≤ abanbn ≥ 0.

  • Taking the natural logarithm on both sides of an inequality, when a and b are positive real numbers:

    0 < ab ⇔ ln(a) ≤ ln(b).

    0 < a < b ⇔ ln(a) < ln(b).

    (this is true because the natural logarithm is a strictly increasing function.)

Formal definitions and generalizations[edit]

A (non-strict) partial order is a binary relation ≤ over a set P which is reflexive, antisymmetric, and transitive.[8] That is, for all a, b, and c in P, it must satisfy the three following clauses:

  1. aa (reflexivity)
  2. if ab and ba, then a = b (antisymmetry)
  3. if ab and bc, then ac (transitivity)

A set with a partial order is called a partially ordered set.[9] Those are the very basic axioms that every kind of order has to satisfy. Other axioms that exist for other definitions of orders on a set P include:

  1. For every a and b in P, ab or ba (total order).
  2. For all a and b in P for which a < b, there is a c in P such that a < c < b (dense order).
  3. Every non-empty subset of P with an upper bound has a least upper bound (supremum) in P (least-upper-bound property).

Ordered fields[edit]

If (F, +, ×) is a field and ≤ is a total order on F, then (F, +, ×, ≤) is called an ordered field if and only if:

  • ab implies a + cb + c;
  • 0 ≤ a and 0 ≤ b implies 0 ≤ a × b.

Both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field,[10] because −1 is the square of i and would therefore be positive.

Besides from being an ordered field, R also has the Least-upper-bound property. In fact, R can be defined as the only ordered field with that quality.[11]

Chained notation[edit]

The notation a < b < c stands for «a < b and b < c«, from which, by the transitivity property above, it also follows that a < c. By the above laws, one can add or subtract the same number to all three terms, or multiply or divide all three terms by same nonzero number and reverse all inequalities if that number is negative. Hence, for example, a < b + e < c is equivalent to ae < b < ce.

This notation can be generalized to any number of terms: for instance, a1a2 ≤ … ≤ an means that aiai+1 for i = 1, 2, …, n − 1. By transitivity, this condition is equivalent to aiaj for any 1 ≤ ijn.

When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1/2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1/2.

Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities between adjacent terms. For example, the defining condition of a zigzag poset is written as a1 < a2 > a3 < a4 > a5 < a6 > … . Mixed chained notation is used more often with compatible relations, like <, =, ≤. For instance, a < b = cd means that a < b, b = c, and cd. This notation exists in a few programming languages such as Python. In contrast, in programming languages that provide an ordering on the type of comparison results, such as C, even homogeneous chains may have a completely different meaning.[12]

Sharp inequalities[edit]

An inequality is said to be sharp if it cannot be relaxed and still be valid in general. Formally, a universally quantified inequality φ is called sharp if, for every valid universally quantified inequality ψ, if ψφ holds, then ψφ also holds. For instance, the inequality aR. a2 ≥ 0 is sharp, whereas the inequality aR. a2 ≥ −1 is not sharp.[citation needed]

Inequalities between means[edit]

There are many inequalities between means. For example, for any positive numbers a1, a2, …, an we have HGAQ, where they represent the following means of the sequence:

Harmonic mean
{displaystyle H={frac {n}{{frac {1}{a_{1}}}+{frac {1}{a_{2}}}+cdots +{frac {1}{a_{n}}}}}}
Geometric mean
G={sqrt[{n}]{a_{1}cdot a_{2}cdots a_{n}}}
Arithmetic mean
A={frac {a_{1}+a_{2}+cdots +a_{n}}{n}}
quadratic mean
Q={sqrt {frac {a_{1}^{2}+a_{2}^{2}+cdots +a_{n}^{2}}{n}}}

Cauchy–Schwarz inequality[edit]

The Cauchy–Schwarz inequality states that for all vectors u and v of an inner product space it is true that

{displaystyle |langle mathbf {u} ,mathbf {v} rangle |^{2}leq langle mathbf {u} ,mathbf {u} rangle cdot langle mathbf {v} ,mathbf {v} rangle ,}

where langle cdot ,cdot rangle is the inner product. Examples of inner products include the real and complex dot product; In Euclidean space Rn with the standard inner product, the Cauchy–Schwarz inequality is

{displaystyle left(sum _{i=1}^{n}u_{i}v_{i}right)^{2}leq left(sum _{i=1}^{n}u_{i}^{2}right)left(sum _{i=1}^{n}v_{i}^{2}right).}

Power inequalities[edit]

A «power inequality» is an inequality containing terms of the form ab, where a and b are real positive numbers or variable expressions. They often appear in mathematical olympiads exercises.

Examples[edit]

  • For any real x,

    {displaystyle e^{x}geq 1+x.}

  • If x > 0 and p > 0, then

    {displaystyle {frac {x^{p}-1}{p}}geq ln(x)geq {frac {1-{frac {1}{x^{p}}}}{p}}.}

    In the limit of p → 0, the upper and lower bounds converge to ln(x).

  • If x > 0, then

    {displaystyle x^{x}geq left({frac {1}{e}}right)^{frac {1}{e}}.}

  • If x > 0, then

    {displaystyle x^{x^{x}}geq x.}

  • If x, y, z > 0, then

    {displaystyle left(x+yright)^{z}+left(x+zright)^{y}+left(y+zright)^{x}>2.}

  • For any real distinct numbers a and b,

    {displaystyle {frac {e^{b}-e^{a}}{b-a}}>e^{(a+b)/2}.}

  • If x, y > 0 and 0 < p < 1, then

    {displaystyle x^{p}+y^{p}>left(x+yright)^{p}.}

  • If x, y, z > 0, then

    {displaystyle x^{x}y^{y}z^{z}geq left(xyzright)^{(x+y+z)/3}.}

  • If a, b > 0, then[13]

    {displaystyle a^{a}+b^{b}geq a^{b}+b^{a}.}

  • If a, b > 0, then[14]

    {displaystyle a^{ea}+b^{eb}geq a^{eb}+b^{ea}.}

  • If a, b, c > 0, then

    {displaystyle a^{2a}+b^{2b}+c^{2c}geq a^{2b}+b^{2c}+c^{2a}.}

  • If a, b > 0, then

    {displaystyle a^{b}+b^{a}>1.}

Well-known inequalities[edit]

Mathematicians often use inequalities to bound quantities for which exact formulas cannot be computed easily. Some inequalities are used so often that they have names:

  • Azuma’s inequality
  • Bernoulli’s inequality
  • Bell’s inequality
  • Boole’s inequality
  • Cauchy–Schwarz inequality
  • Chebyshev’s inequality
  • Chernoff’s inequality
  • Cramér–Rao inequality
  • Hoeffding’s inequality
  • Hölder’s inequality
  • Inequality of arithmetic and geometric means
  • Jensen’s inequality
  • Kolmogorov’s inequality
  • Markov’s inequality
  • Minkowski inequality
  • Nesbitt’s inequality
  • Pedoe’s inequality
  • Poincaré inequality
  • Samuelson’s inequality
  • Triangle inequality

Complex numbers and inequalities[edit]

The set of complex numbers ℂ with its operations of addition and multiplication is a field, but it is impossible to define any relation ≤ so that (C, +, ×, ≤) becomes an ordered field. To make (ℂ, +, ×, ≤) an ordered field, it would have to satisfy the following two properties:

  • if ab, then a + cb + c;
  • if 0 ≤ a and 0 ≤ b, then 0 ≤ ab.

Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ −a). In either case 0 ≤ a2; this means that i2 > 0 and 12 > 0; so −1 > 0 and 1 > 0, which means (−1 + 1) > 0; contradiction.

However, an operation ≤ can be defined so as to satisfy only the first property (namely, «if ab, then a + cb + c«). Sometimes the lexicographical order definition is used:

  • ab, if
    • Re(a) < Re(b), or
    • Re(a) = Re(b) and Im(a) ≤ Im(b)

It can easily be proven that for this definition ab implies a + cb + c.

Vector inequalities[edit]

Inequality relationships similar to those defined above can also be defined for column vectors. If we let the vectors {displaystyle x,yin mathbb {R} ^{n}} (meaning that {displaystyle x=(x_{1},x_{2},ldots ,x_{n})^{mathsf {T}}} and {displaystyle y=(y_{1},y_{2},ldots ,y_{n})^{mathsf {T}}}, where x_{i} and y_{i} are real numbers for i=1,ldots ,n), we can define the following relationships:

Similarly, we can define relationships for x>y, {displaystyle xgeq y}, and {displaystyle xgeqq y}. This notation is consistent with that used by Matthias Ehrgott in Multicriteria Optimization (see References).

The trichotomy property (as stated above) is not valid for vector relationships. For example, when {displaystyle x=(2,5)^{mathsf {T}}} and {displaystyle y=(3,4)^{mathsf {T}}}, there exists no valid inequality relationship between these two vectors. However, for the rest of the aforementioned properties, a parallel property for vector inequalities exists.

Systems of inequalities[edit]

Systems of linear inequalities can be simplified by Fourier–Motzkin elimination.[15]

The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them. The complexity of this algorithm is doubly exponential in the number of variables. It is an active research domain to design algorithms that are more efficient in specific cases.

See also[edit]

  • Binary relation
  • Bracket (mathematics), for the use of similar ‹ and › signs as brackets
  • Inclusion (set theory)
  • Inequation
  • Interval (mathematics)
  • List of inequalities
  • List of triangle inequalities
  • Partially ordered set
  • Relational operators, used in programming languages to denote inequality

References[edit]

  1. ^ a b «Inequality Definition (Illustrated Mathematics Dictionary)». www.mathsisfun.com. Retrieved 2019-12-03.
  2. ^ a b «Inequality». www.learnalberta.ca. Retrieved 2019-12-03.
  3. ^ Polyanin, A.D.; Manzhirov, A.V. (2006). Handbook of Mathematics for Engineers and Scientists. CRC Press. p. 29. ISBN 978-1-4200-1051-0. Retrieved 2021-11-19.
  4. ^ Weisstein, Eric W. «Much Less». mathworld.wolfram.com. Retrieved 2019-12-03.
  5. ^ Weisstein, Eric W. «Much Greater». mathworld.wolfram.com. Retrieved 2019-12-03.
  6. ^ Drachman, Bryon C.; Cloud, Michael J. (2006). Inequalities: With Applications to Engineering. Springer Science & Business Media. pp. 2–3. ISBN 0-3872-2626-5.
  7. ^ «ProvingInequalities». www.cs.yale.edu. Retrieved 2019-12-03.
  8. ^ Simovici, Dan A. & Djeraba, Chabane (2008). «Partially Ordered Sets». Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Springer. ISBN 9781848002012.
  9. ^ Weisstein, Eric W. «Partially Ordered Set». mathworld.wolfram.com. Retrieved 2019-12-03.
  10. ^ Feldman, Joel (2014). «Fields» (PDF). math.ubc.ca. Archived (PDF) from the original on 2022-10-09. Retrieved 2019-12-03.
  11. ^ Stewart, Ian (2007). Why Beauty Is Truth: The History of Symmetry. Hachette UK. p. 106. ISBN 978-0-4650-0875-9.
  12. ^ Brian W. Kernighan and Dennis M. Ritchie (Apr 1988). The C Programming Language. Prentice Hall Software Series (2nd ed.). Englewood Cliffs/NJ: Prentice Hall. ISBN 0131103628. Here: Sect.A.7.9 Relational Operators, p.167: Quote: «a<b<c is parsed as (a<b)<c»
  13. ^ Laub, M.; Ilani, Ishai (1990). «E3116». The American Mathematical Monthly. 97 (1): 65–67. doi:10.2307/2324012. JSTOR 2324012.
  14. ^ Manyama, S. (2010). «Solution of One Conjecture on Inequalities with Power-Exponential Functions» (PDF). Australian Journal of Mathematical Analysis and Applications. 7 (2): 1. Archived (PDF) from the original on 2022-10-09.
  15. ^ Gärtner, Bernd; Matoušek, Jiří (2006). Understanding and Using Linear Programming. Berlin: Springer. ISBN 3-540-30697-8.

Sources[edit]

  • Hardy, G., Littlewood J. E., Pólya, G. (1999). Inequalities. Cambridge Mathematical Library, Cambridge University Press. ISBN 0-521-05206-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Beckenbach, E. F., Bellman, R. (1975). An Introduction to Inequalities. Random House Inc. ISBN 0-394-01559-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Drachman, Byron C., Cloud, Michael J. (1998). Inequalities: With Applications to Engineering. Springer-Verlag. ISBN 0-387-98404-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Grinshpan, A. Z. (2005), «General inequalities, consequences, and applications», Advances in Applied Mathematics, 34 (1): 71–100, doi:10.1016/j.aam.2004.05.001
  • Murray S. Klamkin. «‘Quickie’ inequalities» (PDF). Math Strategies. Archived (PDF) from the original on 2022-10-09.
  • Arthur Lohwater (1982). «Introduction to Inequalities». Online e-book in PDF format.
  • Harold Shapiro (2005). «Mathematical Problem Solving». The Old Problem Seminar. Kungliga Tekniska högskolan.
  • «3rd USAMO». Archived from the original on 2008-02-03.
  • Pachpatte, B. G. (2005). Mathematical Inequalities. North-Holland Mathematical Library. Vol. 67 (first ed.). Amsterdam, The Netherlands: Elsevier. ISBN 0-444-51795-2. ISSN 0924-6509. MR 2147066. Zbl 1091.26008.
  • Ehrgott, Matthias (2005). Multicriteria Optimization. Springer-Berlin. ISBN 3-540-21398-8.
  • Steele, J. Michael (2004). The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press. ISBN 978-0-521-54677-5.

External links[edit]

  • «Inequality», Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Graph of Inequalities by Ed Pegg, Jr.
  • AoPS Wiki entry about Inequalities

Данный материал может показаться сложным для понимания. Рекомендуется изучать его маленькими частями.

Определения и свойства

Неравенством мы будем называть два числовых или буквенных выражения, соединенных знаками >, <, ≥, ≤ или ≠.

Пример: 5 > 3

Данное неравенство говорит о том, что число 5 больше, чем число 3. Острый угол знака неравенства должен быть направлен в сторону меньшего числа. Это неравенство является верным, поскольку 5 больше, чем 3.

Если на левую чашу весов положить арбуз массой 5 кг, а на правую — арбуз массой 3 кг, то левая чаша перевесит правую, и экран весов покажет, что левая чаша тяжелее правой:

весы арбуз на левой чаше 5 кг а на правой 3 кг

Если 5 > 3, то 3 < 5. То есть левую и правую часть неравенства можно поменять местами, изменив знак неравенства на противоположный. В ситуации с весами: большой арбуз можно положить на правую чашу, а маленький арбуз на левую. Тогда правая чаша перевесит левую, и экран покажет знак <

весы арбуз на левой чаше3 кг а на правой 5 кг

Если в неравенстве 5 > 3, не трогая левую и правую часть, поменять знак на <, то получится неравенство 5 < 3. Это неравенство не является верным, поскольку число 3 не может быть больше числа 5.

Числа, которые располагаются в левой и правой части неравенства, будем называть членами этого неравенства. Например, в неравенстве 5 > 3 членами являются числа 5 и 3.

Рассмотрим некоторые важные свойства для неравенства 5 > 3.
В будущем эти свойства будут работать и для других неравенств.

Свойство 1.

Если к левой и правой части неравенства 5 > 3 прибавить или вычесть одно и то же число, то знак неравенства не изменится.

Например, прибавим к обеим частям неравенства число 4. Тогда получим:

5 больше 3 свойство 2

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем вычесть из обеих частей неравенства 5 > 3 какое-нибудь число, скажем число 2

5 больше 3 свойство 5

Видим, что левая часть по-прежнему больше правой.

Из данного свойства следует, что любой член неравенства можно перенести из одной части в другую часть, изменив знак этого члена. Знак неравенства при этом не изменится.

Например, перенесём в неравенстве 5 > 3, член 5 из левой части в правую часть, изменив знак этого члена. После переноса члена 5 в правую часть, в левой части ничего не останется, поэтому запишем там 0

0 > 3 − 5

0 > −2

Видим, что левая часть по-прежнему больше правой.


Свойство 2.

Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства не изменится.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь положительное число, скажем на число 2. Тогда получим:

5 больше 3 свойство 3

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь число. Разделим их на 2

5 больше 3 свойство 6

Видим, что левая часть по-прежнему больше правой.

Свойство 3.

Если обе части неравенства умножить или разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь отрицательное число, скажем на число −2. Тогда получим:

5 больше 3 свойство 4

Видим, что левая часть стала меньше правой. То есть знак неравенства изменился на противоположный.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь отрицательное число. Давайте разделим их на −1

5 больше 3 свойство 7

Видим, что левая часть стала меньше правой. То есть знак неравенства изменился на противоположный.

Само по себе неравенство можно понимать, как некоторое условие. Если условие выполняется, то неравенство является верным. И наоборот, если условие не выполняется, то неравенство не верно.

Например, чтобы ответить на вопрос является ли верным неравенство 7 > 3, нужно проверить выполняется ли условие «больше ли 7, чем 3». Мы знаем, что число 7 больше, чем число 3. То есть условие выполнено, а значит и неравенство 7 > 3 верно.

Неравенство 8 < 6 не является верным, поскольку не выполняется условие «8 меньше, чем 6».

Другим способом определения верности неравенства является составление разности из левой и правой части данного неравенства. Если разность положительна, то левая часть больше правой части. И наоборот, если разность отрицательна, то левая часть меньше правой части. Более точно это правило выглядит следующим образом:

Число a больше числа b, если разность a − b положительна. Число a меньше числа b, если разность a − b отрицательна.

Например, мы выяснили, что неравенство 7 > 3 является верным, поскольку число 7 больше, чем число 3. Докажем это с помощью правила, приведённого выше.

Составим разность из членов 7 и 3. Тогда получим 7 − 3 = 4. Согласно правилу, число 7 будет больше числа 3, если разность 7 − 3 окажется положительной. У нас она равна 4, то есть разность положительна. А значит число 7 больше числа 3.

Проверим с помощью разности верно ли неравенство 3 < 4. Составим разность, получим 3 − 4 = −1. Согласно правилу, число 3 будет меньше числа 4, если разность 3 − 4 окажется отрицательной. У нас она равна −1, то есть разность отрицательна. А значит число 3 меньше числа 4.

Проверим верно ли неравенство 5 > 8. Составим разность, получим 5 − 8 = −3. Согласно правилу, число 5 будет больше числа 8, если разность 5 − 8 окажется положительной. У нас разность равна −3, то есть она не является положительной. А значит число 5 не больше числа 8. Иными словами, неравенство 5 > 8 не является верным.


Строгие и нестрогие неравенства

Неравенства, содержащие знаки >, < называют строгими. А неравенства, содержащие знаки ≥, ≤  называют нестрогими.

Примеры строгих неравенства мы рассматривали ранее. Таковыми являются неравенства 5 > 3, 7 < 9.

Нестрогим, например, является неравенство 2 ≤ 5. Данное неравенство читают следующим образом: «2 меньше или равно 5».

Запись 2 ≤ 5 является неполной. Полная запись этого неравенства выглядит следующим образом:

2 < 5 или 2 = 5

Тогда становится очевидным, что неравенство 2 ≤ 5 состоит из двух условий: «два меньше пять» и «два равно пять».

Нестрогое неравенство верно в том случае, если выполняется хотя бы одно из его условий. В нашем примере верным является условие «2 меньше 5». Значит и само неравенство 2 ≤ 5 верно.

Пример 2. Неравенство 2 ≤ 2 является верным, поскольку выполняется одно из его условий, а именно 2 = 2.

Пример 3. Неравенство 5 ≤ 2 не является верным, поскольку не выполняется ни одно из его условий: ни 5 < 2 ни 5 = 2.


Двойное неравенство

Число 3 больше, чем число 2 и меньше, чем число 4. В виде неравенства это высказывание можно записать так: 2 < 3 < 4. Такое неравенство называют двойным.

Двойное неравенство может содержать знаки нестрогих неравенств. К примеру, если число 5 больше или равно, чем число 2, и меньше или равно, чем число 7, то можно записать, что 2 ≤ 5 ≤ 7

Чтобы правильно записать двойное неравенство, сначала записывают член находящийся в середине, затем член находящийся слева, затем член находящийся справа.

Например, запишем, что число 6 больше, чем число 4, и меньше, чем число 9.

Сначала записываем 6

4 m 6 m 9 step 1

Слева записываем, что это число больше, чем число 4

4 m 6 m 9 step 2

Справа записываем, что число 6 меньше, чем число 9


Неравенство с переменной

Неравенство, как и равенство может содержать переменную.

Например, неравенство x > 2 содержит переменную x. Обычно такое неравенство нужно решить, то есть выяснить при каких значениях x данное неравенство становится верным.

Решить неравенство означает найти такие значения переменной x, при которых данное неравенство становится верным.

Значение переменной, при котором неравенство становится верным, называется решением неравенства.

Неравенство > 2 становится верным при x = 3, x = 4, x = 5, x = 6 и так далее до бесконечности. Видим, что это неравенство имеет не одно решение, а множество решений.

Другими словами, решением неравенства x > 2 является множество всех чисел, бóльших 2. При этих числах неравенство будет верным. Примеры:

3 > 2

4 > 2

5 > 2

Число 2, располагающееся в правой части неравенства x > 2, будем называть границей данного неравенства. В зависимости от знака неравенства, граница может принадлежать множеству решений неравенства либо не принадлежать ему.

В нашем примере граница неравенства не принадлежит множеству решений, поскольку при подстановке числа 2 в неравенство x > 2 получается не верное неравенство 2 > 2. Число 2 не может быть больше самого себя, поскольку оно равно самому себе (2 = 2).

Неравенство x > 2 является строгим. Его можно прочитать так: «x строго больше 2″. То есть все значения, принимаемые переменной x должны быть строго больше 2. В противном случае, неравенство верным не будет.

Если бы нам было дано нестрогое неравенство ≥ 2, то решениями данного неравенства были бы все числа, которые больше 2, в том числе и само число 2. В этом неравенстве граница 2 принадлежит множеству решений неравенства, поскольку при подстановке числа 2 в неравенство x ≥ 2 получается верное неравенство 2 ≥ 2. Ранее было сказано, что нестрогое неравенство является верным, если выполняется хотя бы одно из его условий. В неравенстве 2 ≥ 2 выполняется условие 2 = 2, поэтому и само неравенство 2 ≥ 2 верно.


Как решать неравенства

Процесс решения неравенств во многом схож с процессом решения уравнений. При решении неравенств мы будем применять свойства, которые изучили вначале данного урока, такие как: перенос слагаемых из одной части неравенства в другую часть, меняя знак; умножение (или деление) обеих частей неравенства на одно и то же число.

Эти свойства позволяют получить неравенство, которое равносильно исходному. Равносильными называют неравенства, решения которых совпадают.

Решая уравнения мы выполняли тождественные преобразования до тех пор, пока в левой части уравнения не оставалась переменная, а в правой части значение этой переменной (например: x = 2, x = 5). Иными словами, заменяли исходное уравнение на равносильное ему уравнение до тех пор, пока не получалось уравнение вида x = a, где a значение переменной x. В зависимости от уравнения, корней могло быть один, два, бесконечное множество, либо не быть совсем.

А при решении неравенств мы будем заменять исходное неравенство на равносильное ему неравенство до тех пор, пока в левой части не останется переменная этого неравенства, а в правой части его граница.

Пример 1. Решить неравенство 2> 6

Итак, нужно найти такие значения x, при подстановке которых в 2> 6 получится верное неравенство.

Вначале данного урока было сказано, что если обе части неравенства разделить на какое-нибудь положительное число, то знак неравенства не изменится. Если применить это свойство к неравенству, содержащему переменную, то получится неравенство равносильное исходному.

В нашем случае, если мы разделим обе части неравенства 2> 6 на какое-нибудь положительное число, то получится неравенство, которое равносильно исходному неравенству 2> 6. 

Итак, разделим обе части неравенства на 2.

2x na 2 b 6 na 2 step 1

В левой части осталась переменная x, а правая часть стала равна 3. Получилось равносильное неравенство > 3. На этом решение завершается, поскольку в левой части осталась переменная, а в правой части граница неравенства.

Теперь можно сделать вывод, что решениями неравенства > 3 являются все числа, которые больше 3. Это числа 4, 5, 6, 7 и так далее до бесконечности. При этих значениях неравенство > 3 будет верным.

4 > 3

5 > 3

6 > 3

7 > 3

Отметим, что неравенство > 3 является строгим. «Переменная x строго больше трёх».

А поскольку неравенство > 3 равносильно исходному неравенству 2> 6, то их решения будут совпадать. Иначе говоря, значения, которые подходят неравенству > 3, будут подходить и неравенству 2> 6. Покажем это.

Возьмём, например, число 5 и подставим его сначала в полученное нами равносильное неравенство > 3, а потом в исходное 2> 6.

проверка неравенства 2x b 6

Видим, что в обоих случаях получается верное неравенство.

После того, как неравенство решено, ответ нужно записать в виде так называемого числового промежутка следующим образом:

числовой промежуток от трех до плюс бесконечности

В этом выражении говорится, что значения, принимаемые переменной x, принадлежат числовому промежутку от трёх до плюс бесконечности.

Иначе говоря, все числа, начиная от трёх до плюс бесконечности являются решениями неравенства > 3. Знак  в математике означает бесконечность.

Учитывая, что понятие числового промежутка очень важно, остановимся на нём подробнее.


Числовые промежутки

Числовым промежутком называют множество чисел на координатной прямой, которое может быть описано с помощью неравенства.

Допустим, мы хотим изобразить на координатной прямой множество чисел от 2 до 8. Для этого сначала на координатной прямой отмечаем точки с координатами 2 и 8, а затем выделяем штрихами ту область, которая располагается между координатами 2 и 8. Эти штрихи будут играть роль чисел, располагающихся между числами 2 и 8

числовой промежуток от 2 до 8 интервал

Числа 2 и 8 назовём границами числового промежутка. Рисуя числовой промежуток, точки для его границ изображают не в виде точек как таковых, а в виде кружков, которые можно разглядеть.

Границы могут принадлежать числовому промежутку либо не принадлежать ему.

Если границы не принадлежат числовому промежутку, то они изображаются на координатной прямой в виде пустых кружков.

Если границы принадлежат числовому промежутку, то кружки необходимо закрасить.

На нашем рисунке кружки были оставлены пустыми. Это означало, что границы 2 и 8 не принадлежат числовому промежутку. Значит в наш числовой промежуток будут входить все числа от 2 до 8, кроме чисел 2 и 8.

Если мы хотим включить границы 2 и 8 в числовой промежуток, то кружки необходимо закрасить:

числовой промежуток от 2 до 8 закрытые границы

В данном случае в числовой промежуток будут входить все числа от 2 до 8, включая числа 2 и 8.

На письме числовой промежуток обозначается указанием его границ с помощью круглых или квадратных скобок.

Если границы не принадлежат числовому промежутку, то границы обрамляются круглыми скобками.

Если границы принадлежат числовому промежутку, то границы обрамляются квадратными скобками.

На рисунке представлено два числовых промежутка от 2 до 8 с соответствующими обозначениями:

числовой промежуток от 2 до 6 рисунок 3

На первом рисунке числовой промежуток обозначен с помощью круглых скобок, поскольку границы 2 и 8 не принадлежат этому числовому промежутку.

На втором рисунке числовой промежуток обозначен с помощью квадратных скобок, поскольку границы 2 и 8 принадлежат этому числовому промежутку.

С помощью числовых промежутков можно записывать ответы к неравенствам. Например, ответ к двойному неравенству 2 ≤ ≤ 8 записывается так:

x ∈ [ 2 ; 8 ]

То есть сначала записывают переменную, входящую в неравенство, затем с помощью знака принадлежности указывают к какому числовому промежутку принадлежат значения этой переменной. В данном случае выражение x ∈ [ 2 ; 8 ] указывает на то, что переменная x, входящая в неравенство 2 ≤ ≤ 8, принимает все значения в промежутке от 2 до 8 включительно. При этих значениях неравенство будет верным.

Обратим внимание на то, что ответ записан с помощью квадратных скобок, поскольку границы неравенства 2 ≤ ≤ 8, а именно числа 2 и 8 принадлежат множеству решений этого неравенства.

Множество решений неравенства 2 ≤ ≤ 8 также можно изобразить с помощью координатной прямой:

числовой промежуток от 2 до 8 закрытые границы

Здесь границы числового промежутка 2 и 8 соответствуют границам неравенства 2 ≤ ≤ 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 ≤ ≤ 8.

В некоторых источниках границы, которые не принадлежат числовому промежутку, называют открытыми.

Открытыми их называют по той причине, что числовой промежуток остаётся открытым из-за того, что его границы не принадлежат этому числовому промежутку. Пустой кружок на координатной прямой математики называют выколотой точкой. Выколоть точку значит исключить её из числового промежутка или из множества решений неравенства.

А в случае, когда границы принадлежат числовому промежутку, их называют закрытыми (или замкнутыми), поскольку такие границы закрывают (замыкают) собой числовой промежуток. Закрашенный кружок на координатной прямой также говорит о закрытости границ.

Существуют разновидности числовых промежутков. Рассмотрим каждый из них.

Числовой луч

Числовым лучом называют числовой промежуток, который задаётся неравенством x ≥ a, где a — граница данного неравенства, x — решение неравенства.

Пусть = 3. Тогда неравенство x ≥ a примет вид ≥ 3. Решениями данного неравенства являются все числа, которые больше 3, включая само число 3.

Изобразим числовой луч, заданный неравенством ≥ 3, на координатной прямой. Для этого отметим на ней точку с координатой 3, а всю оставшуюся справа от неё область выделим штрихами. Выделяется именно правая часть, поскольку решениями неравенства ≥ 3 являются числа, бóльшие 3. А бóльшие числа на координатной прямой располагаются правее

числовой промежуток от 2 до бесконечности

Здесь точка 3 соответствует границе неравенства ≥ 3, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства ≥ 3.

Точка 3, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства ≥ 3 принадлежит множеству его решений.

На письме числовой луч, заданный неравенством x ≥ a, обозначается следующим образом:

[ ; +∞ )

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница числового луча принадлежит ему, а другая нет, поскольку бесконечность сама по себе границ не имеет и подразумевается, что по ту сторону нет числа, замыкающего этот числовой луч.

Учитывая то, что одна из границ числового луча закрыта, данный промежуток часто называют закрытым числовым лучом.

Запишем ответ к неравенству ≥ 3 с помощью обозначения числового луча. У нас переменная a равна 3

x ∈  [ 3 ; +∞ )

В этом выражении говорится, что переменная x, входящая в неравенство ≥ 3, принимает все значения от 3 до плюс бесконечности.

Иначе говоря, все числа от 3 до плюс бесконечности, являются решениями неравенства ≥ 3. Граница 3 принадлежит множеству решений, поскольку неравенство ≥ 3 является нестрогим.

Закрытым числовым лучом также называют числовой промежуток, который задаётся неравенством x ≤ a. Решениями неравенства x ≤ a являются все числа, которые меньше a, включая само число a

К примеру, если = 2, то неравенство примет вид ≤ 2. На координатной прямой граница 2 будет изображаться закрашенным кружком, а вся область, находящаяся слева, будет выделена штрихами. В этот раз выделяется левая часть, поскольку решениями неравенства ≤ 2 являются числа, меньшие 2. А меньшие числа на координатной прямой располагаются левее

числовой промежуток от минус бесконечности до 2

Здесь точка 2 соответствует границе неравенства ≤ 2, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства ≤ 2.

Точка 2, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства ≤ 2 принадлежит множеству его решений.

Запишем ответ к неравенству ≤ 2 с помощью обозначения числового луча:

x ∈  ( −∞ ; 2 ]

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства ≤ 2. Граница 2 принадлежит множеству решений, поскольку неравенство ≤ 2 является нестрогим.

Открытый числовой луч

Открытым числовым лучом называют числовой промежуток, который задаётся неравенством x > a, где a — граница данного неравенства, x — решение неравенства.

Открытый числовой луч во многом похож на закрытый числовой луч. Различие в том, что граница a не принадлежит промежутку, как и граница неравенства x > a не принадлежит множеству его решений.

Пусть = 3. Тогда неравенство примет вид > 3. Решениями данного неравенства являются все числа, которые больше 3, за исключением числа 3

На координатной прямой граница открытого числового луча, заданного неравенством > 3, будет изображаться в виде пустого кружка. Вся область, находящаяся справа, будет выделена штрихами:

числовой луч от 3 до бесконечности

Здесь точка 3 соответствует границе неравенства x > 3, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства x > 3. Точка 3, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x > 3 не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x > a, обозначается следующим образом:

( ; +∞ )

Круглые скобки указывают на то, что границы открытого числового луча не принадлежат ему.

Запишем ответ к неравенству x > 3 с помощью обозначения открытого числового луча:

x ∈  ( 3 ; +∞ )

В этом выражении говорится, что все числа от 3 до плюс бесконечности, являются решениями неравенства x > 3. Граница 3 не принадлежит множеству решений, поскольку неравенство x > 3 является строгим.

Открытым числовым лучом также называют числовой промежуток, который задаётся неравенством x < a, где a — граница данного неравенства, x — решение неравенства. Решениями неравенства x < a являются все числа, которые меньше a, исключая число a

К примеру, если = 2, то неравенство примет вид x < 2. На координатной прямой граница 2 будет изображаться пустым кружком, а вся область, находящаяся слева, будет выделена штрихами:

числовой промежуток от минус бесконечности до 2 открытый числовой луч

Здесь точка 2 соответствует границе неравенства x < 2, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства x < 2. Точка 2, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x < 2 не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x < a, обозначается следующим образом:

( −∞ ; a )

Запишем ответ к неравенству x < 2 с помощью обозначения открытого числового луча:

x ∈  ( −∞ ; 2 )

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства x < 2. Граница 2 не принадлежит множеству решений, поскольку неравенство x < является строгим.

Отрезок

Отрезком называют числовой промежуток, который задаётся двойным неравенством a ≤ x ≤ b, где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2, b = 8. Тогда неравенство a ≤ x ≤ b примет вид 2 ≤ ≤ 8. Решениями неравенства 2 ≤ ≤ 8 являются все числа, которые больше 2 и меньше 8. При этом границы неравенства 2 и 8 принадлежат множеству его решений, поскольку неравенство 2 ≤ ≤ 8 является нестрогим.

Изобразим отрезок, заданный двойным неравенством 2 ≤ ≤ 8 на координатной прямой. Для этого отметим на ней точки с координатами 2 и 8, а располагающуюся между ними область выделим штрихами:

числовой промежуток от 2 до 8

Здесь точки 2 и 8 соответствуют границам неравенства 2 ≤ ≤ 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 ≤ ≤ 8. Точки 2 и 8, являющиеся границами отрезка, изображены в виде закрашенных кружков, поскольку границы неравенства 2 ≤ ≤ 8 принадлежат множеству его решений.

На письме отрезок, заданный неравенством a ≤ x ≤ b обозначается следующим образом:

[ a ; b ]

Квадратные скобки с обеих сторон указывают на то, что границы отрезка принадлежат ему. Запишем ответ к неравенству 2 ≤ ≤ 8 с помощью этого обозначения:

x ∈  [ 2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8 включительно, являются решениями неравенства 2 ≤ ≤ 8.

Интервал

Интервалом называют числовой промежуток, который задаётся двойным неравенством a < x < b, где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2, b = 8. Тогда неравенство a < x < b примет вид 2 < < 8. Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая числа 2 и 8.

Изобразим интервал на координатной прямой:

числовой промежуток от 2 до 8 интервал

Здесь точки 2 и 8 соответствуют границам неравенства 2 < < 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 < < 8. Точки 2 и 8, являющиеся границами интервала, изображены в виде пустых кружков, поскольку границы неравенства 2 < < 8 не принадлежат множеству его решений.

На письме интервал, заданный неравенством a < x < b, обозначается следующим образом:

( a ; b )

Круглые скобки с обеих сторон указывают на то, что границы интервала не принадлежат ему. Запишем ответ к неравенству 2 < < 8 с помощью этого обозначения:

x ∈  ( 2 ; 8 )

В этом выражении говорится, что все числа от 2 до 8, исключая числа 2 и 8, являются решениями неравенства 2 < < 8.

Полуинтервал

Полуинтервалом называют числовой промежуток, который задаётся неравенством a ≤ x < b, где a и b — границы данного неравенства, x — решение неравенства.

Полуинтервалом также называют числовой промежуток, который задаётся неравенством a < x ≤ b.

Одна из границ полуинтервала принадлежит ему. Отсюда и название этого числового промежутка.

В ситуации с полуинтервалом a ≤ x < b ему (полуинтервалу) принадлежит левая граница.

А в ситуации с полуинтервалом a < x ≤ b ему принадлежит правая граница.

Пусть = 2, = 8. Тогда неравенство a ≤ x < b примет вид 2 ≤ x < 8. Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, включая число 2, но исключая число 8.

Изобразим полуинтервал 2 ≤ x < 8 на координатной прямой:

числовой промежуток от 2 до 8 полуинтервал 1

Здесь точки 2 и 8 соответствуют границам неравенства 2 ≤ x < 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 ≤ x < 8.

Точка 2, являющаяся левой границей полуинтервала, изображена в виде закрашенного кружка, поскольку левая граница неравенства 2 ≤ x < 8 принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде пустого кружка, поскольку правая граница неравенства 2 ≤ x < 8 не принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a ≤ x < b, обозначается следующим образом:

a ; b )

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница полуинтервала принадлежит ему, а другая нет. Запишем ответ к неравенству 2 ≤ x < 8 с помощью этого обозначения:

x ∈  [ 2 ; 8 )

В этом выражении говорится, что все числа от 2 до 8, включая число 2, но исключая число 8, являются решениями неравенства 2 ≤ x < 8.

Аналогично на координатной прямой можно изобразить полуинтервал, заданный неравенством a < x ≤ b. Пусть = 2, = 8. Тогда неравенство a < x ≤ b примет вид 2 < ≤ 8. Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая число 2, но включая число 8.

Изобразим полуинтервал 2 < ≤ 8 на координатной прямой:

числовой промежуток от 2 до 8 полуинтервал 2

Здесь точки 2 и 8 соответствуют границам неравенства 2 < ≤ 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 < ≤ 8.

Точка 2, являющаяся левой границей полуинтервала, изображена в виде пустого кружка, поскольку левая граница неравенства 2 < ≤ 8 не принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде закрашенного кружка, поскольку правая граница неравенства 2 < ≤ 8 принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a < x ≤ b, обозначается так: a ; b ]. Запишем ответ к неравенству 2 < ≤ 8 с помощью этого обозначения:

x ∈  ( 2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8, исключая число 2, но включая число 8, являются решениями неравенства 2 < ≤ 8.


Изображение числовых промежутков на координатной прямой

Числовой промежуток может быть задан с помощью неравенства или с помощью обозначения (круглых или квадратных скобок). В обоих случаях нужно суметь изобразить этот числовой промежуток на координатной прямой. Рассмотрим несколько примеров.

Пример 1. Изобразить числовой промежуток, заданный неравенством > 5

Вспоминаем, что неравенством вида a задаётся открытый числовой луч. В данном случае переменная a равна 5. Неравенство > 5 строгое, поэтому граница 5 будет изображаться в виде пустого кружкá. Нас интересуют все значения x, которые больше 5, поэтому вся область справа будет выделена штрихами:

числовой луч от 5 до бесконечности


Пример 2. Изобразить числовой промежуток (5; +∞) на координатной прямой

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью неравенства, а с помощью обозначения числового промежутка.

Граница 5 обрамлена круглой скобкой, значит она не принадлежит промежутку. Соответственно, кружок остаётся пустым.

Символ +∞ указывает, что нас интересуют все числа, которые больше 5. Соответственно, вся область справа от границы 5 выделяется штрихами:

числовой луч от 5 до бесконечности 2


Пример 3. Изобразить числовой промежуток (−5; 1) на координатной прямой.

Круглыми скобками с обеих сторон обозначаются интервалы. Границы интервала не принадлежат ему, поэтому границы −5 и 1 будут изображаться на координатной прямой в виде пустых кружков. Вся область между ними будет выделена штрихами:

числовой промежуток от -5 до 1 рисунок


Пример 4. Изобразить числовой промежуток, заданный неравенством −5 < x < 1

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью обозначения промежутка, а с помощью двойного неравенства.

Неравенством вида a < x < b, задаётся интервал. В данном случае переменная a равна −5, а переменная b равна единице. Неравенство −5 < x < 1 строгое, поэтому границы −5 и 1 будут изображаться в виде пустых кружка. Нас интересуют все значения x, которые больше −5, но меньше единицы, поэтому вся область между точками −5 и 1 будет выделена штрихами:

числовой промежуток от -5 до 1 рисунок


Пример 5. Изобразить на координатной прямой числовые промежутки [−1; 2) и [2; 5]

В этот раз изобразим на координатной прямой сразу два промежутка. Промежуток [−1; 2) является полуинтервалом, промежуток [2; 5] — отрезком.

У полуинтервала [−1; 2) левая граница принадлежит ему, а правая нет.

А у отрезка [2; 5] обе границы принадлежат ему.

Чтобы хорошо увидеть промежутки [−1; 2) и [2; 5], первый можно изобразить на верхней области, а второй на нижней. Так и поступим:

-1 2 i 2 5 на кп

Граница 2 закрашена потому что она входит в промежуток [2; 5].


Пример 6. Изобразить на координатной прямой числовые промежутки [-1; 2) и (2; 5]

Квадратной скобкой с одной стороны и круглой с другой обозначаются полуинтервалы. Одна из границ полуинтервала принадлежат ему, а другая нет.

В случае с полуинтервалом [-1; 2) левая граница будет принадлежать ему, а правая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

А в случае с полуинтервалом (2; 5] ему будет принадлежать только правая граница, а левая нет. Значит левая граница будет изображаться в виде пустого кружка. Правая же граница будет изображаться в виде закрашенного кружка.

Изобразим промежуток [-1; 2) на верхней области координатной прямой, а промежуток (2; 5] — на нижней:

-1 2 i 2 5 на кп одна граница открыта


Примеры решения неравенств

Неравенство, которое путём тождественных преобразований можно привести к виду ax > b (или к виду ax < b), будем называть линейным неравенством с одной переменной.

В линейном неравенстве ax > b, x — это переменная, значения которой нужно найти, а — коэффициент этой переменной, b — граница неравенства, которая в зависимости от знака неравенства может принадлежать множеству его решений либо не принадлежать ему.

Например, неравенство 2> 4 является неравенством вида ax > b. В нём роль переменной a играет число 2, роль переменной b (границы неравенства) играет число 4.

Неравенство 2> 4 можно сделать ещё проще. Если мы разделим обе его части на 2, то получим неравенство > 2

Получившееся неравенство > 2 также является неравенством вида ax > b, то есть линейным неравенством с одной переменной. В этом неравенстве роль переменной a играет единица. Ранее мы говорили, что коэффициент 1 не записывают. Роль переменной b играет число 2.

Отталкиваясь от этих сведений, попробуем решить несколько простых неравенств. В ходе решения мы будем выполнять элементарные тождественные преобразования с целью получить неравенство вида ax > b

Пример 1. Решить неравенство − 7 < 0

Прибавим к обеим частям неравенства число 7

− 7 + 7 < 0 + 7

В левой части останется x, а правая часть станет равна 7

< 7

Путём элементарных преобразований мы привели неравенство − 7 < 0 к равносильному неравенству < 7. Решениями неравенства < 7 являются все числа, которые меньше 7. Граница 7 не принадлежит множеству решений, поскольку неравенство строгое.

Когда неравенство приведено к виду x < a (или x > a), его можно считать уже решённым. Наше неравенство − 7 < 0 тоже приведено к такому виду, а именно к виду < 7. Но в большинстве школ требуют, чтобы ответ был записан с помощью числового промежутка и проиллюстрирован на координатной прямой.

Запишем ответ с помощью числового промежутка. В данном случае ответом будет открытый числовой луч (вспоминаем, что числовой луч задаётся неравенством x < a и обозначается как ( −∞ ; a)

x ∈  ( −∞ ; 7 )

На координатной прямой граница 7 будет изображаться в виде пустого кружка, а вся область, находящаяся слева от границы, будет выделена штрихами:

числовой промежуток от минус бесконечности до 7 открытый числовой луч

Для проверки возьмём любое число из промежутка ( −∞ ; 7 ) и подставим его в неравенство < 7 вместо переменной x. Возьмём, например, число 2

2 < 7

Получилось верное числовое неравенство, значит и решение верное. Возьмём ещё какое-нибудь число, например, число 4

4 < 7

Получилось верное числовое неравенство. Значит решение верное.

А поскольку неравенство < 7 равносильно исходному неравенству x − 7 < 0, то решения неравенства < 7 будут совпадать с решениями неравенства x − 7 < 0. Подставим те же тестовые значения 2 и 4 в неравенство x − 7 < 0

2 − 7 < 0

−5 < 0 — Верное неравенство

4 − 7 < 0

−3 < 0 Верное неравенство


Пример 2. Решить неравенство −4x < −16

Разделим обе части неравенства на −4. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

-4x меньге -16 шаг 1

Мы привели неравенство −4x < −16 к равносильному неравенству > 4. Решениями неравенства > 4 будут все числа, которые больше 4. Граница 4 не принадлежит множеству решений, поскольку неравенство строгое.

Изобразим множество решений неравенства > 4 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от 4 до бесконечности

промежуток от 4 до бесконечности


Пример 3. Решить неравенство 3y + 1 > 1 + 6y

Перенесём 6y из правой части в левую часть, изменив знак. А 1 из левой части перенесем в правую часть, опять же изменив знак:

3− 6y> 1 − 1

Приведём подобные слагаемые:

−3y > 0

Разделим обе части на −3. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

3y na 3 b 0

Решениями неравенства < 0 являются все числа, меньшие нуля. Изобразим множество решений неравенства < 0 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до нуля

промежуток от бесконечности до 0


Пример 4. Решить неравенство 5(− 1) + 7 ≤ 1 − 3(+ 2)

Раскроем скобки в обеих частях неравенства:

нер-во 5x-5 -7 1-3x-6 шаг 1

Перенесем −3x из правой части в левую часть, изменив знак. Члены −5 и 7 из левой части перенесем в правую часть, опять же изменив знаки:

нер-во 5x-5 -7 1-3x-6 шаг 2

Приведем подобные слагаемые:

нер-во 5x-5 -7 1-3x-6 шаг 3

Разделим обе части получившегося неравенства на 8

нер-во 5x-5 -7 1-3x-6 шаг 4

Решениями неравенства нер-во 5x-5 -7 1-3x-6 шаг 5 являются все числа, которые меньше минус 7 na 8. Граница минус 7 na 8 принадлежит множеству решений, поскольку неравенство нер-во 5x-5 -7 1-3x-6 шаг 5 является нестрогим.

Изобразим множество решений неравенства нер-во 5x-5 -7 1-3x-6 шаг 5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой промежуток от минус бесконечности до 7 8

промежуток от бесконечности до 7 8


Пример 5. Решить неравенство 5 plus 6x na 2 more 3

Умножим обе части неравенства на 2. Это позволит избавиться от дроби в левой части:

5 plus 6x na 2 more 3 ste 2

Теперь перенесем 5 из левой части в правую часть, изменив знак:

5 plus 6x na 2 more 3 step 3

После приведения подобных слагаемых, получим неравенство 6> 1. Разделим обе части этого неравенства на 6. Тогда получим:

5 plus 6x na 2 more 3 step 4

Решениями неравенства x more 1 na 6 являются все числа, которые больше одна шестая. Граница одна шестая не принадлежит множеству решений, поскольку неравенство x more 1 na 6 является строгим.

Изобразим множество решений неравенства x more 1 na 6 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до 1 na 6

числовой луч 1 na 6 до плюс бесконечности


Пример 6. Решить неравенство x na 2 plus x na 3 less 5

Умножим обе части на 6

x na 2 plus x na 3 less 5 step 2

После приведения подобных слагаемых, получим неравенство 5< 30. Разделим обе части этого неравенства на 5

x na 2 plus x na 3 less 5 step 3

Решениями неравенства < 6 являются все числа, которые меньше 6. Граница 6 не принадлежит множеству решений, поскольку неравенство является < 6 строгим.

Изобразим множество решений неравенства < 6 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до 6

промежуток от минус бесконечности до 6


Пример 7. Решить неравенство x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4

Умножим обе части неравенства на 10

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 2

В получившемся неравенстве раскроем скобки в левой части:

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 3

Перенесем члены без x в правую часть

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 4

Приведем подобные слагаемые в обеих частях:

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 5

Разделим обе части получившегося неравенства на 10

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 6

Решениями неравенства ≤ 3,5 являются все числа, которые меньше 3,5. Граница 3,5 принадлежит множеству решений, поскольку неравенство является ≤ 3,5 нестрогим.

Изобразим множество решений неравенства ≤ 3,5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до 35 na 10


Пример 8. Решить неравенство 4 < 4< 20

Чтобы решить такое неравенство, нужно переменную x освободить от коэффициента 4. Тогда мы сможем сказать в каком промежутке находится решение данного неравенства.

Чтобы освободить переменную x от коэффициента, можно разделить член 4x на 4. Но правило в неравенствах таково, что если мы делим член неравенства на какое-нибудь число, то тоже самое надо сделать и с остальными членами, входящими в данное неравенство. В нашем случае на 4 нужно разделить все три члена неравенства 4 < 4< 20

4x bolshe 4 i menshe 20

Решениями неравенства 1 < < 5 являются все числа, которые больше 1 и меньше 5. Границы 1 и 5 не принадлежат множеству решений, поскольку неравенство 1 < < 5 является строгим.

Изобразим множество решений неравенства 1 < < 5 на координатной прямой и запишем ответ в виде числового промежутка:

интервал от 1 до 5

промежуток от 1 до 5


Пример 9. Решить неравенство −1 ≤ −2≤ 0

Разделим все члены неравенства на −2

-1 m r -2x m r 0 step 1

Получили неравенство 0,5 ≥ ≥ 0. Двойное неравенство желательно записывать так, чтобы меньший член располагался слева, а больший справа. Поэтому перепишем наше неравенство следующим образом:

0 ≤ ≤ 0,5

Решениями неравенства 0 ≤ ≤ 0,5 являются все числа, которые больше 0 и меньше 0,5. Границы 0 и 0,5 принадлежат множеству решений, поскольку неравенство 0 ≤ ≤ 0,5 является нестрогим.

Изобразим множество решений неравенства 0 ≤ ≤ 0,5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой промежуток от 0 до 05

промежуток от 0 до 05


Пример 10. Решить неравенство x minus 1-x na 6 m r 2x plus 1 na 2 step 1

Умножим обе неравенства на 12

x minus 1-x na 6 m r 2x plus 1 na 2 step 2

Раскроем скобки в получившемся неравенстве и приведем подобные слагаемые:

x minus 1-x na 6 m r 2x plus 1 na 2 step 3

Разделим обе части получившегося неравенства на 2

x minus 1-x na 6 m r 2x plus 1 na 2 step 4

Решениями неравенства ≤ −0,5 являются все числа, которые меньше −0,5. Граница −0,5 принадлежит множеству решений, поскольку неравенство ≤ −0,5 является нестрогим.

Изобразим множество решений неравенства ≤ −0,5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до -05

промежуток от минус бесконечности до -05


Пример 11. Решить неравенство -1 m r 6 - a m r 1 пример

Умножим все части неравенства на 3

Теперь из каждой части получившегося неравенства вычтем 6

-1 m r 6 - a m r 1 шаг 3

Каждую часть получившегося неравенства разделим на −1. Не забываем, что при делении всех частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

-1 m r 6 - a m r 1 шаг 4

Решениями неравенства 3 ≤ a ≤ 9 являются все числа, которые больше 3 и меньше 9. Границы 3 и 9 принадлежат множеству решений, поскольку неравенство 3 ≤ a ≤ 9 является нестрогим.

Изобразим множество решений неравенства 3 ≤ a ≤ 9 на координатной прямой и запишем ответ в виде числового промежутка:

отрезок от 3 до 9

промежуток от 3 до 9


Когда решений нет

Существуют неравенства, которые не имеют решений. Таковым, например, является неравенство 6> 2(3+ 1). В процессе решения этого неравенства мы придём к тому, что знак неравенства > не оправдает своего местоположения. Давайте посмотрим, как это выглядит.

Раскроем скобки в правой части данного неравенство, получим 6> 6+ 2. Перенесем 6x из правой части в левую часть, изменив знак, получим 6− 6> 2. Приводим подобные слагаемые и получаем неравенство 0 > 2, которое не является верным.

Для наилучшего понимания, перепишем приведение подобных слагаемых в левой части следующим образом:

0x b 2

Получили неравенство 0> 2. В левой части располагается произведение, которое будет равно нулю при любом x. А ноль не может быть больше, чем число 2. Значит неравенство 0> 2 не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0> 2, то не имеет решений и исходное неравенство 6> 2(3+ 1).


Пример 2. Решить неравенство 12x - 1 na 3 m 4x -3 step 1

Умножим обе части неравенства на 3

12x - 1 na 3 m 4x -3 step 2

В получившемся неравенстве перенесем член 12x из правой части в левую часть, изменив знак. Затем приведём подобные слагаемые:

12x - 1 na 3 m 4x -3 step 312x - 1 na 3 m 4x -3 step 312x - 1 na 3 m 4x -3 step 312x - 1 na 3 m 4x -3 step 3

Правая часть получившегося неравенства при любом x будет равна нулю. А ноль не меньше, чем −8. Значит неравенство 0< −8 не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0< −8, то не имеет решений и исходное неравенство 12x - 1 na 3 m 4x -3 step 1.

Ответ: решений нет.


Когда решений бесконечно много

Существуют неравенства, имеющие бесчисленное множество решений. Такие неравенства становятся верными при любом x.

Пример 1. Решить неравенство 5(3− 9) < 15x

Раскроем скобки в правой части неравенства:

15x - 45 m 15x step 1

Перенесём 15x из правой части в левую часть, изменив знак:

15x - 45 m 15x step 2

Приведем подобные слагаемые в левой части:

15x - 45 m 15x step 4

Получили неравенство 0x < 45. В левой части располагается произведение, которое будет равно нулю при любом x. А ноль меньше, чем 45. Значит решением неравенства 0x < 45 является любое число.

А если приведённое равносильное неравенство 0x < 45 имеет бесчисленное множество решений, то и исходное неравенство 5(3− 9) < 15x имеет те же решения.

Ответ можно записать в виде числового промежутка:

x ∈ ( −∞; +∞ )

В этом выражении говорится, что решениями неравенства 5(3− 9) < 15x являются все числа от минус бесконечности до плюс бесконечности.


Пример 2. Решить неравенство: 31(2+ 1) − 12> 50x

Раскроем скобки в левой части неравенства:

62x plus 31 - 12x b 50x step 1

Перенесём 50x из правой части в левую часть, изменив знак. А член 31 из левой части перенесём в правую часть, опять же изменив знак:

62x plus 31 - 12x b 50x step 2

Приведём подобные слагаемые:

62x plus 31 - 12x b 50x step 3

Получили неравенство 0x > −31. В левой части располагается произведение, которое будет равно нулю при любом x. А ноль больше, чем −31. Значит решением неравенства 0x < −31 является любое число.

А если приведённое равносильное неравенство 0x > −31 имеет бесчисленное множество решений, то и исходное неравенство 31(2+ 1) − 12> 50x имеет те же решения.

Запишем ответ в виде числового промежутка:

x ∈ ( −∞; +∞ )


Задания для самостоятельного решения

Задание 1. Решите неравенство:

Задание 2. Решите неравенство:

Задание 3. Решите неравенство:

Задание 4. Решите неравенство:

Задание 5. Решите неравенство:

Задание 6. Решите неравенство:

Задание 7. Решите неравенство:

Задание 8. Решите неравенство:

Задание 9. Решите неравенство:

Задание 10. Решите неравенство:

Задание 11. Решите неравенство:

Задание 12. Решите неравенство:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже



Математика, 1 класс

Урок 11. Равенство. Неравенство. Знаки «>», «<», «=»

Перечень вопросов, рассматриваемых на уроке:

1. Определять место знаков больше, меньше, равно

2. Писать знаки >,<,=

3. Называть равенство, неравенство.

Глоссарий

Равенство – это когда одно количество равно другому.

Неравенство – это когда одна сторона выражения не равна второй.

Если носик галочки смотрит направо — это знак больше (>).

Если носик галочки смотри налево – это знак меньше (<).

Знак равенства (=) в математике, в логике и других точных науках — символ, который пишется между двумя одинаковыми по своему значению выражениями.

Ключевые слова

Знак >; знак <; знак =

Основная литература:

1.Моро М. И., Волкова С. И., Степанова С. В. Математика. Учебник. 1 кл. В 2 ч. М.: Просвещение, 2017.

Дополнительная литература:

1. Моро М. И., Волкова С. И. Математика. Рабочая тетрадь. 1 кл. В 2 ч. пособие для общеобразовательных организаций. — М.: Просвещение, 201 с.

Основное содержание урока

1. Сегодня мы отправляемся в магазин, чтобы купить Оле и Ане к уроку технологии все учебные принадлежности.

Для урока понадобится 1 пачка пластилина и две пачки картона.

По сколько пачек пластилина получили девочки? ( по одной пачке)

Можно сказать, что девочки получили одинаковое количество пластилина.

2. Для технологии необходимо две пачки картона.

По сколько пачек картона получили девочки? (по две пачки)

Можно сказать, что девочки получили одинаковое количество картона.

3. В математике используется специальный значок, чтобы записать, что число предметов одинаковое.

Можно записать цифрами и использовать для слов «одинаково», «равно» специальный значок «=»,1 = 1

=

2 = 2 (аналогично)

Две палочки напишут дети,

И что получится в ответе,

Ведь каждый выучил давно,

Как пишется тот знак: РАВНО!

Такие записи называются равенствами.

Это равенства. Записать равенства можно с помощью знака «=».

Докажем, что одинаковое количество предметов с помощью стрелочек образует пары.

На схеме каждый предмет обозначим кружочком и образуем пары. Покажем стрелочкой.

Оля Аня

Лишних фигур не осталось. Значит, поровну, одинаково.

Можно записать 1 = 1

6. 2 + 1 = 3

Как можно прочитать эту запись?

(Числовое равенство)

Под этим высказыванием понимают два числовых выражения, которые стоят по обе стороны от знака « =».

Обе части записи равны между собой.

  1. В каком количестве нужно было для урока картона? А пластилина?

Чтобы узнать, каких предметов потребовалось больше или меньше, используют специальные значки «>», « <».

Если с какой- то стороны больше или меньше, то запись будет называться «неравенство».

Два больше одного.

Картон Пластилин

Если слева больше число, чем справа, то используют знак «>».

2 > 1

  1. А если число слева меньше, чем справа, то ставим знак меньше «<».

1 < 2

  1. Такие записи называются неравенства:

4 > 3, 4 < 5

Разбор типового тренировочного задания

Выберите нужный знак и распределите на две группы.

Дополните каждую группу своими записями.

6 (=, >, <) 9

1 (=, >, <) 3

2 (=, >, <) 2

3 (=, >, <) 3

Правильный ответ:

Равенства: 2 = 2, 3 = 3

Неравенства: 6 < 9, 1 < 3

  • Нерабочего дня как пишется
  • Неработающий механизм как пишется
  • Непьющий как пишется слитно или раздельно
  • Непутевый человек как пишется
  • Непутевый муж рассказ на дзен продолжение