Нод на английском как пишется


На основании Вашего запроса эти примеры могут содержать грубую лексику.


На основании Вашего запроса эти примеры могут содержать разговорную лексику.

Перевод «наибольший общий делитель» на английский


За одну операцию вместо двух чисел, не делящих друг друга, можно написать их наибольший общий делитель и их наименьшее общее кратное.



One can erase any two distinct integers and write their greatest common divisor and least common multiple instead.


Основы теории делимости: наибольший общий делитель, наименьшее общее кратное, алгоритм Евклида.


Даны два целых положительных числа, найти их наибольший общий делитель (НОД).


Если числа а и Ь неотрицательны, тогда с помощью расширенного алгоритма Евклида мы можем найти их наибольший общий делитель g, а также такие коэффициенты и, что



If a and b are positive integers, we can find their GCD g using Extended Euclidean algorithm, along with и, so


Эта процедура работает потому, что на каждой стадии происходит замена первоначальной пары чисел более простой парой (одно из чисел уменьшается), которая тем не менее имеет тот же наибольший общий делитель.



This procedure works because at each stage it replaces the original pair of numbers by a simpler pair (one of the numbers is smaller) that has the same greatest common divisor.


Выйти.Эти упражнения позволят проверить, как вы умеете вычислять наибольший общий делитель (НОД) двух натуральных чисел.



These exercises will help to check how you are able to find greatest common divisor (GCD) of two nomber.


Вычислим наибольший общий делитель набора чисел кё.


Найденное число и есть наибольший общий делитель исходной пары.


Все примитивные решения можно получить, разделив а, Ь и с на наибольший общий делитель.


спросить, чему равен наибольший общий делитель двух этих чисел.


Пусть d есть наибольший общий делитель чисел а и b.


Нам надо было найти наибольший общий делитель (НОД) для 11 пар чисел.


Но помните, что мы можем так сделать только потому, что наибольший общий делитель А и Р равен 1.


Это взаимно простые числа, поскольку у 5 и 504 наибольший общий делитель равен 1 (требование e<n также выполнено).



This is a relatively prime number, because 5 and 504 have a common divider: 1 (the assumption e<n has been fulfilled).


Поэтому можно говорить о таком правиле: если одно из чисел равно нулю, то их наибольший общий делитель равен второму числу.



Which gives us a simple rule: if one of the numbers is zero, the greatest common divisor is the other number.


Другими словами, наибольший общий делитель (х, у, z) равен числу один.


Соотношение Безу — это теорема, утверждающая, что наибольший общий делитель двух чисел может быть записан как линейная комбинация этих чисел.



Bézout’s identity is a theorem asserting that the greatest common divisor of two numbers may be written as a linear combination of these numbers.


Найдите наибольший общий делитель числителя и знаменателя и сократите дробь.


«Примитивный» означает, что наибольший общий делитель трёх длин сторон равен 1.

Ничего не найдено для этого значения.

Результатов: 38. Точных совпадений: 38. Затраченное время: 62 мс

Documents

Корпоративные решения

Спряжение

Синонимы

Корректор

Справка и о нас

Индекс слова: 1-300, 301-600, 601-900

Индекс выражения: 1-400, 401-800, 801-1200

Индекс фразы: 1-400, 401-800, 801-1200

наибольший общий делитель

  • 1
    наибольший общий делитель

    1. greatest common divisor
    2. gcd

    Русско-английский словарь нормативно-технической терминологии > наибольший общий делитель

  • 2
    наибольший общий делитель

    Русско-английский большой базовый словарь > наибольший общий делитель

  • 3
    наибольший общий делитель

    3) Mathematics: GCD , greatest common factor , greatest common measure, highest common factor

    Универсальный русско-английский словарь > наибольший общий делитель

  • 4
    наибольший общий делитель

    greatest common divisor, GCD

    Русско-английский физический словарь > наибольший общий делитель

  • 5
    наибольший общий делитель

    greatest common factor, greatest prime factor, greatest common divisor

    Русско-английский словарь по электронике > наибольший общий делитель

  • 6
    наибольший общий делитель

    greatest common factor, greatest prime factor, greatest common divisor

    Русско-английский словарь по радиоэлектронике > наибольший общий делитель

  • 7
    наибольший общий делитель

    Русско-английский словарь по строительству и новым строительным технологиям > наибольший общий делитель

  • 8
    наибольший общий делитель

    Русско-английский словарь по вычислительной технике и программированию > наибольший общий делитель

  • 9
    наибольший общий делитель

    greatest common divisor, аббр. gcd

    Русско-английский словарь Wiktionary > наибольший общий делитель

  • 10
    наибольший общий делитель

    greatest common divisor, greatest common factor

    Русско-английский математический словарь > наибольший общий делитель

  • 11
    наибольший общий делитель

    greatest common measure, largest common divisor, greatest common factor, greatest prime factor, highest common factor

    Русско-английский научно-технический словарь Масловского > наибольший общий делитель

  • 12
    наибольший общий делитель

    Русско-английский политехнический словарь > наибольший общий делитель

  • 13
    наибольший общий делитель

    Русско-английский синонимический словарь > наибольший общий делитель

  • 14
    наибольший общий делитель

    Русско-английский словарь по математике > наибольший общий делитель

  • 15
    общий делитель

    1. common measure

    2. common divisor

    Русско-английский научный словарь > общий делитель

  • 16
    делитель

    1. м. мат. divisor

    2. м. divider

    Русско-английский большой базовый словарь > делитель

  • 17
    делитель

    Русско-английский физический словарь > делитель

  • 18
    наибольший делитель

    Русско-английский научный словарь > наибольший делитель

  • 19
    наибольший

    1. the greatest

    2. the largest

    3. maximum

    4. most

    Синонимический ряд:

    максимальный (прил.) максимальный; предельный; самый большой

    Антонимический ряд:

    Русско-английский большой базовый словарь > наибольший

  • 20
    наибольший

    Русско-английский научный словарь > наибольший

Страницы

  • Следующая →
  • 1
  • 2
  • 3

См. также в других словарях:

  • НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ — наибольшее из целых положительных чисел, на которое делится без остатка каждое из данных целых чисел. Напр., наибольший общий делитель 60, 84 и 96 есть 12 …   Большой Энциклопедический словарь

  • наибольший общий делитель — НОД — [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=23]] Тематики защита информации Синонимы НОД EN greatest common divisorgcd …   Справочник технического переводчика

  • Наибольший общий делитель — Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей.[1] Пример: для чисел 70 и 105 наибольший общий делитель равен 35. Наибольший общий делитель существует и однозначно определён, если хотя бы… …   Википедия

  • наибольший общий делитель — наибольшее из целых положительных чисел, на которое делится без остатка каждое из данных целых чисел. Например, наибольший общий делитель 60, 84 и 96 есть 12. * * * НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ, наибольшее из целых… …   Энциклопедический словарь

  • НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ — наибольший из общих делителей целых, в частности натуральных, чисел . Если данные числа не все равны нулю, то такой делитель существует. Н. о. д. чисел обычно обозначают символом Свойства Н. о. д.: 1) Н. о. д. чисел делится на любой общий… …   Математическая энциклопедия

  • Наибольший общий делитель —         двух или нескольких натуральных чисел наибольшее из чисел, на которые делится каждое из данных чисел. Например, Н. о. д. 45 и 72 есть 9, Н. о. д. 60, 84, 96 и 120 есть 12. Н. о. д. пользуются при сокращении дробей: наибольшее число, на… …   Большая советская энциклопедия

  • НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ — наибольшее из целых положит. чисел, на к рое делится без остатка каждое из данных целых чисел. Напр., И.о. д. 60, 84 и 96 есть 12 …   Естествознание. Энциклопедический словарь

  • Делитель (значения) — Делитель (математика) Наибольший общий делитель Делитель нуля в абстрактной алгебре Делитель единицы Делитель напряжения Делитель тока Делитель мощности Делитель комбинационное логическое устройство в электронике Делитель потока дроссельный или… …   Википедия

  • ДЕЛИТЕЛЬ — ДЕЛИТЕЛЬ, я, муж. Число или величина, на к рую делится делимое. Наибольший общий д. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • наибольший — ▲ самый ↑ большой наибольший самый большой (# общий делитель). наивысший. высший. максимальный …   Идеографический словарь русского языка

  • ОБЩИЙ — общая, общее (кратк. формы общ, обща, обще книжн., мало употр.). 1. Коллективный, совместный с другими, принадлежащий всем. «…Национальная общность немыслима без общего языка…» Сталин. Общее мнение. Общее решение. Общее дело. Общая кухня. Общая… …   Толковый словарь Ушакова

In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted {displaystyle gcd(x,y)}. For example, the GCD of 8 and 12 is 4, that is, {displaystyle gcd(8,12)=4}.[1][2]

In the name «greatest common divisor», the adjective «greatest» may be replaced by «highest», and the word «divisor» may be replaced by «factor», so that other names include highest common factor (hcf), etc.[3][4][5][6] Historically, other names for the same concept have included greatest common measure.[7]

This notion can be extended to polynomials (see Polynomial greatest common divisor) and other commutative rings (see § In commutative rings below).

Overview[edit]

Definition[edit]

The greatest common divisor (GCD) of two nonzero integers a and b is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer. The GCD of a and b is generally denoted gcd(a, b).[8]

This definition also applies when one of a and b is zero. In this case, the GCD is the absolute value of the non zero integer: gcd(a, 0) = gcd(0, a) = |a|. This case is important as the terminating step of the Euclidean algorithm.

The above definition cannot be used for defining gcd(0, 0), since 0 × n = 0, and zero thus has no greatest divisor. However, zero is its own greatest divisor if greatest is understood in the context of the divisibility relation, so gcd(0, 0) is commonly defined as 0. This preserves the usual identities for GCD, and in particular Bézout’s identity, namely that gcd(a, b) generates the same ideal as {a, b}.[9][10][11] This convention is followed by many computer algebra systems.[12] Nonetheless, some authors leave gcd(0, 0) undefined.[13]

The GCD of a and b is their greatest positive common divisor in the preorder relation of divisibility. This means that the common divisors of a and b are exactly the divisors of their GCD. This is commonly proved by using either Euclid’s lemma, the fundamental theorem of arithmetic, or the Euclidean algorithm. This is the meaning of «greatest» that is used for the generalizations of the concept of GCD.

Example[edit]

The number 54 can be expressed as a product of two integers in several different ways:

{displaystyle 54times 1=27times 2=18times 3=9times 6.}

Thus the complete list of divisors of 54 is {displaystyle 1,2,3,6,9,18,27,54}.
Similarly, the divisors of 24 are {displaystyle 1,2,3,4,6,8,12,24}.
The numbers that these two lists have in common are the common divisors of 54 and 24, that is,

{displaystyle 1,2,3,6.}

Of these, the greatest is 6, so it is the greatest common divisor:

{displaystyle gcd(54,24)=6.}

Computing all divisors of the two numbers in this way is usually not efficient, especially for large numbers that have many divisors. Much more efficient methods are described in § Calculation.

Coprime numbers[edit]

Two numbers are called relatively prime, or coprime, if their greatest common divisor equals 1.[14] For example, 9 and 28 are coprime.

A geometric view[edit]

"Tall, slender rectangle divided into a grid of squares. The rectangle is two squares wide and five squares tall."

A 24-by-60 rectangle is covered with ten 12-by-12 square tiles, where 12 is the GCD of 24 and 60. More generally, an a-by-b rectangle can be covered with square tiles of side length c only if c is a common divisor of a and b.

For example, a 24-by-60 rectangular area can be divided into a grid of: 1-by-1 squares, 2-by-2 squares, 3-by-3 squares, 4-by-4 squares, 6-by-6 squares or 12-by-12 squares. Therefore, 12 is the greatest common divisor of 24 and 60. A 24-by-60 rectangular area can thus be divided into a grid of 12-by-12 squares, with two squares along one edge (24/12 = 2) and five squares along the other (60/12 = 5).

Applications[edit]

Reducing fractions[edit]

The greatest common divisor is useful for reducing fractions to the lowest terms.[15] For example, gcd(42, 56) = 14, therefore,

{frac {42}{56}}={frac {3cdot 14}{4cdot 14}}={frac {3}{4}}.

Least common multiple[edit]

The least common multiple of two integers that are not both zero can be computed from their greatest common divisor, by using the relation

operatorname{lcm}(a,b)=frac{|acdot b|}{operatorname{gcd}(a,b)}.

Calculation[edit]

Using prime factorizations[edit]

Greatest common divisors can be computed by determining the prime factorizations of the two numbers and comparing factors. For example, to compute gcd(48, 180), we find the prime factorizations 48 = 24 · 31 and 180 = 22 · 32 · 51; the GCD is then 2min(4,2) · 3min(1,2) · 5min(0,1) = 22 · 31 · 50 = 12, as shown in the Venn diagram. The corresponding LCM is then
2max(4,2) · 3max(1,2) · 5max(0,1) =
24 · 32 · 51 = 720.

Least common multiple.svg[16]

In practice, this method is only feasible for small numbers, as computing prime factorizations takes too long.

Euclid’s algorithm[edit]

The method introduced by Euclid for computing greatest common divisors is based on the fact that, given two positive integers a and b such that a > b, the common divisors of a and b are the same as the common divisors of ab and b.

So, Euclid’s method for computing the greatest common divisor of two positive integers consists of replacing the larger number by the difference of the numbers, and repeating this until the two numbers are equal: that is their greatest common divisor.

For example, to compute gcd(48,18), one proceeds as follows:

{displaystyle {begin{aligned}gcd(48,18)quad &to quad gcd(48-18,18)=gcd(30,18)&&to quad gcd(30-18,18)=gcd(12,18)\&to quad gcd(12,18-12)=gcd(12,6)&&to quad gcd(12-6,6)=gcd(6,6).end{aligned}}}

So gcd(48, 18) = 6.

This method can be very slow if one number is much larger than the other. So, the variant that follows is generally preferred.

Euclidean algorithm[edit]

Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2.

A more efficient method is the Euclidean algorithm, a variant in which the difference of the two numbers a and b is replaced by the remainder of the Euclidean division (also called division with remainder) of a by b.

Denoting this remainder as a mod b, the algorithm replaces (a, b) by (b, a mod b) repeatedly until the pair is (d, 0), where d is the greatest common divisor.

For example, to compute gcd(48,18), the computation is as follows:

{displaystyle {begin{aligned}gcd(48,18)quad &to quad gcd(18,48{bmod {1}}8)=gcd(18,12)\&to quad gcd(12,18{bmod {1}}2)=gcd(12,6)\&to quad gcd(6,12{bmod {6}})=gcd(6,0).end{aligned}}}

This again gives gcd(48, 18) = 6.

Lehmer’s GCD algorithm[edit]

Lehmer’s algorithm is based on the observation that the initial quotients produced by Euclid’s algorithm can be determined based on only the first few digits; this is useful for numbers that are larger than a computer word. In essence, one extracts initial digits, typically forming one or two computer words, and runs Euclid’s algorithms on these smaller numbers, as long as it is guaranteed that the quotients are the same with those that would be obtained with the original numbers. The quotients are collected into a small 2-by-2 transformation matrix (a matrix of single-word integers) to reduce the original numbers. This process is repeated until numbers are small enough that the binary algorithm (see below) is more efficient.

This algorithm improves speed, because it reduces the number of operations on very large numbers, and can use hardware arithmetic for most operations. In fact, most of the quotients are very small, so a fair number of steps of the Euclidean algorithm can be collected in a 2-by-2 matrix of single-word integers. When Lehmer’s algorithm encounters a quotient that is too large, it must fall back to one iteration of Euclidean algorithm, with a Euclidean division of large numbers.

Binary GCD algorithm[edit]

The binary GCD algorithm uses only subtraction and division by 2.
The method is as follows: Let a and b be the two non-negative integers. Let the integer d be 0. There are five possibilities:

  • a = b.

As gcd(a, a) = a, the desired GCD is a × 2d (as a and b are changed in the other cases, and d records the number of times that a and b have been both divided by 2 in the next step, the GCD of the initial pair is the product of a and 2d).

  • Both a and b are even.

Then 2 is a common divisor. Divide both a and b by 2, increment d by 1 to record the number of times 2 is a common divisor and continue.

  • a is even and b is odd.

Then 2 is not a common divisor. Divide a by 2 and continue.

  • a is odd and b is even.

Then 2 is not a common divisor. Divide b by 2 and continue.

  • Both a and b are odd.

As gcd(a,b) = gcd(b,a), if a < b then exchange a and b. The number c = ab is positive and smaller than a. Any number that divides a and b must also divide c so every common divisor of a and b is also a common divisor of b and c. Similarly, a = b + c and every common divisor of b and c is also a common divisor of a and b. So the two pairs (a, b) and (b, c) have the same common divisors, and thus gcd(a,b) = gcd(b,c). Moreover, as a and b are both odd, c is even, the process can be continued with the pair (a, b) replaced by the smaller numbers (c/2, b) without changing the GCD.

Each of the above steps reduces at least one of a and b while leaving them non-negative and so can only be repeated a finite number of times. Thus eventually the process results in a = b, the stopping case. Then the GCD is a × 2d.

Example: (a, b, d) = (48, 18, 0) → (24, 9, 1) → (12, 9, 1) → (6, 9, 1) → (3, 9, 1) → (3, 3, 1) ; the original GCD is thus the product 6 of 2d = 21 and a= b= 3.

The binary GCD algorithm is particularly easy to implement on binary computers. Its computational complexity is

O((log a+log b)^{2})

The computational complexity is usually given in terms of the length n of the input. Here, this length is {displaystyle n=log a+log b,} and the complexity is thus

O(n^{2}).

Other methods[edit]

 gcd(1,x) = y, or Thomae’s function. Hatching at bottom indicates ellipses (i.e. omission of dots due to the extremely high density).

If a and b are both nonzero, the greatest common divisor of a and b can be computed by using least common multiple (LCM) of a and b:

{displaystyle gcd(a,b)={frac {|acdot b|}{operatorname {lcm} (a,b)}}},

but more commonly the LCM is computed from the GCD.

Using Thomae’s function f,

gcd(a,b)=afleft({frac {b}{a}}right),

which generalizes to a and b rational numbers or commensurable real numbers.

Keith Slavin has shown that for odd a ≥ 1:

gcd(a,b)=log _{2}prod _{k=0}^{a-1}(1+e^{-2ipi kb/a})

which is a function that can be evaluated for complex b.[17] Wolfgang Schramm has shown that

gcd(a,b)=sum limits _{k=1}^{a}exp(2pi ikb/a)cdot sum limits _{dleft|aright.}{frac {c_{d}(k)}{d}}

is an entire function in the variable b for all positive integers a where cd(k) is Ramanujan’s sum.[18]

Complexity[edit]

The computational complexity of the computation of greatest common divisors has been widely studied.[19] If one uses the Euclidean algorithm and the elementary algorithms for multiplication and division, the computation of the greatest common divisor of two integers of at most n bits is {displaystyle O(n^{2}).} This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication.

However, if a fast multiplication algorithm is used, one may modify the Euclidean algorithm for improving the complexity, but the computation of a greatest common divisor becomes slower than the multiplication. More precisely, if the multiplication of two integers of n bits takes a time of T(n), then the fastest known algorithm for greatest common divisor has a complexity {displaystyle Oleft(T(n)log nright).} This implies that the fastest known algorithm has a complexity of {displaystyle Oleft(n,(log n)^{2}right).}

Previous complexities are valid for the usual models of computation, specifically multitape Turing machines and random-access machines.

The computation of the greatest common divisors belongs thus to the class of problems solvable in quasilinear time. A fortiori, the corresponding decision problem belongs to the class P of problems solvable in polynomial time. The GCD problem is not known to be in NC, and so there is no known way to parallelize it efficiently; nor is it known to be P-complete, which would imply that it is unlikely to be possible to efficiently parallelize GCD computation. Shallcross et al. showed that a related problem (EUGCD, determining the remainder sequence arising during the Euclidean algorithm) is NC-equivalent to the problem of integer linear programming with two variables; if either problem is in NC or is P-complete, the other is as well.[20] Since NC contains NL, it is also unknown whether a space-efficient algorithm for computing the GCD exists, even for nondeterministic Turing machines.

Although the problem is not known to be in NC, parallel algorithms asymptotically faster than the Euclidean algorithm exist; the fastest known deterministic algorithm is by Chor and Goldreich, which (in the CRCW-PRAM model) can solve the problem in O(n/log n) time with n1+ε processors.[21] Randomized algorithms can solve the problem in O((log n)2) time on {displaystyle exp left(Oleft({sqrt {nlog n}}right)right)} processors[clarification needed] (this is superpolynomial).[22]

Properties[edit]

  • Every common divisor of a and b is a divisor of gcd(a, b).
  • gcd(a, b), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = ap + bq, where p and q are integers. This expression is called Bézout’s identity. Numbers p and q like this can be computed with the extended Euclidean algorithm.
  • gcd(a, 0) = |a|, for a ≠ 0, since any number is a divisor of 0, and the greatest divisor of a is |a|.[2][5] This is usually used as the base case in the Euclidean algorithm.
  • If a divides the product bc, and gcd(a, b) = d, then a/d divides c.
  • If m is a positive integer, then gcd(ma, mb) = m⋅gcd(a, b).
  • If m is any integer, then gcd(a + mb, b) = gcd(a, b). Equivalently, gcd(a mod b,b) = gcd(a,b).
  • If m is a positive common divisor of a and b, then gcd(a/m, b/m) = gcd(a, b)/m.
  • The GCD is a commutative function: gcd(a, b) = gcd(b, a).
  • The GCD is an associative function: gcd(a, gcd(b, c)) = gcd(gcd(a, b), c). Thus gcd(a, b, c, …) can be used to denote the GCD of multiple arguments.
  • The GCD is a multiplicative function in the following sense: if a1 and a2 are relatively prime, then gcd(a1a2, b) = gcd(a1, b)⋅gcd(a2, b).
  • gcd(a, b) is closely related to the least common multiple lcm(a, b): we have
    gcd(a, b)⋅lcm(a, b) = |ab|.
This formula is often used to compute least common multiples: one first computes the GCD with Euclid’s algorithm and then divides the product of the given numbers by their GCD.
  • The following versions of distributivity hold true:
    gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c))
    lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c)).
  • If we have the unique prime factorizations of a = p1e1 p2e2 ⋅⋅⋅ pmem and b = p1f1 p2f2 ⋅⋅⋅ pmfm where ei ≥ 0 and fi ≥ 0, then the GCD of a and b is
    gcd(a,b) = p1min(e1,f1) p2min(e2,f2) ⋅⋅⋅ pmmin(em,fm).
  • It is sometimes useful to define gcd(0, 0) = 0 and lcm(0, 0) = 0 because then the natural numbers become a complete distributive lattice with GCD as meet and LCM as join operation.[23] This extension of the definition is also compatible with the generalization for commutative rings given below.
  • In a Cartesian coordinate system, gcd(a, b) can be interpreted as the number of segments between points with integral coordinates on the straight line segment joining the points (0, 0) and (a, b).
  • For non-negative integers a and b, where a and b are not both zero, provable by considering the Euclidean algorithm in base n:[24]
    gcd(na − 1, nb − 1) = ngcd(a,b) − 1.
  • An identity involving Euler’s totient function:
    {displaystyle gcd(a,b)=sum _{k|a{text{ and }}k|b}varphi (k).}
  • {displaystyle sum _{k=1}^{n}gcd(k,n)=nprod _{p|n}left(1+nu _{p}(n)left(1-{frac {1}{p}}right)right)} where nu _{p}(n) is the p-adic valuation.

Probabilities and expected value[edit]

In 1972, James E. Nymann showed that k integers, chosen independently and uniformly from {1, …, n}, are coprime with probability 1/ζ(k) as n goes to infinity, where ζ refers to the Riemann zeta function.[25] (See coprime for a derivation.) This result was extended in 1987 to show that the probability that k random integers have greatest common divisor d is d−k/ζ(k).[26]

Using this information, the expected value of the greatest common divisor function can be seen (informally) to not exist when k = 2. In this case the probability that the GCD equals d is d−2/ζ(2), and since ζ(2) = π2/6 we have

mathrm {E} (mathrm {2} )=sum _{d=1}^{infty }d{frac {6}{pi ^{2}d^{2}}}={frac {6}{pi ^{2}}}sum _{d=1}^{infty }{frac {1}{d}}.

This last summation is the harmonic series, which diverges. However, when k ≥ 3, the expected value is well-defined, and by the above argument, it is

mathrm {E} (k)=sum _{d=1}^{infty }d^{1-k}zeta (k)^{-1}={frac {zeta (k-1)}{zeta (k)}}.

For k = 3, this is approximately equal to 1.3684. For k = 4, it is approximately 1.1106.

In commutative rings[edit]

The notion of greatest common divisor can more generally be defined for elements of an arbitrary commutative ring, although in general there need not exist one for every pair of elements.

If R is a commutative ring, and a and b are in R, then an element d of R is called a common divisor of a and b if it divides both a and b (that is, if there are elements x and y in R such that d·x = a and d·y = b).
If d is a common divisor of a and b, and every common divisor of a and b divides d, then d is called a greatest common divisor of a and b.

With this definition, two elements a and b may very well have several greatest common divisors, or none at all. If R is an integral domain then any two GCD’s of a and b must be associate elements, since by definition either one must divide the other; indeed if a GCD exists, any one of its associates is a GCD as well. Existence of a GCD is not assured in arbitrary integral domains. However, if R is a unique factorization domain, then any two elements have a GCD, and more generally this is true in GCD domains.
If R is a Euclidean domain in which euclidean division is given algorithmically (as is the case for instance when R = F[X] where F is a field, or when R is the ring of Gaussian integers), then greatest common divisors can be computed using a form of the Euclidean algorithm based on the division procedure.

The following is an example of an integral domain with two elements that do not have a GCD:

R=mathbb {Z} left[{sqrt {-3}},,right],quad a=4=2cdot 2=left(1+{sqrt {-3}},,right)left(1-{sqrt {-3}},,right),quad b=left(1+{sqrt {-3}},,right)cdot 2.

The elements 2 and 1 + −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + −3, but they are not associated, so there is no greatest common divisor of a and b.

Corresponding to the Bézout property we may, in any commutative ring, consider the collection of elements of the form pa + qb, where p and q range over the ring. This is the ideal generated by a and b, and is denoted simply (ab). In a ring all of whose ideals are principal (a principal ideal domain or PID), this ideal will be identical with the set of multiples of some ring element d; then this d is a greatest common divisor of a and b. But the ideal (ab) can be useful even when there is no greatest common divisor of a and b. (Indeed, Ernst Kummer used this ideal as a replacement for a GCD in his treatment of Fermat’s Last Theorem, although he envisioned it as the set of multiples of some hypothetical, or ideal, ring element d, whence the ring-theoretic term.)

See also[edit]

  • Bézout domain
  • Lowest common denominator
  • Unitary divisor

Notes[edit]

  1. ^ a b Long (1972, p. 33)
  2. ^ a b c Pettofrezzo & Byrkit (1970, p. 34)
  3. ^ Kelley, W. Michael (2004), The Complete Idiot’s Guide to Algebra, Penguin, p. 142, ISBN 978-1-59257-161-1.
  4. ^ Jones, Allyn (1999), Whole Numbers, Decimals, Percentages and Fractions Year 7, Pascal Press, p. 16, ISBN 978-1-86441-378-6.
  5. ^ a b c Hardy & Wright (1979, p. 20)
  6. ^ Some authors treat greatest common denominator as synonymous with greatest common divisor. This contradicts the common meaning of the words that are used, as denominator refers to fractions, and two fractions do not have any greatest common denominator (if two fractions have the same denominator, one obtains a greater common denominator by multiplying all numerators and denominators by the same integer).
  7. ^ Barlow, Peter; Peacock, George; Lardner, Dionysius; Airy, Sir George Biddell; Hamilton, H. P.; Levy, A.; De Morgan, Augustus; Mosley, Henry (1847), Encyclopaedia of Pure Mathematics, R. Griffin and Co., p. 589.
  8. ^ Some authors use (a, b),[1][2][5] but this notation is often ambiguous. Andrews (1994, p. 16) explains this as: «Many authors write (a,b) for g.c.d.(a, b). We do not, because we shall often use (a,b) to represent a point in the Euclidean plane.»
  9. ^ Thomas H. Cormen, et al., Introduction to Algorithms (2nd edition, 2001) ISBN 0262032937, p. 852
  10. ^ Bernard L. Johnston, Fred Richman, Numbers and Symmetry: An Introduction to Algebra ISBN 084930301X, p. 38
  11. ^ Martyn R. Dixon, et al., An Introduction to Essential Algebraic Structures ISBN 1118497759, p. 59
  12. ^ e.g., Wolfram Alpha calculation and Maxima
  13. ^ Jonathan Katz, Yehuda Lindell, Introduction to Modern Cryptography ISBN 1351133012, 2020, section 9.1.1, p. 45
  14. ^ Weisstein, Eric W. «Greatest Common Divisor». mathworld.wolfram.com. Retrieved 2020-08-30.
  15. ^ «Greatest Common Factor». www.mathsisfun.com. Retrieved 2020-08-30.
  16. ^ Gustavo Delfino, «Understanding the Least Common Multiple and Greatest Common Divisor», Wolfram Demonstrations Project, Published: February 1, 2013.
  17. ^ Slavin, Keith R. (2008). «Q-Binomials and the Greatest Common Divisor». INTEGERS: The Electronic Journal of Combinatorial Number Theory. University of West Georgia, Charles University in Prague. 8: A5. Retrieved 2008-05-26.
  18. ^ Schramm, Wolfgang (2008). «The Fourier transform of functions of the greatest common divisor». INTEGERS: The Electronic Journal of Combinatorial Number Theory. University of West Georgia, Charles University in Prague. 8: A50. Retrieved 2008-11-25.
  19. ^ Knuth, Donald E. (1997). The Art of Computer Programming. Vol. 2: Seminumerical Algorithms (3rd ed.). Addison-Wesley Professional. ISBN 0-201-89684-2.
  20. ^ Shallcross, D.; Pan, V.; Lin-Kriz, Y. (1993). «The NC equivalence of planar integer linear programming and Euclidean GCD» (PDF). 34th IEEE Symp. Foundations of Computer Science. pp. 557–564. Archived (PDF) from the original on 2006-09-05.
  21. ^ Chor, B.; Goldreich, O. (1990). «An improved parallel algorithm for integer GCD». Algorithmica. 5 (1–4): 1–10. doi:10.1007/BF01840374. S2CID 17699330.
  22. ^ Adleman, L. M.; Kompella, K. (1988). «Using smoothness to achieve parallelism». 20th Annual ACM Symposium on Theory of Computing. New York. pp. 528–538. doi:10.1145/62212.62264. ISBN 0-89791-264-0. S2CID 9118047.
  23. ^ Müller-Hoissen, Folkert; Walther, Hans-Otto (2012), «Dov Tamari (formerly Bernhard Teitler)», in Müller-Hoissen, Folkert; Pallo, Jean Marcel; Stasheff, Jim (eds.), Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift, Progress in Mathematics, vol. 299, Birkhäuser, pp. 1–40, ISBN 978-3-0348-0405-9. Footnote 27, p. 9: «For example, the natural numbers with gcd (greatest common divisor) as meet and lcm (least common multiple) as join operation determine a (complete distributive) lattice.» Including these definitions for 0 is necessary for this result: if one instead omits 0 from the set of natural numbers, the resulting lattice is not complete.
  24. ^ Knuth, Donald E.; Graham, R. L.; Patashnik, O. (March 1994). Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley. ISBN 0-201-55802-5.
  25. ^ Nymann, J. E. (1972). «On the probability that k positive integers are relatively prime». Journal of Number Theory. 4 (5): 469–473. Bibcode:1972JNT…..4..469N. doi:10.1016/0022-314X(72)90038-8.
  26. ^ Chidambaraswamy, J.; Sitarmachandrarao, R. (1987). «On the probability that the values of m polynomials have a given g.c.d.» Journal of Number Theory. 26 (3): 237–245. doi:10.1016/0022-314X(87)90081-3.

References[edit]

  • Andrews, George E. (1994) [1971], Number Theory, Dover, ISBN 978-0-486-68252-5
  • Hardy, G. H.; Wright, E. M. (1979), An Introduction to the Theory of Numbers (Fifth ed.), Oxford: Oxford University Press, ISBN 978-0-19-853171-5
  • Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company, LCCN 77171950
  • Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 71081766

Further reading[edit]

  • Donald Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89684-2. Section 4.5.2: The Greatest Common Divisor, pp. 333–356.
  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 31.2: Greatest common divisor, pp. 856–862.
  • Saunders Mac Lane and Garrett Birkhoff. A Survey of Modern Algebra, Fourth Edition. MacMillan Publishing Co., 1977. ISBN 0-02-310070-2. 1–7: «The Euclidean Algorithm.»

In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted {displaystyle gcd(x,y)}. For example, the GCD of 8 and 12 is 4, that is, {displaystyle gcd(8,12)=4}.[1][2]

In the name «greatest common divisor», the adjective «greatest» may be replaced by «highest», and the word «divisor» may be replaced by «factor», so that other names include highest common factor (hcf), etc.[3][4][5][6] Historically, other names for the same concept have included greatest common measure.[7]

This notion can be extended to polynomials (see Polynomial greatest common divisor) and other commutative rings (see § In commutative rings below).

Overview[edit]

Definition[edit]

The greatest common divisor (GCD) of two nonzero integers a and b is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer. The GCD of a and b is generally denoted gcd(a, b).[8]

This definition also applies when one of a and b is zero. In this case, the GCD is the absolute value of the non zero integer: gcd(a, 0) = gcd(0, a) = |a|. This case is important as the terminating step of the Euclidean algorithm.

The above definition cannot be used for defining gcd(0, 0), since 0 × n = 0, and zero thus has no greatest divisor. However, zero is its own greatest divisor if greatest is understood in the context of the divisibility relation, so gcd(0, 0) is commonly defined as 0. This preserves the usual identities for GCD, and in particular Bézout’s identity, namely that gcd(a, b) generates the same ideal as {a, b}.[9][10][11] This convention is followed by many computer algebra systems.[12] Nonetheless, some authors leave gcd(0, 0) undefined.[13]

The GCD of a and b is their greatest positive common divisor in the preorder relation of divisibility. This means that the common divisors of a and b are exactly the divisors of their GCD. This is commonly proved by using either Euclid’s lemma, the fundamental theorem of arithmetic, or the Euclidean algorithm. This is the meaning of «greatest» that is used for the generalizations of the concept of GCD.

Example[edit]

The number 54 can be expressed as a product of two integers in several different ways:

{displaystyle 54times 1=27times 2=18times 3=9times 6.}

Thus the complete list of divisors of 54 is {displaystyle 1,2,3,6,9,18,27,54}.
Similarly, the divisors of 24 are {displaystyle 1,2,3,4,6,8,12,24}.
The numbers that these two lists have in common are the common divisors of 54 and 24, that is,

{displaystyle 1,2,3,6.}

Of these, the greatest is 6, so it is the greatest common divisor:

{displaystyle gcd(54,24)=6.}

Computing all divisors of the two numbers in this way is usually not efficient, especially for large numbers that have many divisors. Much more efficient methods are described in § Calculation.

Coprime numbers[edit]

Two numbers are called relatively prime, or coprime, if their greatest common divisor equals 1.[14] For example, 9 and 28 are coprime.

A geometric view[edit]

"Tall, slender rectangle divided into a grid of squares. The rectangle is two squares wide and five squares tall."

A 24-by-60 rectangle is covered with ten 12-by-12 square tiles, where 12 is the GCD of 24 and 60. More generally, an a-by-b rectangle can be covered with square tiles of side length c only if c is a common divisor of a and b.

For example, a 24-by-60 rectangular area can be divided into a grid of: 1-by-1 squares, 2-by-2 squares, 3-by-3 squares, 4-by-4 squares, 6-by-6 squares or 12-by-12 squares. Therefore, 12 is the greatest common divisor of 24 and 60. A 24-by-60 rectangular area can thus be divided into a grid of 12-by-12 squares, with two squares along one edge (24/12 = 2) and five squares along the other (60/12 = 5).

Applications[edit]

Reducing fractions[edit]

The greatest common divisor is useful for reducing fractions to the lowest terms.[15] For example, gcd(42, 56) = 14, therefore,

{frac {42}{56}}={frac {3cdot 14}{4cdot 14}}={frac {3}{4}}.

Least common multiple[edit]

The least common multiple of two integers that are not both zero can be computed from their greatest common divisor, by using the relation

operatorname{lcm}(a,b)=frac{|acdot b|}{operatorname{gcd}(a,b)}.

Calculation[edit]

Using prime factorizations[edit]

Greatest common divisors can be computed by determining the prime factorizations of the two numbers and comparing factors. For example, to compute gcd(48, 180), we find the prime factorizations 48 = 24 · 31 and 180 = 22 · 32 · 51; the GCD is then 2min(4,2) · 3min(1,2) · 5min(0,1) = 22 · 31 · 50 = 12, as shown in the Venn diagram. The corresponding LCM is then
2max(4,2) · 3max(1,2) · 5max(0,1) =
24 · 32 · 51 = 720.

Least common multiple.svg[16]

In practice, this method is only feasible for small numbers, as computing prime factorizations takes too long.

Euclid’s algorithm[edit]

The method introduced by Euclid for computing greatest common divisors is based on the fact that, given two positive integers a and b such that a > b, the common divisors of a and b are the same as the common divisors of ab and b.

So, Euclid’s method for computing the greatest common divisor of two positive integers consists of replacing the larger number by the difference of the numbers, and repeating this until the two numbers are equal: that is their greatest common divisor.

For example, to compute gcd(48,18), one proceeds as follows:

{displaystyle {begin{aligned}gcd(48,18)quad &to quad gcd(48-18,18)=gcd(30,18)&&to quad gcd(30-18,18)=gcd(12,18)\&to quad gcd(12,18-12)=gcd(12,6)&&to quad gcd(12-6,6)=gcd(6,6).end{aligned}}}

So gcd(48, 18) = 6.

This method can be very slow if one number is much larger than the other. So, the variant that follows is generally preferred.

Euclidean algorithm[edit]

Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2.

A more efficient method is the Euclidean algorithm, a variant in which the difference of the two numbers a and b is replaced by the remainder of the Euclidean division (also called division with remainder) of a by b.

Denoting this remainder as a mod b, the algorithm replaces (a, b) by (b, a mod b) repeatedly until the pair is (d, 0), where d is the greatest common divisor.

For example, to compute gcd(48,18), the computation is as follows:

{displaystyle {begin{aligned}gcd(48,18)quad &to quad gcd(18,48{bmod {1}}8)=gcd(18,12)\&to quad gcd(12,18{bmod {1}}2)=gcd(12,6)\&to quad gcd(6,12{bmod {6}})=gcd(6,0).end{aligned}}}

This again gives gcd(48, 18) = 6.

Lehmer’s GCD algorithm[edit]

Lehmer’s algorithm is based on the observation that the initial quotients produced by Euclid’s algorithm can be determined based on only the first few digits; this is useful for numbers that are larger than a computer word. In essence, one extracts initial digits, typically forming one or two computer words, and runs Euclid’s algorithms on these smaller numbers, as long as it is guaranteed that the quotients are the same with those that would be obtained with the original numbers. The quotients are collected into a small 2-by-2 transformation matrix (a matrix of single-word integers) to reduce the original numbers. This process is repeated until numbers are small enough that the binary algorithm (see below) is more efficient.

This algorithm improves speed, because it reduces the number of operations on very large numbers, and can use hardware arithmetic for most operations. In fact, most of the quotients are very small, so a fair number of steps of the Euclidean algorithm can be collected in a 2-by-2 matrix of single-word integers. When Lehmer’s algorithm encounters a quotient that is too large, it must fall back to one iteration of Euclidean algorithm, with a Euclidean division of large numbers.

Binary GCD algorithm[edit]

The binary GCD algorithm uses only subtraction and division by 2.
The method is as follows: Let a and b be the two non-negative integers. Let the integer d be 0. There are five possibilities:

  • a = b.

As gcd(a, a) = a, the desired GCD is a × 2d (as a and b are changed in the other cases, and d records the number of times that a and b have been both divided by 2 in the next step, the GCD of the initial pair is the product of a and 2d).

  • Both a and b are even.

Then 2 is a common divisor. Divide both a and b by 2, increment d by 1 to record the number of times 2 is a common divisor and continue.

  • a is even and b is odd.

Then 2 is not a common divisor. Divide a by 2 and continue.

  • a is odd and b is even.

Then 2 is not a common divisor. Divide b by 2 and continue.

  • Both a and b are odd.

As gcd(a,b) = gcd(b,a), if a < b then exchange a and b. The number c = ab is positive and smaller than a. Any number that divides a and b must also divide c so every common divisor of a and b is also a common divisor of b and c. Similarly, a = b + c and every common divisor of b and c is also a common divisor of a and b. So the two pairs (a, b) and (b, c) have the same common divisors, and thus gcd(a,b) = gcd(b,c). Moreover, as a and b are both odd, c is even, the process can be continued with the pair (a, b) replaced by the smaller numbers (c/2, b) without changing the GCD.

Each of the above steps reduces at least one of a and b while leaving them non-negative and so can only be repeated a finite number of times. Thus eventually the process results in a = b, the stopping case. Then the GCD is a × 2d.

Example: (a, b, d) = (48, 18, 0) → (24, 9, 1) → (12, 9, 1) → (6, 9, 1) → (3, 9, 1) → (3, 3, 1) ; the original GCD is thus the product 6 of 2d = 21 and a= b= 3.

The binary GCD algorithm is particularly easy to implement on binary computers. Its computational complexity is

O((log a+log b)^{2})

The computational complexity is usually given in terms of the length n of the input. Here, this length is {displaystyle n=log a+log b,} and the complexity is thus

O(n^{2}).

Other methods[edit]

 gcd(1,x) = y, or Thomae’s function. Hatching at bottom indicates ellipses (i.e. omission of dots due to the extremely high density).

If a and b are both nonzero, the greatest common divisor of a and b can be computed by using least common multiple (LCM) of a and b:

{displaystyle gcd(a,b)={frac {|acdot b|}{operatorname {lcm} (a,b)}}},

but more commonly the LCM is computed from the GCD.

Using Thomae’s function f,

gcd(a,b)=afleft({frac {b}{a}}right),

which generalizes to a and b rational numbers or commensurable real numbers.

Keith Slavin has shown that for odd a ≥ 1:

gcd(a,b)=log _{2}prod _{k=0}^{a-1}(1+e^{-2ipi kb/a})

which is a function that can be evaluated for complex b.[17] Wolfgang Schramm has shown that

gcd(a,b)=sum limits _{k=1}^{a}exp(2pi ikb/a)cdot sum limits _{dleft|aright.}{frac {c_{d}(k)}{d}}

is an entire function in the variable b for all positive integers a where cd(k) is Ramanujan’s sum.[18]

Complexity[edit]

The computational complexity of the computation of greatest common divisors has been widely studied.[19] If one uses the Euclidean algorithm and the elementary algorithms for multiplication and division, the computation of the greatest common divisor of two integers of at most n bits is {displaystyle O(n^{2}).} This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication.

However, if a fast multiplication algorithm is used, one may modify the Euclidean algorithm for improving the complexity, but the computation of a greatest common divisor becomes slower than the multiplication. More precisely, if the multiplication of two integers of n bits takes a time of T(n), then the fastest known algorithm for greatest common divisor has a complexity {displaystyle Oleft(T(n)log nright).} This implies that the fastest known algorithm has a complexity of {displaystyle Oleft(n,(log n)^{2}right).}

Previous complexities are valid for the usual models of computation, specifically multitape Turing machines and random-access machines.

The computation of the greatest common divisors belongs thus to the class of problems solvable in quasilinear time. A fortiori, the corresponding decision problem belongs to the class P of problems solvable in polynomial time. The GCD problem is not known to be in NC, and so there is no known way to parallelize it efficiently; nor is it known to be P-complete, which would imply that it is unlikely to be possible to efficiently parallelize GCD computation. Shallcross et al. showed that a related problem (EUGCD, determining the remainder sequence arising during the Euclidean algorithm) is NC-equivalent to the problem of integer linear programming with two variables; if either problem is in NC or is P-complete, the other is as well.[20] Since NC contains NL, it is also unknown whether a space-efficient algorithm for computing the GCD exists, even for nondeterministic Turing machines.

Although the problem is not known to be in NC, parallel algorithms asymptotically faster than the Euclidean algorithm exist; the fastest known deterministic algorithm is by Chor and Goldreich, which (in the CRCW-PRAM model) can solve the problem in O(n/log n) time with n1+ε processors.[21] Randomized algorithms can solve the problem in O((log n)2) time on {displaystyle exp left(Oleft({sqrt {nlog n}}right)right)} processors[clarification needed] (this is superpolynomial).[22]

Properties[edit]

  • Every common divisor of a and b is a divisor of gcd(a, b).
  • gcd(a, b), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = ap + bq, where p and q are integers. This expression is called Bézout’s identity. Numbers p and q like this can be computed with the extended Euclidean algorithm.
  • gcd(a, 0) = |a|, for a ≠ 0, since any number is a divisor of 0, and the greatest divisor of a is |a|.[2][5] This is usually used as the base case in the Euclidean algorithm.
  • If a divides the product bc, and gcd(a, b) = d, then a/d divides c.
  • If m is a positive integer, then gcd(ma, mb) = m⋅gcd(a, b).
  • If m is any integer, then gcd(a + mb, b) = gcd(a, b). Equivalently, gcd(a mod b,b) = gcd(a,b).
  • If m is a positive common divisor of a and b, then gcd(a/m, b/m) = gcd(a, b)/m.
  • The GCD is a commutative function: gcd(a, b) = gcd(b, a).
  • The GCD is an associative function: gcd(a, gcd(b, c)) = gcd(gcd(a, b), c). Thus gcd(a, b, c, …) can be used to denote the GCD of multiple arguments.
  • The GCD is a multiplicative function in the following sense: if a1 and a2 are relatively prime, then gcd(a1a2, b) = gcd(a1, b)⋅gcd(a2, b).
  • gcd(a, b) is closely related to the least common multiple lcm(a, b): we have
    gcd(a, b)⋅lcm(a, b) = |ab|.
This formula is often used to compute least common multiples: one first computes the GCD with Euclid’s algorithm and then divides the product of the given numbers by their GCD.
  • The following versions of distributivity hold true:
    gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c))
    lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c)).
  • If we have the unique prime factorizations of a = p1e1 p2e2 ⋅⋅⋅ pmem and b = p1f1 p2f2 ⋅⋅⋅ pmfm where ei ≥ 0 and fi ≥ 0, then the GCD of a and b is
    gcd(a,b) = p1min(e1,f1) p2min(e2,f2) ⋅⋅⋅ pmmin(em,fm).
  • It is sometimes useful to define gcd(0, 0) = 0 and lcm(0, 0) = 0 because then the natural numbers become a complete distributive lattice with GCD as meet and LCM as join operation.[23] This extension of the definition is also compatible with the generalization for commutative rings given below.
  • In a Cartesian coordinate system, gcd(a, b) can be interpreted as the number of segments between points with integral coordinates on the straight line segment joining the points (0, 0) and (a, b).
  • For non-negative integers a and b, where a and b are not both zero, provable by considering the Euclidean algorithm in base n:[24]
    gcd(na − 1, nb − 1) = ngcd(a,b) − 1.
  • An identity involving Euler’s totient function:
    {displaystyle gcd(a,b)=sum _{k|a{text{ and }}k|b}varphi (k).}
  • {displaystyle sum _{k=1}^{n}gcd(k,n)=nprod _{p|n}left(1+nu _{p}(n)left(1-{frac {1}{p}}right)right)} where nu _{p}(n) is the p-adic valuation.

Probabilities and expected value[edit]

In 1972, James E. Nymann showed that k integers, chosen independently and uniformly from {1, …, n}, are coprime with probability 1/ζ(k) as n goes to infinity, where ζ refers to the Riemann zeta function.[25] (See coprime for a derivation.) This result was extended in 1987 to show that the probability that k random integers have greatest common divisor d is d−k/ζ(k).[26]

Using this information, the expected value of the greatest common divisor function can be seen (informally) to not exist when k = 2. In this case the probability that the GCD equals d is d−2/ζ(2), and since ζ(2) = π2/6 we have

mathrm {E} (mathrm {2} )=sum _{d=1}^{infty }d{frac {6}{pi ^{2}d^{2}}}={frac {6}{pi ^{2}}}sum _{d=1}^{infty }{frac {1}{d}}.

This last summation is the harmonic series, which diverges. However, when k ≥ 3, the expected value is well-defined, and by the above argument, it is

mathrm {E} (k)=sum _{d=1}^{infty }d^{1-k}zeta (k)^{-1}={frac {zeta (k-1)}{zeta (k)}}.

For k = 3, this is approximately equal to 1.3684. For k = 4, it is approximately 1.1106.

In commutative rings[edit]

The notion of greatest common divisor can more generally be defined for elements of an arbitrary commutative ring, although in general there need not exist one for every pair of elements.

If R is a commutative ring, and a and b are in R, then an element d of R is called a common divisor of a and b if it divides both a and b (that is, if there are elements x and y in R such that d·x = a and d·y = b).
If d is a common divisor of a and b, and every common divisor of a and b divides d, then d is called a greatest common divisor of a and b.

With this definition, two elements a and b may very well have several greatest common divisors, or none at all. If R is an integral domain then any two GCD’s of a and b must be associate elements, since by definition either one must divide the other; indeed if a GCD exists, any one of its associates is a GCD as well. Existence of a GCD is not assured in arbitrary integral domains. However, if R is a unique factorization domain, then any two elements have a GCD, and more generally this is true in GCD domains.
If R is a Euclidean domain in which euclidean division is given algorithmically (as is the case for instance when R = F[X] where F is a field, or when R is the ring of Gaussian integers), then greatest common divisors can be computed using a form of the Euclidean algorithm based on the division procedure.

The following is an example of an integral domain with two elements that do not have a GCD:

R=mathbb {Z} left[{sqrt {-3}},,right],quad a=4=2cdot 2=left(1+{sqrt {-3}},,right)left(1-{sqrt {-3}},,right),quad b=left(1+{sqrt {-3}},,right)cdot 2.

The elements 2 and 1 + −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + −3, but they are not associated, so there is no greatest common divisor of a and b.

Corresponding to the Bézout property we may, in any commutative ring, consider the collection of elements of the form pa + qb, where p and q range over the ring. This is the ideal generated by a and b, and is denoted simply (ab). In a ring all of whose ideals are principal (a principal ideal domain or PID), this ideal will be identical with the set of multiples of some ring element d; then this d is a greatest common divisor of a and b. But the ideal (ab) can be useful even when there is no greatest common divisor of a and b. (Indeed, Ernst Kummer used this ideal as a replacement for a GCD in his treatment of Fermat’s Last Theorem, although he envisioned it as the set of multiples of some hypothetical, or ideal, ring element d, whence the ring-theoretic term.)

See also[edit]

  • Bézout domain
  • Lowest common denominator
  • Unitary divisor

Notes[edit]

  1. ^ a b Long (1972, p. 33)
  2. ^ a b c Pettofrezzo & Byrkit (1970, p. 34)
  3. ^ Kelley, W. Michael (2004), The Complete Idiot’s Guide to Algebra, Penguin, p. 142, ISBN 978-1-59257-161-1.
  4. ^ Jones, Allyn (1999), Whole Numbers, Decimals, Percentages and Fractions Year 7, Pascal Press, p. 16, ISBN 978-1-86441-378-6.
  5. ^ a b c Hardy & Wright (1979, p. 20)
  6. ^ Some authors treat greatest common denominator as synonymous with greatest common divisor. This contradicts the common meaning of the words that are used, as denominator refers to fractions, and two fractions do not have any greatest common denominator (if two fractions have the same denominator, one obtains a greater common denominator by multiplying all numerators and denominators by the same integer).
  7. ^ Barlow, Peter; Peacock, George; Lardner, Dionysius; Airy, Sir George Biddell; Hamilton, H. P.; Levy, A.; De Morgan, Augustus; Mosley, Henry (1847), Encyclopaedia of Pure Mathematics, R. Griffin and Co., p. 589.
  8. ^ Some authors use (a, b),[1][2][5] but this notation is often ambiguous. Andrews (1994, p. 16) explains this as: «Many authors write (a,b) for g.c.d.(a, b). We do not, because we shall often use (a,b) to represent a point in the Euclidean plane.»
  9. ^ Thomas H. Cormen, et al., Introduction to Algorithms (2nd edition, 2001) ISBN 0262032937, p. 852
  10. ^ Bernard L. Johnston, Fred Richman, Numbers and Symmetry: An Introduction to Algebra ISBN 084930301X, p. 38
  11. ^ Martyn R. Dixon, et al., An Introduction to Essential Algebraic Structures ISBN 1118497759, p. 59
  12. ^ e.g., Wolfram Alpha calculation and Maxima
  13. ^ Jonathan Katz, Yehuda Lindell, Introduction to Modern Cryptography ISBN 1351133012, 2020, section 9.1.1, p. 45
  14. ^ Weisstein, Eric W. «Greatest Common Divisor». mathworld.wolfram.com. Retrieved 2020-08-30.
  15. ^ «Greatest Common Factor». www.mathsisfun.com. Retrieved 2020-08-30.
  16. ^ Gustavo Delfino, «Understanding the Least Common Multiple and Greatest Common Divisor», Wolfram Demonstrations Project, Published: February 1, 2013.
  17. ^ Slavin, Keith R. (2008). «Q-Binomials and the Greatest Common Divisor». INTEGERS: The Electronic Journal of Combinatorial Number Theory. University of West Georgia, Charles University in Prague. 8: A5. Retrieved 2008-05-26.
  18. ^ Schramm, Wolfgang (2008). «The Fourier transform of functions of the greatest common divisor». INTEGERS: The Electronic Journal of Combinatorial Number Theory. University of West Georgia, Charles University in Prague. 8: A50. Retrieved 2008-11-25.
  19. ^ Knuth, Donald E. (1997). The Art of Computer Programming. Vol. 2: Seminumerical Algorithms (3rd ed.). Addison-Wesley Professional. ISBN 0-201-89684-2.
  20. ^ Shallcross, D.; Pan, V.; Lin-Kriz, Y. (1993). «The NC equivalence of planar integer linear programming and Euclidean GCD» (PDF). 34th IEEE Symp. Foundations of Computer Science. pp. 557–564. Archived (PDF) from the original on 2006-09-05.
  21. ^ Chor, B.; Goldreich, O. (1990). «An improved parallel algorithm for integer GCD». Algorithmica. 5 (1–4): 1–10. doi:10.1007/BF01840374. S2CID 17699330.
  22. ^ Adleman, L. M.; Kompella, K. (1988). «Using smoothness to achieve parallelism». 20th Annual ACM Symposium on Theory of Computing. New York. pp. 528–538. doi:10.1145/62212.62264. ISBN 0-89791-264-0. S2CID 9118047.
  23. ^ Müller-Hoissen, Folkert; Walther, Hans-Otto (2012), «Dov Tamari (formerly Bernhard Teitler)», in Müller-Hoissen, Folkert; Pallo, Jean Marcel; Stasheff, Jim (eds.), Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift, Progress in Mathematics, vol. 299, Birkhäuser, pp. 1–40, ISBN 978-3-0348-0405-9. Footnote 27, p. 9: «For example, the natural numbers with gcd (greatest common divisor) as meet and lcm (least common multiple) as join operation determine a (complete distributive) lattice.» Including these definitions for 0 is necessary for this result: if one instead omits 0 from the set of natural numbers, the resulting lattice is not complete.
  24. ^ Knuth, Donald E.; Graham, R. L.; Patashnik, O. (March 1994). Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley. ISBN 0-201-55802-5.
  25. ^ Nymann, J. E. (1972). «On the probability that k positive integers are relatively prime». Journal of Number Theory. 4 (5): 469–473. Bibcode:1972JNT…..4..469N. doi:10.1016/0022-314X(72)90038-8.
  26. ^ Chidambaraswamy, J.; Sitarmachandrarao, R. (1987). «On the probability that the values of m polynomials have a given g.c.d.» Journal of Number Theory. 26 (3): 237–245. doi:10.1016/0022-314X(87)90081-3.

References[edit]

  • Andrews, George E. (1994) [1971], Number Theory, Dover, ISBN 978-0-486-68252-5
  • Hardy, G. H.; Wright, E. M. (1979), An Introduction to the Theory of Numbers (Fifth ed.), Oxford: Oxford University Press, ISBN 978-0-19-853171-5
  • Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company, LCCN 77171950
  • Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 71081766

Further reading[edit]

  • Donald Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89684-2. Section 4.5.2: The Greatest Common Divisor, pp. 333–356.
  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 31.2: Greatest common divisor, pp. 856–862.
  • Saunders Mac Lane and Garrett Birkhoff. A Survey of Modern Algebra, Fourth Edition. MacMillan Publishing Co., 1977. ISBN 0-02-310070-2. 1–7: «The Euclidean Algorithm.»

А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

нод, -а и но́да, -ы (узел сети Фидо)

Рядом по алфавиту:

ногопёрые , -ых
ногопло́дник , -а
ноготки́ , -о́в, ед. -то́к, -тка́ (цветы)
ноготко́вый
ногото́к , -тка́ (от но́готь)
ногото́чки , -ов, ед. -чек, -чка
но́готь , но́гтя, мн. но́гти, -е́й
ногохво́стка , -и, р. мн. -ток
ногоче́люсти , -ей
ногощу́пальца , -льцев и -лец, ед. -льце, -а
ногтеви́дный , кр. ф. -ден, -дна
ногтево́й
ногти́стый
ногти́ще , -а, мн. -а и -и, -и́щ, м.
ногтое́да , -ы
нод , -а и но́да, -ы (узел сети Фидо)
НОД , нескл., м. (сокр.: наибольший общий делитель)
нод-ли́ст , -листа́
нодуля́рный
Но́ев ковче́г , Но́ева ковче́га
нож , ножа́, тв. -о́м
но́ж-зато́чка , ножа́-зато́чки, м.
ножеви́ще , -а
ножево́й , и ножо́вый
но́женки , -нок (от но́жны и но́жницы)
но́женька , -и, р. мн. -нек
ножето́чка , -и, р. мн. -чек
ножи́-но́жницы , ноже́й-но́жниц
но́жик , -а
но́жичек , -чка
ножи́ща , -и, тв. -ей (от нога́)

Этот парень из НОД?

This guy’s NLM?

Вот почему НОД пришли за Во Фатом.

DANNY: So, that’s why the NLM went after Wo Fat.

В нем течет кровь лидера НОД, это значит, что он представляет большую важность для разведки.

This guy’s got a blood tie to the NLM leader, it means he’s gonna have some serious intelligence value.

Когда я прятался в штаб-квартире, там побывали двое из НОД. До того, как уничтожить оборудование, они воспользовались нашей базой данных.

When I was holed up in HQ, there were two NLM soldiers who came and grabbed data off our drives before they destroyed the hardware.

Итак, чем больше мы тратим времени, тем его больше у НОД для того, чтобы сбежать.

So, the more time we waste, the more time the NLM has to escape.

Показать ещё примеры для «nlm»…

У меня здесь есть м-р Нод.

I’ve got Mr. Nod here.

Наши печальные новости заключаются в том, что нам придётся везти на Налик Нод… шестерых наших сотоварищей в состоянии клинической смерти.

The sad news is that we will be heading for Nalic Nod… with six of our co-workers in a state of permanent death.

Ну, Бланкет, а я Хоуди Дуди, а это мои друзья — Тимси, Винки и Нод.

Well, Blanket, I’m Howdy Doody, and these are my friends Timsy, Winky and Nod.

Я снимаю с тебя всю ответственность за воспитание юного Нода.

I absolve you of all further responsibility in the raising of young Nod.

Нод отстал, но все еще держится!

Nod is down but not out!

Показать ещё примеры для «nod»…

Сценарий Кого Нода и Ясудзиро Одзу

Screenplay by KOGO NODA and YASUJIRO OZU

Замки Нода и Нагасино пали.

Noda Castle and Nagashino Castle have fallen.

Нода и Нагасино пали.

Noda and Nagashino have fallen.

— Мистер Нода, мисс Тами. — Макс Майер.

Mr Noda, Miss Tami.

Мистер Нода, мисс Тами.

Mr Noda. Miss Tami.

Показать ещё примеры для «noda»…

Перевод слова ‘Nod’ на русский язык:

варианты перевода — кивок, кивнуть, клевать носом, кивать головой

Транскрипция и произношение слова ‘Nod’:

Британская транскрипция:

nɒd

Британское произношение:

Аудио не поддерживается вашим веббраузером. слово 'Nod' произношение (британское классическое)

Американская транскрипция:

nɑːd

Американское произношение:

Аудио не поддерживается вашим веббраузером. слово 'Nod' произношение (американский английский язык)

Транскрипция слова ‘Nod’ в американском английском языке отличается от транскрипции ‘Nod’ в британском классическом варианте!

Перевод, транскрипция и правильное произношение слова ‘nod’ на английском языке, а именно — в американском варианте и в британском классическом варианте. Узнайте прямо сейчас, как слово ‘nod’ пишется и внимательно прослушайте как оно произносится, обращая внимание на транскрипцию.


русский

арабский
немецкий
английский
испанский
французский
иврит
итальянский
японский
голландский
польский
португальский
румынский
русский
шведский
турецкий
украинский
китайский


английский

Синонимы
арабский
немецкий
английский
испанский
французский
иврит
итальянский
японский
голландский
польский
португальский
румынский
русский
шведский
турецкий
украинский
китайский
украинский


На основании Вашего запроса эти примеры могут содержать грубую лексику.


На основании Вашего запроса эти примеры могут содержать разговорную лексику.

Предложения


Уважаю твой бунтарский дух, Нод. Мне будет его не хватать.



I admire your independent spirit, Nod, I’ll miss that.


Похоже, Нод вылетел из гонки.



Looks like Nod’s out of the race.


Как движение, НОД не регистрируется и не имеет никаких юридических отношений с государством.



As the movement NLM is not registered and has no legal relationship with the state.


Теория чисел: функция Эйлера, НОД, делимость и др.



Number theory: Euler function, GCD, divisibility, etc


В скором времени, Нод во главе с харизматичным предводителем, известным под именем Кейна, получило контроль над примерно половиной всех поставок и с их помощью набирает огромную армию последователей по всему миру.



Nod soon controls nearly half of the supply and uses these assets to sustain a rapidly growing army of followers worldwide.


Кроме того, НОД должно оговариваться использование упрощенных форм заявок, в которых операторы должны продемонстрировать соблюдение стандартных требований.



The following criteria should apply before consideration is given to the use of GBRs: GBRs must cover a sufficient number of installations in a particular category to make the development of GBRs cost-effective.


Кроме того, НОД должно оговариваться использование упрощенных форм заявок, в которых операторы должны продемонстрировать соблюдение стандартных требований.



GBRs should also stipulate simplified application forms requiring operators to demonstrate compliance with the standard requirements.

Другие результаты


Colony ссылается на биологические скопления, поскольку Нода чувствовал, что у альбома была объединённая атмосфера.



Colony refers to biological aggregations, as Noda felt like the album had an aggregated atmosphere.


Материал вышел под заголовком «Потрясающий рекорд в обезглавливании ста человек — Мукаи 106, Нода 105 — оба вторых лейтенанта начинают дополнительный раунд».



The Nichi Nichi headline of the story of December 13 read»‘Incredible Record’ Behead 100 People-Mukai 106 — 105 Noda-Both 2nd Lieutenants Go Into Extra Innings».


Мы, Оршоя Рашки-Нодь и Даниэль Нодь, персональные ювелиры-дизайнеры, обладатели многочисленных международных наград.



We, Orsolya Ráski Nagy and Daniel Nagy, are personal jewellery designers and goldsmiths, winners of numerous awards.


Ояма считал, что мировоззрение Ноды, представленное в его текстах, развилось в этом альбоме.



Ōyama felt Noda’s world-view presented in his lyrics had evolved for this album.


Операции обрезания карты, создания нодов, расстановка запретов поворотов и т.д. на датувремя — влиять не будут. Учтена во всех операциях «Отменить — Вернуть».



Comands «Trim Map», create nodes, create turn restrictions, etc. — date/ time — will not be affected.


Пока рынки продолжают осаду периферийных стран ЕС, правительство Есихико Нода не снижает бдительности.



As markets continue their siege of the peripheral countries of the EU, the Government of Yoshihiko Noda does not lower the guard.


Прежде, Нода писал песни за короткий промежуток времени, однако в этом альбоме у него было много времени, чтобы всё обдумать.



Previously, Noda would write songs in a single moment, however in this album, he had a lot of time to consider everything.


Скажи им, что НОД планирует нападение.



Tell them the NLM are planning an attack.


Второй конкурс начнется 1 апреля», — отметил Нодия.



Second competition will start on 1 April, Nodia stressed.


В Tiberium Wars присутствуют три играбельных фракции: Глобальная Оборонная Инициатива (GDI), Братство Нод и скринны.



There are two playable factions: the Global Defense Initiative (GDI) and the Brotherhood of Nod.


Таким образом, и-номер являлся индексом в этом массиве, и-нод — выбираемым элементом массива.



Thus the i-number is an index in this array, the i-node is the selected element of the array.


Более ранние версии использовали менеджера блокировок GULM (Grand Unified lock manager), который мог кластеризироваться, но всё ещё представлял собой «единую точку отказа», если ноды, действующие как серверы GULM, прекращали работу.



Earlier versions of the cluster suite relied on a «grand unified lock manager» (GULM) which could be clustered, but still presented a point of failure if the nodes acting as GULM servers were to fail.


Для внедрения системы НОД потребуется, чтобы национальные органы разработали технические нормы для ряда категорий установок.



The introduction of a GBR system will require that national authorities prepare technical rules for a number of categories of installations.

Ничего не найдено для этого значения.

Результатов: 235. Точных совпадений: 7. Затраченное время: 64 мс

Documents

Корпоративные решения

Спряжение

Синонимы

Корректор

Справка и о нас

Индекс слова: 1-300, 301-600, 601-900

Индекс выражения: 1-400, 401-800, 801-1200

Индекс фразы: 1-400, 401-800, 801-1200

Пользователь
smok

Печатный вариант при обрезании

[nɒd]
verb: кивать головой

Печатный вариант при сжатии

[nɒd]
verb: кивать головой

Синонимы

verb: doze, drowse
noun: beck

Примеры

nod — кивнуть головой, направить, головой, зазеваться, прозевать;
node — нарост, утолщение, узел, точка, в которой кривая пересекает себя;
nod off — дремать, клевать носом;
nodule — узелок, узелковое утолщение, нарост на растении, кап, рудная почка;
nodal — центральный, опорный, основной, узловой;
nodular — узелковый, узловатый, почковидный;
noddle — башка, кивать, качать, трясти головой;
noddy — дурак, простак, глупыш, глупая крачка;
nodding acquaintance — шапочное знакомство;
nid-nod — кивать; клевать носом;
land of nod — сонное царство; царство сна;
«Are you okay?» I asked. She nodded and smiled. — «Ты в порядке?» — спросил я. Она кивнула и улыбнулась;
«Does it work?» he asked nodding at the piano. — «Работает?» — спросил он, кивнув на фортепиано;
She nodded towards the drawing room. «He’s in there.» — Она кивком головы указала на гостиную. «Он там.»;
I nodded him out of the room. — Я головой указал ему на дверь;
They nodded goodnight to the security man. — Они кивком головы попрощались с охранником;
All the girls nodded and said «Hi». — Все девушки кивнули в знак приветствия и сказали «Привет!»;
Taylor leapt up and nodded in his twenty-first goal of the season. — Тейлор подпрыгнул и забил головой свой двадцать первый гол в сезоне;
Scientific reason, like Homer, sometimes nods. — Доводы науки, как и всё остальное, тоже иногда бывают ошибочны;
the arches nodding westward and sinking into the ground — покосившиеся в сторону запада и вросшие в землю арки;
A later Empire nods in its decay.(P. B. Shelley) — Последняя империя клонится к упадку;
wind that nods the mountain pine (J. Keats) — ветерок, колышущий горную сосну;
approving nod — кивок одобрения;
to give a nod of greeting — кивнуть в знак приветствия;
We will not be surprised if the museum gives this piece the nod. — Мы не будем удивлены, если музей одобрит эту картину;
Perhaps he sees himself — if he gets the nod — as a natural successor to Sir Kevin Ellis. — Возможно он видит себя — если получит поддержку — естественным преемником сэра Кевина Эллиса;
while I was on the nod — пока я был «под кайфом»

нод — перевод на английский

Этот парень из НОД?

This guy’s NLM?

Вот почему НОД пришли за Во Фатом.

DANNY: So, that’s why the NLM went after Wo Fat.

В нем течет кровь лидера НОД, это значит, что он представляет большую важность для разведки.

This guy’s got a blood tie to the NLM leader, it means he’s gonna have some serious intelligence value.

Когда я прятался в штаб-квартире, там побывали двое из НОД. До того, как уничтожить оборудование, они воспользовались нашей базой данных.

When I was holed up in HQ, there were two NLM soldiers who came and grabbed data off our drives before they destroyed the hardware.

Итак, чем больше мы тратим времени, тем его больше у НОД для того, чтобы сбежать.

So, the more time we waste, the more time the NLM has to escape.

Показать ещё примеры для «nlm»…

У меня здесь есть м-р Нод.

I’ve got Mr. Nod here.

Наши печальные новости заключаются в том, что нам придётся везти на Налик Нод… шестерых наших сотоварищей в состоянии клинической смерти.

The sad news is that we will be heading for Nalic Nod… with six of our co-workers in a state of permanent death.

Ну, Бланкет, а я Хоуди Дуди, а это мои друзья — Тимси, Винки и Нод.

Well, Blanket, I’m Howdy Doody, and these are my friends Timsy, Winky and Nod.

Я снимаю с тебя всю ответственность за воспитание юного Нода.

I absolve you of all further responsibility in the raising of young Nod.

Нод отстал, но все еще держится!

Nod is down but not out!

Показать ещё примеры для «nod»…

Сценарий Кого Нода и Ясудзиро Одзу

Screenplay by KOGO NODA and YASUJIRO OZU

Замки Нода и Нагасино пали.

Noda Castle and Nagashino Castle have fallen.

Нода и Нагасино пали.

Noda and Nagashino have fallen.

— Мистер Нода, мисс Тами. — Макс Майер.

Mr Noda, Miss Tami.

Мистер Нода, мисс Тами.

Mr Noda. Miss Tami.

Показать ещё примеры для «noda»…

Отправить комментарий

Понимаешь, я изгнал его не навсегда,

но до самой его смерти!

Знаешь, чем мы займемся?

Look. I don’t mean that he’s banished forever.

Just as long as he breathes.

Come on.

Он дал мне номер ЭйДжея и сказал, что я должна позвонить ему и ,если он сможет, встретиться попить кофе чтобы я могла набраться у него идей.

Ну, у Хьюго уже нечего расспрашивать Но, да, я позвонила ЭйДжею и я никогда бы не услышала его снова.

Я не думала, что он мне позвонит, но вот он только что был по телефону и он сказал, что если я буду в городе завтра около 1-00 он может встретиться со мной за чашечкой кофе.

— Well, Hugo’s brain, been picked clean. But, yeah, I called A.J. and I never heard back. I didn’t think he was gonna call me.

But that was him just now on the phone, and he said that if I was going to be in the city tomorrow around 1:00, he could meet me for coffee.

And I said, «Oh, well, as a matter of fact, I will be.» And he said something about a place on Ninth and I said, «Okay.»

Поднатаскай меня в учебе, я хочу поступить в университет.

Но до сих пор не выбрала, в какой именно.

Эй!

Help me to study. I want to go to university.

It has been difficult for me to decide which one.

Oi!

Это не твоя вина, что ты застряла на дежурстве во время визита сенатора Бёрка.

Но до тех пор, пока он остается на приеме в гостинице Мы все еще можем устроить свидание.

Джимми.

It’s not your faultyou got stuck on duty duringsenator burke’s visit.

But unless he makes a pit stop to thepole-dancing parlor Then we can stillmake it a date.

Jimmy.

И случись что, я посмотрю да посмеюсь.

Но до тех пор вокруг дикий Запад.

Да, Зои,.. …ты думала, с чего начать?

And when shit goes down I’ll sit back and laugh.

But until that day it’s Wild West motherfucker.

So Zoë you thought about what you want to do first?

Вы могли бы сказать, что он тоже внезапно изменился в одночасье?

Я как-то над этим не задумывался, но… да.

Примерно в то же время, что и Энди… месяца два назад.

Would you say that his personality suddenly changed one day, too?

I never thought about it that way, but… yes.

About the same time as andy — about two months ago.

Это потому что он уже проверил под ней.

Но, да, они существуют.

— Почти все существуют.

That’s ’cause he had already checked under there.

But, yeah, they’re real.

Almost everything’s real.

Мы можем подождать до трех.

Мы не сможем ждать весь день, но до трех подождем.

Эй, как там… Одна из моих лучших работ.

We can wait until 3:00.

We can’t wait all day, but we can wait until 3:00.

How’s the… some of my best work.

Ну сосал он хуй.

Но до этого он ведь был нашим другом.

Я не могу вот так кинуть его семью.

So he sucked a cock.

Prior to that, he was our friend.

Can’t just cut his family loose.

Здесь все уже упали.

Похоже, что это шутка, но до меня она не доходит.

Нет никакой шутки.

We just did.

I suppose there’s a joke in there somewhere, but I don’t get it.

There’s nothing to get.

Я — Гоножо, главный придворный Господина этих земель.

Я — Нода, придворный.

Мой господин приказал мне попросить вас сопроводить нас.

I am Gonnojo, Chief Attendant to the lord of this fief.

I am Noda, attendant.

Milord commands me to request that you accompany us.

— Потому, что я знаю, что Вы заинтересовались ею.

Я пытался не показывать этого, но, да, я очарован ею.

И, хотя я счастлив в браке, я нахожу Вас очень привлекательной.

…Because I know you’re interested in it.

I’ve been trying not to show it but, yeah, I’m fascinated by it.

And, despite being happily married, I also find you very attractive.

Это была просто глупая канцелярская ошибка.

Но, да, нет, я определенно… определенно иду. Звучит как круть.

Чёрт возьми, мне только пришло в голову.

It was just, like, a stupid clerical error.

But, um, yeah, no, I’m-I’m definitely… definitely going.

Um, hey, oh, my gosh, this just popped into my nogs.

Зик был соседом Аполлона по комнате на первом курсе.

Он говорит, что Аполлон рассказал ему все о своей жизни, но… до выхода в печать книги «Солдат несчастья

Что мне делать?

Zeke was Apollo’s roommate freshman year.

He says Apollo told him all about his life, But until «Soldier of misfortune» came out, Never included anything

So what should I do?

Вообще в Экон, Огайо.

Но дом — это где ты глава, что-то типа того, мой папа говорил всегда.

Oh, Боже, он так же мог сказать, что Америка — это планета.

Originally Akon, Ohio.

But home is where your hat is, that’s something my dad used to always say.

Oh, grace, he would also say that America is a planet.

— Ты уверена, что компьютер может победить меня?

— Мне все равно, но — да.

— Я докажу, что ты ошибаешься.

— You believe a computer can beat me?

— I don’t care, but yes.

— I’ll prove you wrong.

На самом деле, порой они даже кажутся дружелюбными.

Но до тех пор, пока не узнаешь их чуточку лучше.

Привет.

In fact, sometimes they even seem downright friendly.

That is, until you get to know them a little bit better.

Hey.

Теперь мы всегда будем вместе.

Но до полудня со мной нельзя разговаривать.

Я приноровлюсь.

— And from now on, we’ll be together forever.

But noone can talk to me ’til noon.

I’ll adjust myself.

— Ну давай же!

Хорошо, но до конца! Проигравший пьет!

Хуанг, давай!

C’mon, Old Huang, play!

Alright, but no getting out of it-the loser drinks up!

Old Huang, let’s do it!

Вы подумаете Бог написал чуть текста —

«Но до этого, здесь были динозавры которые были немного дерьмовые, поэтому нахуй их.»

Не так.

You’d think God would have grabbed some scribe —

«But before that there were dinosaurs «who were a bit crap so fuck ’em.»

Not in there.

— Нет. Уверен, что действовал один.

После того, как тело рассекли, но до того, как он упал, его прикончили этим ударом.

Искусный боец, однако.

I believe the assailant acted alone.

After the body cut, but before he fell he was finished off with a stab.

A deft swordsman, then.

А Сеймур будет помнить, как петь «Гуляю на солнышке»?

Это невероятно, но да.

Благодаря быстрой фоссилизации, я могу нажать эту кнопку сканирования мозга… и получить содержимое памяти Сеймура прямо перед его смертью.

So will Seymour remember how to sing «Walking on Sunshine»?

Amazingly, yes.

In cases of rapid fossilization, I can press this brain scan button… Retrieving Seymour’s memories at the precise instant of doggy death.

— По вашему мнению как эксперта, доктор, была бы Кейти так уязвима, … если бы её мать рассказал ей о сексе?

— Любая женщина может подвергнуться сексуальному нападению, но, да, Кейти оказалась наиболее уязвима,

— В центре, где занимается Кейти, проводятся уроки полового воспитания?

In your expert opinion, Doctor, would Katie have been as vulnerable if her mother had taught her about sex?

Any woman can be sexually assaulted, but, yes, Katie was more vulnerable to rape because she didn’t know what was happening to her.

Is sex education offered at Katie’s day program?

Эта женщина делает то, что я думаю?

Я не уверена на 100%, но… да, это обед.

Почему они это делают?

Is that woman doing what I think she’s doing?

Well, I can’t be a hundred percent sure, but… oh yeah, that’s lunch.

Why, why do they do this?

Это ты называешь «весельем»?

Ну, может быть, это не совпадает с твоим представлением о веселье, но — да.

Люди, познакомьтесь, это мои родители.

YOU CALL THIS FUN?

WELL, IT MAY NOT BE YOUR IDEA OF FUN, BUT… YES.

EVERYONE, I’D LIKE YOU TO MEET MY PARENTS… [ Mixed greetings ]

Здесь повсюду патрули Джаффа контролирующие как Латонцы соблюдают комендантский час.

Но, да, я могу отвести вас прямо к Мэрулу если хотите.

— Это пустая трата времени.

There are Jaffa patrols all over the place making sure the Latonans keep their curfew.

But I can take you straight to Marul if you want.

— That’s a waste of time.

Мы попытались исправить ошибку при создании Пятого.

Но до сих пор он показал, что слишком…

— Человечен?

We attempted to correct the error in the creation of Fifth.

But thus far he has proven to be far too…

— Human?

Ты что издеваешься?

Я давно не работала,.. …но до сих пор могу научить пользоваться кислородной маской лучше всех в мире

Пьер, мне нужна форма, «ту де сют».

Are you kidding?

It’s been a while, but I still give the best oxygen mask demo in the business.

Pierre, I need a uniform tout de suite.

Ведь когда-то это кончится, и я улечу в Ванкувер и увижу Изабел.

Но до этого надо было еще что-то делать.

Айво явно с трудом переносил этот период охлаждения между нами.

And when finished would Vancouver to see Isabel.

But there was something should do before.

Ivo lost patience by our cool-down period.

Они не нужны мне все сразу.

Приноси их каждый день, после захода солнца, но до рассвета.

В тот день, когда ты принесёшь сотую курицу, я превращу курицу обратно в Мунни.

I don’t want them all at once.

Get them for me everyday after sunset but before sunrise.

The day you complete the quota of one hundred hens… I shall turn the hen back to Munni.

Показать еще

  • Нод беседа по рассказу воронковой ссора с бабушкой
  • Ногти по английскому как пишется
  • Ногти на английском языке как пишется
  • Ногтевая студия сказка жулебино
  • Ногинск по английски как пишется