Ноль или нуль как правильно пишется в математике

Содержание

  • 1 Употребление слова нуль
    • 1.1   Примеры предложений
  • 2 Употребление слова ноль
    • 2.1   Примеры предложений
  • 3 Ошибочное написание
  • 4 Синонимы
  • 5 Заключение
  • 6 Правильно/неправильно пишется

Правописание числительных в различных формах, наверное, можно назвать особым разделом русского языка. К тому же, встречаются совсем хитрые случаи, когда один и тот же корень слова содержит в себе разные гласные в различных ситуациях. Из этого же разряда вопрос «Как правильно пишется: ноль или нуль»?
Ноль или нуль: как правильно пишется слово?

Прежде всего стоит отметить, что оба эти варианта употребляются в категориях измерения величины, а также умений и знаний человека. Значение слов ноль и нуль может быть следующим:

  • Число, которое на шкале цифр находится между 1 и — 1;
  • Единица измерения чего-либо;
  • Бесконечно малый параметр;
  • Отсутствие у человека компетенции в чем-либо.

Разберемся, можно ли счесть эти слова равнозначными, либо есть случаи, в которых уместен конкретный вариант написания.

Употребление слова нуль

Изначально, еще в эпоху правления Петра I, в русском языке появилась лексема нуль. Это слово, согласно разным источникам, было заимствовано из немецкого языка – Null, либо из голландского – nul. Похожее слово встречается и в итальянском – nulla, и в шведском языке – noll. Корень же следует искать в латыни – слово-прообраз nullius переводится как «ничтожный, ни один, никакой».

Однако традиции письменной речи XVIII века еще позволяли обозначать число нуль словом оном (онъ — это название буквы О в старославянском алфавите, и оно выбрано для этого случая из-за сходства данной буквы и числа 0).

Но уже с 1847 года в словарях появляются понятия нуль и ноль, причем указано, что значение у них одно.

Нуль — более старое, и, на сегодняшний момент, даже несколько архаичное понятие. Оно может придавать предложению налет староречного стиля.

Чаще всего оно используется в косвенных падежах – родительном, дательном, творительном и предложном. Также во множественном числе – однако, это не строгое правило. Если вместо нули вы напишете ноли, едва ли кто-то сочтет это ошибкой. Форма слова с буквой У встречается и в некоторых устойчивых словосочетаниях:

  • равняться нулю;
  • круглый нуль;
  • на нуле (температура воздуха);
  • на нуле кто-нибудь или что-нибудь (бензин на нуле);
  • нулевые годы;
  • нулевое окончание;
  • начать/начинать с нуля;
  • сводить(ся)/свести(сь) к нулю;
  • довести/доводить до нуля.

Кроме того, это слово может употребляться в переносном значении, а также добавлять в речь оттенки сильных эмоций:

  • «Да он просто нуль без палочки!»
  • «С деньгами у нас полный нуль!».

Нередко именно эта форма числительного используется в научной литературе.

  Примеры предложений

  1. По прогнозу сегодня будет около двадцати градусов ниже нуля.
  2. Таким отношением ты сводишь к нулю все мои старания.
  3. В этом коллективе не специалисты, а сплошные нули.
  4. Запасы провизии на нуле, а потому нам срочно нужно отправить водителя за продуктами.
  5. В этом квартале нам удалось досрочно погасить долги и довести баланс до нуля.

Употребление слова ноль

Слово ноль считается нейтральным в плане стилистики вариантом. В современном русском языке оно выглядит более привычно и не останавливает на себе взгляда, в отличие от второго варианта написания – нуль.

Чаще всего именно ноль мы пишем в именительном и винительном падежах: ноль рублей. Вообще, если буква О в этом слове стоит под ударением, то более благозвучным будет именно слово ноль.

Также именно этот вариант чаще звучит, когда речь идет о чем-то, что можно подвергнуть исчислению:

  • Ноль яблок в пакете;
  • Ноль градусов за окном;
  • Счет ноль-один;
  • Ноль часов десять минут.

В устойчивых словосочетаниях: ноль внимания, ноль без палочки, абсолютный ноль (термин из области математики).

Как видно, обе лексемы, о которых идет речь, в различных крылатых выражениях по большей мере закреплены избирательно.

  Примеры предложений

  1. Команда наших земляков обыграла гостей турнира со счетом два-ноль.
  2. Сегодня на улице ноль градусов и кое-где подтаял снег.
  3. Он так старался ей понравиться, а она просто — ноль внимания.
  4. В результате вычислений мы получили ноль.
  5. В этой сфере, надо сказать, я полный ноль.

Ошибочное написание

Поскольку лингвисты приводят понятия ноль и нуль как равнозначные, ошибкой будет считаться только путаница в устойчивых выражениях, в которых уже закреплен какой-либо вариант написания. Такие идиомы лучше знать наизусть.

Синонимы

А есть ли у рассматриваемого нами числительного синонимы? Конечно:

  • Пустота
  • Ничтожество
  • Цифра
  • Число
  • Никто
  • Ничто

Заключение

Интересно, что в русском языке есть и другие существительные, которые имеют вариативность гласных У и О. Например, «нумер» и «номер» (от латинского numerus). Сегодня первый вариант считается устаревшим, сохраняясь только в составе двух слов — «нумерация» и «нумерология». Также абсолютно синонимичны слова «тоннель» и «туннель».

Язык народа непрерывно развивается и претерпевает изменения. Некоторые слова со временем устаревают и уходят из употребления, и на их место приходят новые. Бывает, что конкретного правила для нормативного написания в данный момент не существует – просто верно пишется так, вот и все.

В этом случае очень выручают такие качества, как начитанность и насмотренность. Чтение помогает формировать навык грамотного письма, потому что развивает орфографическое чутье.

Правильно/неправильно пишется

Ноль

На табло счёт ноль-три!

Нуль

Мы совсем на нуле: нет денег даже на продукты.

«Ноль» и «нуль» являются равноправными вариантами одного и того же слова в русском языке. Это слово правильно пишется с буквой «о» или «у».

В живой речи часто употребляется «ноль» или «нуль», отчего возникает вопрос:

как правильно пишется это слово, с буквой «о» или «у», согласно правилу орфографии русского языка?

Как пишется правильно «нуль» или «ноль»?

Прежде чем выяснить это, определим, что это слово имеет латинское происхождение.  Латинское слово nulius буквально значит «никакой». В русском языке эта лексема имеет несколько значений:

  1. число, от прибавления или вычитания которого исходная величина остается прежней;
  2. цифровая отметка, с которой начинается исчисление каких-либо единиц (температура, время, очки в спорте и пр.);
  3. что-то бесконечно малое;
  4. незначительный в чем-то человек.

Как же правильно говорить:

  • ноль рублей или нуль рублей;
  • я ноль в математике или нуль в математике?

Согласно словарям в русском языке слова «ноль» и «нуль» являются абсолютно равноправными в обозначении величины и характеристики знаний и умений человека в какой-то области.

Ноль или нуль

Вывод

«Ноль» и «нуль» правильно пишутся с буквой «о» и «у» как варианты одного и того же слова.

Аналогично следует писать производные слова:

  • нолик и нулик;
  • нулевой и нолевой размер.

Отметим, что если разговор идет о величине чего-либо исчисляемого, то чаще употребляется слово «ноль»:

  • ноль рублей в кошельке;
  • ноль градусов;
  • счёт ноль-ноль;
  • ноль часов тридцать минут.

В устойчивых словосочетаниях отмечается избирательное употребление этих слов и их закрепленность в зависимости от смысла оборота. Проследим, как варианты анализируемого слова употребляются в устойчивых словосочетаниях русского языка:

  • ноль без палочки;
  • ноль внимания и фунт презрения;
  • стричь под ноль;
  • начинать с нуля;
  • абсолютный нуль;
  • круглый нуль;
  • сводить к нулю;
  • быть на нуле.

На наш взгляд, слово «нуль» чаще фигурирует в переносном значении.

Примеры

Вы знаете, у меня на счёте ноль рублей на данный момент.

Признаюсь вам, что я абсолютный нуль в математике, зато хорошо разбираюсь в автомобилях.

За окном градусник показывает ноль.

В юности я был круглый нуль в шахматной игре.

Автобус в Москву отправляется в ноль часов пятнадцать минут.

Вы считаете, что он ноль без палочки?

Средняя оценка: 4.9.
Проголосовало: 48

Как правильно пишется числительное: ноль или нуль

Краткая история числа «0″ в России

Числа 0 до Петра I не существовало. До этого древнерусские математики могли написать слово „оном“, так как 0 похож на букву „о“, и выписывали его тоже прописью. То есть отдельного знака не было, а иногда для его обозначения говорили просто „ничего“. Уже после введения термина он стал писаться через „у“, но с развитием языка вместо буквы „у“ начали произносить „о“. Слово „нуль“ пошло от немецкого null, а „ноль“ — от шведского nol». Но при этом обе формы пришли от латинского nullus — то есть «ничего».

Разница между вариантами

 Большой толковый словарь

В Большом толковом словаре Кузнецова оба слова равнозначны. В некоторых учебниках по математике и физике можно встретить и тот и другой вариант. Однако это не отвечает на вопрос, когда и как надо писать это слово.

На самом деле важно различать случаи, когда используются эти слова. Считается, что слово с «у» уже устаревает, выходит из употребления и в ближайшем времени перейдет в разряд архаизмов. Используется оно только в ряде идиом и в стилизованной под старину речи.

В качестве аналогии можно привести пару «номер» и «нумер» — если первое слово активно используется, то второе сохранилось только как часть двух слов — «нумерация» и «нумерология».

Употребление с «у»

Несмотря на то что форма «нуль» считается практически изжившей себя, есть ситуации, когда она уместна больше, чем вариант с «о». Числительное 0 с буквой «у» употребляют в следующих случаях:

  • В родительном, дательном, творительном и предложном падежах: выше нуля, о нуле.
  • В случаях, когда нужно подчеркнуть выразительность речи: «Почему вы такой нуль?!»
  • В математическом термине «нульмерность».
  • В устойчивых выражениях: быть равным нулю, абсолютный нуль (о человеке), нулевое окончание.

При склонении числительного по падежам буква «у» звучит привычно. Достаточно редко можно услышать, что кого-то обозначают нолём, или говорят, что рублей в кармане нуль.

Использование с «о»

Цифра пишется с «о» во всех остальных случаях. Исключение могут составлять все те же идиомы, где «о» будет звучать непривычно, и стилизация под старинную речь, где «о» будет неуместна:

  • В именительном и винительном падежах в обычной речи: ноль копеек.
  • В ситуации, когда нужно подчеркнуть бессмысленность кого-то или чего-то: полный ноль.
  • В устойчивых выражениях: ноль внимания, ноль без палочки, абсолютный ноль (математический термин).

Как писать ноль или нуль

Однокоренные слова нулик/нолик, нулевой/нолевой при использовании вне идиом имеют одинаковое значение и используются так, как удобно.

Современная форма слова намного легче воспринимается при общении. Тем не менее в разговорной речи замена одного варианта другим не так уж страшна, особенно когда нужно, чтобы фраза стала более экспрессивной.

Устаревший вариант произношения в современном языке сохраняется по большей части благодаря идиомам. Однако и они со временем могут меняться: например, в словосочетании, которое изначально звучало как «стрижка под нуль», сейчас произносят «под ноль». Поэтому вполне вероятно, что через некоторое время в русском языке останется только один возможный вариант написания и произнесения числительного. Но пока этого не произошло, нужно руководствоваться при выборе контекстом, в котором оно употребляется.

“Ноль” и “нуль” – правильное написание цифры в разных случаях

Содержание

  • 1 Происхождение слов «ноль» и «нуль»
  • 2 Когда пишется «нуль»
  • 3 Когда пишется «ноль»
  • 4 Какое правило применяется
  • 5 Примеры предложений
  • 6 Как неправильно писать
  • 7 Итоги

При написании цифры «0» часто возникает дилемма — как правильно писать «ноль» или «нуль». Если исходить из информации в словарях русского языка, оба варианта могут применяться в обозначении величины, умений, знаний человека. Но в большинстве случаев применяется слово с «о», а вариант с «у» используется в безударных формах. Рассмотрим эти моменты подробно.

Происхождение слов «ноль» и «нуль»

происхождение слова

Расшифровка термина в русском языке имеет несколько характеристик:

  • полученное в результате вычислений число;
  • единица измерения времени, очков, температуры и т. д;
  • бесконечно малый параметр;
  • незначительность в чем-либо.

“На лево” или “налево” – какой вариант написания верный? Ответ можно узнать здесь.

Когда пишется «нуль»

В большинстве случаев буква «у» употребляется, если на нее не попадает ударение. К примеру, при выборе между «нули» или «ноли» предпочтение отдается первому варианту. Также имеется ряд устойчивых выражений, в которых по привычной практике употребляется буква «у». Эти фразы необходимо запомнить:

  • свести к нулю;
  • нулевые годы;
  • показатель на нуле;
  • начать с нуля;
  • нулевой;
  • остричь под нуль;
  • довести до нуля и т. д.

Если вместе со словом употребляется «сводить к», «свести, свестись», «быть равным» прочие выражения, употребляется «у».

Когда пишется «ноль»

важное правило

Какое правило применяется

Если возникают сомнения при написании «ноль» или «нуль», стоит поднять словарь Ушакова. В нем оба слова имеют одинаковое определение:

  • наиболее низкий бал при обучении (применялся до революции);
  • отсутствие величины;
  • шутливое выражение два ноля;
  • отсутствие значения человека;
  • снижение значимости.

Многие лингвисты не видят разницы между вариантами «с нуля» или «с ноля». Они считают, что оба значения равнозначны. Слово с «у» постепенно устаревает и применяется реже. Появляется ощущение недопустимости использования формулировки в определенных контекстах. Но в случае применения других форм ситуация меняется. Так, при выборе между «по нулям» или «по нулям», предпочтение отдается второму способу написания.

Слово «ноль» является основной формы, а «нуль» применяется в редких случаях. В словах, когда ударение попадает на другую гласную, применяется только «у». Это объясняется невозможностью замены «о» на «а» при изменении формы слова.

Примеры предложений

Для закрепления варианта написания при выборе между «нулей» или «нолей» и иными формами приведем несколько вариантов:

  1. «С завтрашнего дня начинаю жить с нуля».
  2. «Сегодня на улице ноль градусов, поэтому необходимо одеться теплее».
  3. «Температура опустилась ниже нуля. Это означает, что на дорогах будет гололедица».

примеры

Как неправильно писать

С учетом сказанного легко подвести итог, как писать неправильно. Если буква «о» находится под ударением, рекомендуется писать ее. Слово «нуль» также употребляется, но оно является устаревшим и применяется реже. В редких случаях это допустимо, когда речь идет об идиомах, к примеру, «стричь под нуль».

Если речь идет об изменении формы, используется «о». К примеру, при выборе между выше «ноля» или «нуля», неправильным является первый вариант. Эту особенность необходимо запомнить, чтобы в дальнейшем не допускать ошибок в правописании.

Любители добраться до истины часто спрашивают, как пишется «немного». Если вы тоже хотите знать ответ на этот вопрос, то переходите в следующую статью нашего сайта. Развивайтесь вместе с нами!

Итоги

Во избежание путаницы в написании при наличии ударения на проблемную букву пишите «о». Исключением является несколько идиом, которые все реже применяются в русской речи. Когда слог открытый, «о» сменяется на «у». К примеру, между начать с «ноля» или «нуля» правильным считается второй вариант.

Оценка статьи:

1 звезда2 звезды3 звезды4 звезды5 звезд (голосов: 2, средняя оценка: 3,50 из 5)

Загрузка…

This article is about the number and digit 0. Not to be confused with the letter O or the O mark used to represent affirmation.

← −1 0 1 →

−1 0 1 2 3 4 5 6 7 8 9 →

  • List of numbers
  • Integers

← 0 10 20 30 40 50 60 70 80 90 →

Cardinal 0, zero, «oh» (), nought, naught, nil
Ordinal Zeroth, noughth, 0th
Binary 02
Ternary 03
Senary 06
Octal 08
Duodecimal 012
Hexadecimal 016
Arabic, Kurdish, Persian, Sindhi, Urdu ٠
Hindu Numerals
Chinese 零, 〇
Khmer
Thai
Bangla

0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usually by 10. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures.

Common names for the number 0 in English are zero, nought, naught (), nil. In contexts where at least one adjacent digit distinguishes it from the letter O, the number is sometimes pronounced as oh or o (). Informal or slang terms for 0 include zilch and zip. Historically, ought, aught (), and cipher, have also been used.

Etymology

The word zero came into the English language via French zéro from the Italian zero, a contraction of the Venetian zevero form of Italian zefiro via ṣafira or ṣifr.[1] In pre-Islamic time the word ṣifr (Arabic صفر) had the meaning «empty».[2] Sifr evolved to mean zero when it was used to translate śūnya (Sanskrit: शून्य) from India.[2] The first known English use of zero was in 1598.[3]

The Italian mathematician Fibonacci (c. 1170–1250), who grew up in North Africa and is credited with introducing the decimal system to Europe, used the term zephyrum. This became zefiro in Italian, and was then contracted to zero in Venetian. The Italian word zefiro was already in existence (meaning «west wind» from Latin and Greek zephyrus) and may have influenced the spelling when transcribing Arabic ṣifr.[4]

Modern usage

Depending on the context, there may be different words used for the number zero, or the concept of zero. For the simple notion of lacking, the words «nothing» and «none» are often used. Sometimes, the word «nought» or «naught» is used.

It is often called «oh» in the context of reading out a string of digits, such as telephone numbers, street addresses, credit card numbers, military time, or years (e.g. the area code 201 would be pronounced «two oh one»; a year such as 1907 is often pronounced «nineteen oh seven»). The presence of other digits, indicating that the string contains only numbers, avoids confusion with the letter O. For this reason, systems that include strings with both letters and numbers (e.g. Canadian postal codes) may exclude the use of the letter O.

Slang words for zero include «zip», «zilch», «nada», and «scratch».[5]

«Nil» is used for many sports in British English. Several sports have specific words for a score of zero, such as «love» in tennis – from French l’oeuf, «the egg» – and «duck» in cricket, a shortening of «duck’s egg»; «goose egg» is another general slang term used for zero.[5]

History

Ancient Near East

nfr
 
heart with trachea
beautiful, pleasant, good

F35

Ancient Egyptian numerals were of base 10.[6] They used hieroglyphs for the digits and were not positional. By 1770 BC, the Egyptians had a symbol for zero in accounting texts. The symbol nfr, meaning beautiful, was also used to indicate the base level in drawings of tombs and pyramids, and distances were measured relative to the base line as being above or below this line.[7]

By the middle of the 2nd millennium BC, the Babylonian mathematics had a sophisticated base 60 positional numeral system. The lack of a positional value (or zero) was indicated by a space between sexagesimal numerals. In a tablet unearthed at Kish (dating to as early as 700 BC), the scribe Bêl-bân-aplu used three hooks as a placeholder in the same Babylonian system.[8] By 300 BC, a punctuation symbol (two slanted wedges) was co-opted to serve as this placeholder.[9][10]

The Babylonian placeholder was not a true zero because it was not used alone, nor was it used at the end of a number. Thus numbers like 2 and 120 (2×60), 3 and 180 (3×60), 4 and 240 (4×60) looked the same, because the larger numbers lacked a final sexagesimal placeholder. Only context could differentiate them.[citation needed]

Pre-Columbian Americas

The Mesoamerican Long Count calendar developed in south-central Mexico and Central America required the use of zero as a placeholder within its vigesimal (base-20) positional numeral system. Many different glyphs, including the partial quatrefoil were used as a zero symbol for these Long Count dates, the earliest of which (on Stela 2 at Chiapa de Corzo, Chiapas) has a date of 36 BC.[a]

Since the eight earliest Long Count dates appear outside the Maya homeland,[11] it is generally believed that the use of zero in the Americas predated the Maya and was possibly the invention of the Olmecs.[12] Many of the earliest Long Count dates were found within the Olmec heartland, although the Olmec civilization ended by the 4th century BC, several centuries before the earliest known Long Count dates.

Although zero became an integral part of Maya numerals, with a different, empty tortoise-like «shell shape» used for many depictions of the «zero» numeral, it is assumed not to have influenced Old World numeral systems.

Quipu, a knotted cord device, used in the Inca Empire and its predecessor societies in the Andean region to record accounting and other digital data, is encoded in a base ten positional system. Zero is represented by the absence of a knot in the appropriate position.

Classical antiquity

The ancient Greeks had no symbol for zero (μηδέν), and did not use a digit placeholder for it.[13] According to mathematician Charles Seife, the ancient Greeks did begin to adopt the Babylonian placeholder zero for their work in astronomy after 500 BC, representing it with the lowercase Greek letter ό (όμικρον) or omicron.[14] However, after using the Babylonian placeholder zero for astronomical calculations they would typically convert the numbers back into Greek numerals.[14] Greeks seemed to have a philosophical opposition to using zero as a number.[14] Other scholars give the Greek partial adoption of the Babylonian zero a later date, with the scientist Andreas Nieder giving a date of after 400 BC and the mathematician Robert Kaplan dating it after the conquests of Alexander.[15][16]

Greeks seemed unsure about the status of zero as a number. Some of them asked themselves, «How can not being be?», leading to philosophical and, by the medieval period, religious arguments about the nature and existence of zero and the vacuum. The paradoxes of Zeno of Elea depend in large part on the uncertain interpretation of zero.[17]

Fragment of papyrus with clear Greek script, lower-right corner suggests a tiny zero with a double-headed arrow shape above it

Example of the early Greek symbol for zero (lower right corner) from a 2nd-century papyrus

By AD 150, Ptolemy, influenced by Hipparchus and the Babylonians, was using a symbol for zero (°)[18][19] in his work on mathematical astronomy called the Syntaxis Mathematica, also known as the Almagest.[20] This Hellenistic zero was perhaps the earliest documented use of a numeral representing zero in the Old World.[21] Ptolemy used it many times in his Almagest (VI.8) for the magnitude of solar and lunar eclipses. It represented the value of both digits and minutes of immersion at first and last contact. Digits varied continuously from 0 to 12 to 0 as the Moon passed over the Sun (a triangular pulse), where twelve digits was the angular diameter of the Sun. Minutes of immersion was tabulated from 00″ to 3120″ to 00″, where 00″ used the symbol as a placeholder in two positions of his sexagesimal positional numeral system,[b] while the combination meant a zero angle. Minutes of immersion was also a continuous function 1/12 3120″ d(24−d) (a triangular pulse with convex sides), where d was the digit function and 3120″ was the sum of the radii of the Sun’s and Moon’s discs.[22] Ptolemy’s symbol was a placeholder as well as a number used by two continuous mathematical functions, one within another, so it meant zero, not none.

The earliest use of zero in the calculation of the Julian Easter occurred before AD 311, at the first entry in a table of epacts as preserved in an Ethiopic document for the years AD 311 to 369, using a Ge’ez word for «none» (English translation is «0» elsewhere) alongside Ge’ez numerals (based on Greek numerals), which was translated from an equivalent table published by the Church of Alexandria in Medieval Greek.[23] This use was repeated in AD 525 in an equivalent table, that was translated via the Latin nulla or «none» by Dionysius Exiguus, alongside Roman numerals.[24] When division produced zero as a remainder, nihil, meaning «nothing», was used. These medieval zeros were used by all future medieval calculators of Easter. The initial «N» was used as a zero symbol in a table of Roman numerals by Bede—or his colleagues—around AD 725.[25]

China

Five illustrated boxes from left to right contain a T-shape, an empty box, three vertical bars, three lower horizontal bars with an inverted wide T-shape above, and another empty box. Numerals underneath left to right are six, zero, three, nine, and zero

This is a depiction of zero expressed in Chinese counting rods, based on the example provided by A History of Mathematics. An empty space is used to represent zero.[26]

The Sūnzĭ Suànjīng, of unknown date but estimated to be dated from the 1st to 5th centuries AD, and Japanese records dated from the 18th century, describe how the c. 4th century BC Chinese counting rods system enabled one to perform decimal calculations. As noted in Xiahou Yang’s Suanjing (425–468 AD) that states that to multiply or divide a number by 10, 100, 1000, or 10000, all one needs to do, with rods on the counting board, is to move them forwards, or back, by 1, 2, 3, or 4 places,[27] According to A History of Mathematics, the rods «gave the decimal representation of a number, with an empty space denoting zero».[26] The counting rod system is considered a positional notation system.[28]

In AD 690, Empress Wǔ promulgated Zetian characters, one of which was «〇»; originally meaning ‘star’, it subsequently[when?] came to represent zero.

Zero was not treated as a number at that time, but as a «vacant position».[29] Qín Jiǔsháo’s 1247 Mathematical Treatise in Nine Sections is the oldest surviving Chinese mathematical text using a round symbol for zero.[30] Chinese authors had been familiar with the idea of negative numbers by the Han Dynasty (2nd century AD), as seen in The Nine Chapters on the Mathematical Art.[31]

India

Pingala (c. 3rd/2nd century BC[32]), a Sanskrit prosody scholar,[33] used binary numbers in the form of short and long syllables (the latter equal in length to two short syllables), a notation similar to Morse code.[34] Pingala used the Sanskrit word śūnya explicitly to refer to zero.[32]

The concept of zero as a written digit in the decimal place value notation was developed in India.[35] A symbol for zero, a large dot likely to be the precursor of the still-current hollow symbol, is used throughout the Bakhshali manuscript, a practical manual on arithmetic for merchants.[36] In 2017, three samples from the manuscript were shown by radiocarbon dating to come from three different centuries: from AD 224–383, AD 680–779, and AD 885–993, making it South Asia’s oldest recorded use of the zero symbol. It is not known how the birch bark fragments from different centuries forming the manuscript came to be packaged together.[37][38][39]

The Lokavibhāga, a Jain text on cosmology surviving in a medieval Sanskrit translation of the Prakrit original, which is internally dated to AD 458 (Saka era 380), uses a decimal place-value system, including a zero. In this text, śūnya («void, empty») is also used to refer to zero.[40]

The Aryabhatiya (c. 500), states sthānāt sthānaṁ daśaguṇaṁ syāt «from place to place each is ten times the preceding».[41][42][43]

Rules governing the use of zero appeared in Brahmagupta’s Brahmasputha Siddhanta (7th century), which states the sum of zero with itself as zero, and incorrectly division by zero as:[44][45]

A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero.

Epigraphy

script from left to right with a one and a half rotation swirl, a large dot, and a stretched-bent swirl

The number 605 in Khmer numerals, from the Sambor inscription (Saka era 605 corresponds to AD 683). The earliest known material use of zero as a decimal figure.

A black dot is used as a decimal placeholder in the Bakhshali manuscript, portions of which date from AD 224–993.[46]

There are numerous copper plate inscriptions, with the same small o in them, some of them possibly dated to the 6th century, but their date or authenticity may be open to doubt.[8]

A stone tablet found in the ruins of a temple near Sambor on the Mekong, Kratié Province, Cambodia, includes the inscription of «605» in Khmer numerals (a set of numeral glyphs for the Hindu–Arabic numeral system). The number is the year of the inscription in the Saka era, corresponding to a date of AD 683.[47]

The first known use of special glyphs for the decimal digits that includes the indubitable appearance of a symbol for the digit zero, a small circle, appears on a stone inscription found at the Chaturbhuj Temple, Gwalior, in India, dated 876.[48][49]

Middle Ages

Transmission to Islamic culture

The Arabic-language inheritance of science was largely Greek,[50] followed by Hindu influences.[51] In 773, at Al-Mansur’s behest, translations were made of many ancient treatises including Greek, Roman, Indian, and others.

In AD 813, astronomical tables were prepared by a Persian mathematician, Muḥammad ibn Mūsā al-Khwārizmī, using Hindu numerals;[51] and about 825, he published a book synthesizing Greek and Hindu knowledge and also contained his own contribution to mathematics including an explanation of the use of zero.[52] This book was later translated into Latin in the 12th century under the title Algoritmi de numero Indorum. This title means «al-Khwarizmi on the Numerals of the Indians». The word «Algoritmi» was the translator’s Latinization of Al-Khwarizmi’s name, and the word «Algorithm» or «Algorism» started to acquire a meaning of any arithmetic based on decimals.[51]

Muhammad ibn Ahmad al-Khwarizmi, in 976, stated that if no number appears in the place of tens in a calculation, a little circle should be used «to keep the rows». This circle was called ṣifr.[53]

Transmission to Europe

The Hindu–Arabic numeral system (base 10) reached Western Europe in the 11th century, via Al-Andalus, through Spanish Muslims, the Moors, together with knowledge of classical astronomy and instruments like the astrolabe; Gerbert of Aurillac is credited with reintroducing the lost teachings into Catholic Europe. For this reason, the numerals came to be known in Europe as «Arabic numerals». The Italian mathematician Fibonacci or Leonardo of Pisa was instrumental in bringing the system into European mathematics in 1202, stating:

After my father’s appointment by his homeland as state official in the customs house of Bugia for the Pisan merchants who thronged to it, he took charge; and in view of its future usefulness and convenience, had me in my boyhood come to him and there wanted me to devote myself to and be instructed in the study of calculation for some days. There, following my introduction, as a consequence of marvelous instruction in the art, to the nine digits of the Hindus, the knowledge of the art very much appealed to me before all others, and for it I realized that all its aspects were studied in Egypt, Syria, Greece, Sicily, and Provence, with their varying methods; and at these places thereafter, while on business. I pursued my study in depth and learned the give-and-take of disputation. But all this even, and the algorism, as well as the art of Pythagoras, I considered as almost a mistake in respect to the method of the Hindus (Modus Indorum). Therefore, embracing more stringently that method of the Hindus, and taking stricter pains in its study, while adding certain things from my own understanding and inserting also certain things from the niceties of Euclid’s geometric art. I have striven to compose this book in its entirety as understandably as I could, dividing it into fifteen chapters. Almost everything which I have introduced I have displayed with exact proof, in order that those further seeking this knowledge, with its pre-eminent method, might be instructed, and further, in order that the Latin people might not be discovered to be without it, as they have been up to now. If I have perchance omitted anything more or less proper or necessary, I beg indulgence, since there is no one who is blameless and utterly provident in all things. The nine Indian figures are: 9 8 7 6 5 4 3 2 1. With these nine figures, and with the sign 0  … any number may be written.[54][55][56]

Here Leonardo of Pisa uses the phrase «sign 0», indicating it is like a sign to do operations like addition or multiplication. From the 13th century, manuals on calculation (adding, multiplying, extracting roots, etc.) became common in Europe where they were called algorismus after the Persian mathematician al-Khwārizmī. The most popular was written by Johannes de Sacrobosco, about 1235 and was one of the earliest scientific books to be printed in 1488. Until the late 15th century, Hindu–Arabic numerals seem to have predominated among mathematicians, while merchants preferred to use the Roman numerals. In the 16th century, they became commonly used in Europe.

Mathematics

0 is the integer immediately preceding 1. Zero is an even number[57] because it is divisible by 2 with no remainder. 0 is neither positive nor negative,[58] or both positive and negative.[59] Many definitions[60] include 0 as a natural number, in which case it is the only natural number that is not positive. Zero is a number which quantifies a count or an amount of null size. In most cultures, 0 was identified before the idea of negative things (i.e., quantities less than zero) was accepted.

As a value or a number, zero is not the same as the digit zero, used in numeral systems with positional notation. Successive positions of digits have higher weights, so the digit zero is used inside a numeral to skip a position and give appropriate weights to the preceding and following digits. A zero digit is not always necessary in a positional number system (e.g., the number 02). In some instances, a leading zero may be used to distinguish a number.

Elementary algebra

The number 0 is the smallest non-negative integer. The natural number following 0 is 1 and no natural number precedes 0. The number 0 may or may not be considered a natural number, but it is an integer, and hence a rational number and a real number (as well as an algebraic number and a complex number).

The number 0 is neither positive nor negative, and is usually displayed as the central number in a number line. It is neither a prime number nor a composite number. It cannot be prime because it has an infinite number of factors, and cannot be composite because it cannot be expressed as a product of prime numbers (as 0 must always be one of the factors).[61] Zero is, however, even (i.e. a multiple of 2, as well as being a multiple of any other integer, rational, or real number).

The following are some basic (elementary) rules for dealing with the number 0. These rules apply for any real or complex number x, unless otherwise stated.

  • Addition: x + 0 = 0 + x = x. That is, 0 is an identity element (or neutral element) with respect to addition.
  • Subtraction: x − 0 = x and 0 − x = −x.
  • Multiplication: x · 0 = 0 · x = 0.
  • Division: 0/x = 0, for nonzero x. But x/0 is undefined, because 0 has no multiplicative inverse (no real number multiplied by 0 produces 1), a consequence of the previous rule.
  • Exponentiation: x0 = x/x = 1, except that the case x = 0 may be left undefined in some contexts. For all positive real x, 0x = 0.

The expression 0/0, which may be obtained in an attempt to determine the limit of an expression of the form f(x)/g(x) as a result of applying the lim operator independently to both operands of the fraction, is a so-called «indeterminate form». That does not mean that the limit sought is necessarily undefined; rather, it means that the limit of f(x)/g(x), if it exists, must be found by another method, such as l’Hôpital’s rule.

The sum of 0 numbers (the empty sum) is 0, and the product of 0 numbers (the empty product) is 1. The factorial 0! evaluates to 1, as a special case of the empty product.

Other branches of mathematics

The empty set has zero elements

  • In set theory, 0 is the cardinality of the empty set: if one does not have any apples, then one has 0 apples. In fact, in certain axiomatic developments of mathematics from set theory, 0 is defined to be the empty set. When this is done, the empty set is the von Neumann cardinal assignment for a set with no elements, which is the empty set. The cardinality function, applied to the empty set, returns the empty set as a value, thereby assigning it 0 elements.
  • Also in set theory, 0 is the lowest ordinal number, corresponding to the empty set viewed as a well-ordered set.
  • In propositional logic, 0 may be used to denote the truth value false.
  • In abstract algebra, 0 is commonly used to denote a zero element, which is a neutral element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined).
  • In lattice theory, 0 may denote the bottom element of a bounded lattice.
  • In category theory, 0 is sometimes used to denote an initial object of a category.
  • In recursion theory, 0 can be used to denote the Turing degree of the partial computable functions.

  • A zero of a function f is a point x in the domain of the function such that f(x) = 0. When there are finitely many zeros these are called the roots of the function. This is related to zeros of a holomorphic function.
  • The zero function (or zero map) on a domain D is the constant function with 0 as its only possible output value, i.e., the function f defined by f(x) = 0 for all x in D. The zero function is the only function that is both even and odd. A particular zero function is a zero morphism in category theory; e.g., a zero map is the identity in the additive group of functions. The determinant on non-invertible square matrices is a zero map.
  • Several branches of mathematics have zero elements, which generalize either the property 0 + x = x, or the property 0 · x = 0, or both.

Physics

The value zero plays a special role for many physical quantities. For some quantities, the zero level is naturally distinguished from all other levels, whereas for others it is more or less arbitrarily chosen. For example, for an absolute temperature (as measured in kelvins), zero is the lowest possible value (negative temperatures are defined, but negative-temperature systems are not actually colder). This is in contrast to for example temperatures on the Celsius scale, where zero is arbitrarily defined to be at the freezing point of water. Measuring sound intensity in decibels or phons, the zero level is arbitrarily set at a reference value—for example, at a value for the threshold of hearing. In physics, the zero-point energy is the lowest possible energy that a quantum mechanical physical system may possess and is the energy of the ground state of the system.

Chemistry

Zero has been proposed as the atomic number of the theoretical element tetraneutron. It has been shown that a cluster of four neutrons may be stable enough to be considered an atom in its own right. This would create an element with no protons and no charge on its nucleus.

As early as 1926, Andreas von Antropoff coined the term neutronium for a conjectured form of matter made up of neutrons with no protons, which he placed as the chemical element of atomic number zero at the head of his new version of the periodic table. It was subsequently placed as a noble gas in the middle of several spiral representations of the periodic system for classifying the chemical elements.

Computer science

The most common practice throughout human history has been to start counting at one, and this is the practice in early classic computer programming languages such as Fortran and COBOL. However, in the late 1950s LISP introduced zero-based numbering for arrays while Algol 58 introduced completely flexible basing for array subscripts (allowing any positive, negative, or zero integer as base for array subscripts), and most subsequent programming languages adopted one or other of these positions. For example, the elements of an array are numbered starting from 0 in C, so that for an array of n items the sequence of array indices runs from 0 to n−1.

There can be confusion between 0- and 1-based indexing; for example, Java’s JDBC indexes parameters from 1 although Java itself uses 0-based indexing.[62]

In databases, it is possible for a field not to have a value. It is then said to have a null value.[63] For numeric fields it is not the value zero. For text fields this is not blank nor the empty string. The presence of null values leads to three-valued logic. No longer is a condition either true or false, but it can be undetermined. Any computation including a null value delivers a null result.[64]

A null pointer is a pointer in a computer program that does not point to any object or function. In C, the integer constant 0 is converted into the null pointer at compile time when it appears in a pointer context, and so 0 is a standard way to refer to the null pointer in code. However, the internal representation of the null pointer may be any bit pattern (possibly different values for different data types).[citation needed]

In mathematics, −0 and +0 is equivalent to 0; both −0 and +0 represent exactly the same number, i.e., there is no «positive zero» or «negative zero» distinct from zero. However, in some computer hardware signed number representations, zero has two distinct representations, a positive one grouped with the positive numbers and a negative one grouped with the negatives; this kind of dual representation is known as signed zero, with the latter form sometimes called negative zero. These representations include the signed magnitude and one’s complement binary integer representations (but not the two’s complement binary form used in most modern computers), and most floating-point number representations (such as IEEE 754 and IBM S/390 floating-point formats).

In binary, 0 represents the value for «off», which means no electricity flow.[65]

Zero is the value of false in many programming languages.

The Unix epoch (the date and time associated with a zero timestamp) begins the midnight before the first of January 1970.[66][67][68]

The Classic Mac OS epoch and Palm OS epoch (the date and time associated with a zero timestamp) begins the midnight before the first of January 1904.[69]

Many APIs and operating systems that require applications to return an integer value as an exit status typically use zero to indicate success and non-zero values to indicate specific error or warning conditions.

Programmers often use a slashed zero to avoid confusion with the letter «O».[70]

Other fields

  • In comparative zoology and cognitive science, recognition that some animals display awareness of the concept of zero leads to the conclusion that the capability for numerical abstraction arose early in the evolution of species.[71]
  • In telephony, pressing 0 is often used for dialling out of a company network or to a different city or region, and 00 is used for dialling abroad. In some countries, dialling 0 places a call for operator assistance.
  • DVDs that can be played in any region are sometimes referred to as being «region 0»
  • Roulette wheels usually feature a «0» space (and sometimes also a «00» space), whose presence is ignored when calculating payoffs (thereby allowing the house to win in the long run).
  • In Formula One, if the reigning World Champion no longer competes in Formula One in the year following their victory in the title race, 0 is given to one of the drivers of the team that the reigning champion won the title with. This happened in 1993 and 1994, with Damon Hill driving car 0, due to the reigning World Champion (Nigel Mansell and Alain Prost respectively) not competing in the championship.
  • On the U.S. Interstate Highway System, in most states exits are numbered based on the nearest milepost from the highway’s western or southern terminus within that state. Several that are less than half a mile (800 m) from state boundaries in that direction are numbered as Exit 0.

Symbols and representations

horizontal guidelines with a zero touching top and bottom, a three dipping below, and a six cresting above the guidelines, from left to right

The modern numerical digit 0 is usually written as a circle or ellipse. Traditionally, many print typefaces made the capital letter O more rounded than the narrower, elliptical digit 0.[72] Typewriters originally made no distinction in shape between O and 0; some models did not even have a separate key for the digit 0. The distinction came into prominence on modern character displays.[72]

A slashed zero ({displaystyle 0!!!{/}}) can be used to distinguish the number from the letter (mostly used in computing, navigation and in the military). The digit 0 with a dot in the center seems to have originated as an option on IBM 3270 displays and has continued with some modern computer typefaces such as Andalé Mono, and in some airline reservation systems. One variation uses a short vertical bar instead of the dot. Some fonts designed for use with computers made one of the capital-O–digit-0 pair more rounded and the other more angular (closer to a rectangle). A further distinction is made in falsification-hindering typeface as used on German car number plates by slitting open the digit 0 on the upper right side. In some systems either the letter O or the numeral 0, or both, are excluded from use, to avoid confusion.

Year label

In the BC calendar era, the year 1 BC is the first year before AD 1; there is not a year zero. By contrast, in astronomical year numbering, the year 1 BC is numbered 0, the year 2 BC is numbered −1, and so forth.[73]

See also

  • Brahmagupta
  • Aryabhata
  • Division by zero
  • Grammatical number
  • Gwalior Fort
  • Mathematical constant
  • Number theory
  • Peano axioms
  • Signed zero

Notes

  1. ^ No long count date actually using the number 0 has been found before the 3rd century AD, but since the long count system would make no sense without some placeholder, and since Mesoamerican glyphs do not typically leave empty spaces, these earlier dates are taken as indirect evidence that the concept of 0 already existed at the time.
  2. ^ Each place in Ptolemy’s sexagesimal system was written in Greek numerals from 0 to 59, where 31 was written λα meaning 30+1, and 20 was written κ meaning 20.

References

  1. ^ See:
    • Douglas Harper (2011), Zero Archived 3 July 2017 at the Wayback Machine, Etymology Dictionary, Quote=»figure which stands for naught in the Arabic notation,» also «the absence of all quantity considered as quantity», c. 1600, from French zéro or directly from Italian zero, from Medieval Latin zephirum, from Arabic sifr «cipher», translation of Sanskrit sunya-m «empty place, desert, naught»;
    • Menninger, Karl (1992). Number words and number symbols: a cultural history of numbers. Courier Dover Publications. pp. 399–404. ISBN 978-0-486-27096-8. Archived from the original on 25 April 2016. Retrieved 5 January 2016.;
    • «zero, n.» OED Online. Oxford University Press. December 2011. Archived from the original on 7 March 2012. Retrieved 4 March 2012. French zéro (1515 in Hatzfeld & Darmesteter) or its source Italian zero, for *zefiro, < Arabic çifr

  2. ^ a b See:
    • Smithsonian Institution, Oriental Elements of Culture in the Occident, p. 518, at Google Books, Annual Report of the Board of Regents of the Smithsonian Institution; Harvard University Archives, Quote=»Sifr occurs in the meaning of «empty» even in the pre-Islamic time. … Arabic sifr in the meaning of zero is a translation of the corresponding India sunya.»;
    • Jan Gullberg (1997), Mathematics: From the Birth of Numbers, W.W. Norton & Co., ISBN 978-0-393-04002-9, p. 26, Quote = Zero derives from Hindu sunya – meaning void, emptiness – via Arabic sifr, Latin cephirum, Italian zevero.;
    • Robert Logan (2010), The Poetry of Physics and the Physics of Poetry, World Scientific, ISBN 978-981-4295-92-5, p. 38, Quote = The idea of sunya and place numbers was transmitted to the Arabs who translated sunya or «leave a space» into their language as sifr.

  3. ^ Zero Archived 6 December 2017 at the Wayback Machine, Merriam Webster online Dictionary
  4. ^ Ifrah, Georges (2000). The Universal History of Numbers: From Prehistory to the Invention of the Computer. Wiley. ISBN 978-0-471-39340-5.
  5. ^ a b ‘Aught’ synonyms Archived 23 August 2014 at the Wayback Machine, Thesaurus.com – Retrieved April 2013.
  6. ^ «Egyptian numerals». mathshistory.st-andrews.ac.uk. Archived from the original on 15 November 2019. Retrieved 21 December 2019.
  7. ^ Joseph, George Gheverghese (2011). The Crest of the Peacock: Non-European Roots of Mathematics (Third ed.). Princeton UP. p. 86. ISBN 978-0-691-13526-7.
  8. ^ a b Kaplan, Robert. (2000). The Nothing That Is: A Natural History of Zero. Oxford: Oxford University Press.
  9. ^ «Zero». Maths History. Archived from the original on 21 September 2021. Retrieved 7 September 2021.
  10. ^ «Babylonian mathematics: View as single page». www.open.edu. Archived from the original on 7 September 2021. Retrieved 7 September 2021.
  11. ^ Diehl, p. 186
  12. ^ Mortaigne, Véronique (28 November 2014). «The golden age of Mayan civilisation – exhibition review». The Guardian. Archived from the original on 28 November 2014. Retrieved 10 October 2015.
  13. ^ Wallin, Nils-Bertil (19 November 2002). «The History of Zero». YaleGlobal online. The Whitney and Betty Macmillan Center for International and Area Studies at Yale. Archived from the original on 25 August 2016. Retrieved 1 September 2016.
  14. ^ a b c Seife, Charles (1 September 2000). Zero: The Biography of a Dangerous Idea. Penguin. p. 39. ISBN 978-0-14-029647-1. OCLC 1005913932. Archived from the original on 30 April 2022. Retrieved 30 April 2022.
  15. ^ Nieder, Andreas (19 November 2019). A Brain for Numbers: The Biology of the Number Instinct. MIT Press. p. 286. ISBN 978-0-262-35432-5. Archived from the original on 30 April 2022. Retrieved 30 April 2022.
  16. ^ Kaplan, Robert (28 October 1999). The Nothing that Is: A Natural History of Zero. Oxford University Press. p. 17. ISBN 978-0-19-802945-8. OCLC 466431211. Archived from the original on 24 June 2014. Retrieved 30 April 2022.
  17. ^ Huggett, Nick (2019). «Zeno’s Paradoxes». In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Winter 2019 ed.). Metaphysics Research Lab, Stanford University. Archived from the original on 10 January 2021. Retrieved 9 August 2020.
  18. ^ Neugebauer, Otto (1969) [1957]. The Exact Sciences in Antiquity. Acta Historica Scientiarum Naturalium et Medicinalium. Vol. 9 (2 ed.). Dover Publications. pp. 13–14, plate 2. ISBN 978-0-486-22332-2. PMID 14884919.
  19. ^ Mercier, Raymond. «Consideration of the Greek symbol ‘zero’» (PDF). Home of Kairos. Archived (PDF) from the original on 5 November 2020. Retrieved 28 March 2020.
  20. ^ Ptolemy (1998) [1984, c.150]. Ptolemy’s Almagest. Translated by Toomer, G. J. Princeton University Press. pp. 306–307. ISBN 0-691-00260-6.
  21. ^ O’Connor, J J; Robertson, E F. «A history of Zero». MacTutor History of Mathematics. Archived from the original on 7 April 2020. Retrieved 28 March 2020.
  22. ^ Pedersen, Olaf (2010) [1974]. A Survey of the Almagest. Springer. pp. 232–235. ISBN 978-0-387-84825-9.
  23. ^ Neugebauer, Otto (2016) [1979]. Ethiopic Astronomy and Computus (Red Sea Press ed.). Red Sea Press. pp. 25, 53, 93, 183, Plate I. ISBN 978-1-56902-440-9.. The pages in this edition have numbers six less than the same pages in the original edition.
  24. ^ Deckers, Michael (2003) [525]. «Cyclus Decemnovennalis Dionysii – Nineteen Year Cycle of Dionysius». Archived from the original on 15 January 2019.
  25. ^ C. W. Jones, ed., Opera Didascalica, vol. 123C in Corpus Christianorum, Series Latina.
  26. ^ a b Hodgkin, Luke (2005). A History of Mathematics : From Mesopotamia to Modernity: From Mesopotamia to Modernity. Oxford University Press. p. 85. ISBN 978-0-19-152383-0.
  27. ^ O’Connor, J.J. (January 2004). «Chinese numerals». Mac Tutor. School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 14 June 2020. Retrieved 14 June 2020.
  28. ^ Crossley, Lun. 1999, p. 12 «the ancient Chinese system is a place notation system»
  29. ^ Kang-Shen Shen; John N. Crossley; Anthony W.C. Lun; Hui Liu (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford UP. p. 35. ISBN 978-0-19-853936-0. zero was regarded as a number in India … whereas the Chinese employed a vacant position
  30. ^ «Mathematics in the Near and Far East» (PDF). grmath4.phpnet.us. p. 262. Archived (PDF) from the original on 10 August 2018. Retrieved 7 June 2012.
  31. ^ Struik, Dirk J. (1987). A Concise History of Mathematics. New York: Dover Publications. pp. 32–33. «In these matrices we find negative numbers, which appear here for the first time in history.«
  32. ^ a b Plofker, Kim (2009). Mathematics in India. Princeton University Press. pp. 54–56. ISBN 978-0-691-12067-6. In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, [ …] Pingala’s use of a zero symbol [śūnya] as a marker seems to be the first known explicit reference to zero. … In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, there are five questions concerning the possible meters for any value «n». [ …] The answer is (2)7 = 128, as expected, but instead of seven doublings, the process (explained by the sutra) required only three doublings and two squarings – a handy time saver where «n» is large. Pingala’s use of a zero symbol as a marker seems to be the first known explicit reference to zero
  33. ^ Vaman Shivaram Apte (1970). Sanskrit Prosody and Important Literary and Geographical Names in the Ancient History of India. Motilal Banarsidass. pp. 648–649. ISBN 978-81-208-0045-8. Archived from the original on 22 April 2017. Retrieved 21 April 2017.
  34. ^ «Math for Poets and Drummers» (PDF). people.sju.edu. Archived from the original (PDF) on 22 January 2019. Retrieved 20 December 2015.
  35. ^ Bourbaki, Nicolas Elements of the History of Mathematics (1998), p. 46
  36. ^ Weiss, Ittay (20 September 2017). «Nothing matters: How India’s invention of zero helped create modern mathematics». The Conversation. Archived from the original on 12 July 2018. Retrieved 12 July 2018.
  37. ^ Devlin, Hannah (13 September 2017). «Much ado about nothing: ancient Indian text contains earliest zero symbol». The Guardian. ISSN 0261-3077. Archived from the original on 20 November 2017. Retrieved 14 September 2017.
  38. ^ Revell, Timothy (14 September 2017). «History of zero pushed back 500 years by ancient Indian text». New Scientist. Archived from the original on 25 October 2017. Retrieved 25 October 2017.
  39. ^ «Carbon dating finds Bakhshali manuscript contains oldest recorded origins of the symbol ‘zero’«. Bodleian Library. 14 September 2017. Archived from the original on 14 September 2017. Retrieved 25 October 2017.
  40. ^ Ifrah, Georges (2000), p. 416.
  41. ^ Aryabhatiya of Aryabhata, translated by Walter Eugene Clark.
  42. ^ O’Connor, Robertson, J.J., E.F. «Aryabhata the Elder». School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 11 July 2015. Retrieved 26 May 2013.
  43. ^ William L. Hosch, ed. (15 August 2010). The Britannica Guide to Numbers and Measurement (Math Explained). The Rosen Publishing Group. pp. 97–98. ISBN 978-1-61530-108-9. Archived from the original on 4 August 2016. Retrieved 26 September 2016.
  44. ^ Algebra with Arithmetic of Brahmagupta and Bhaskara, translated to English by Henry Thomas Colebrooke (1817) London
  45. ^ Kaplan, Robert (1999). The Nothing That Is: A Natural History of Zero. New York: Oxford University Press. pp. 68–75. ISBN 978-0-19-514237-2.
  46. ^ «Much ado about nothing: ancient Indian text contains earliest zero symbol». The Guardian. 13 September 2017. Archived from the original on 20 November 2017. Retrieved 14 September 2017.
  47. ^ Cœdès, George, «A propos de l’origine des chiffres arabes,» Bulletin of the School of Oriental Studies, University of London, Vol. 6, No. 2, 1931, pp. 323–328. Diller, Anthony, «New Zeros and Old Khmer,» The Mon-Khmer Studies Journal, Vol. 25, 1996, pp. 125–132.
  48. ^ Casselman, Bill. «All for Nought». ams.org. University of British Columbia), American Mathematical Society. Archived from the original on 6 December 2015. Retrieved 20 December 2015.
  49. ^ Ifrah, Georges (2000), p. 400.
  50. ^ Pannekoek, A. (1961). A History of Astronomy. George Allen & Unwin. p. 165.
  51. ^ a b c Will Durant (1950), The Story of Civilization, Volume 4, The Age of Faith: Constantine to Dante – A.D. 325–1300, Simon & Schuster, ISBN 978-0-9650007-5-8, p. 241, «The Arabic inheritance of science was overwhelmingly Greek, but Hindu influences ranked next. In 773, at Mansur’s behest, translations were made of the Siddhantas – Indian astronomical treatises dating as far back as 425 BC; these versions may have the vehicle through which the «Arabic» numerals and the zero were brought from India into Islam. In 813, al-Khwarizmi used the Hindu numerals in his astronomical tables.»
  52. ^ Brezina, Corona (2006). Al-Khwarizmi: The Inventor of Algebra. The Rosen Publishing Group. ISBN 978-1-4042-0513-0. Archived from the original on 29 February 2020. Retrieved 26 September 2016.
  53. ^ Will Durant (1950), The Story of Civilization, Volume 4, The Age of Faith, Simon & Schuster, ISBN 978-0-9650007-5-8, p. 241, «In 976, Muhammad ibn Ahmad, in his Keys of the Sciences, remarked that if, in a calculation, no number appears in the place of tens, a little circle should be used «to keep the rows». This circle the Mosloems called ṣifr, «empty» whence our cipher.»
  54. ^ Sigler, L., Fibonacci’s Liber Abaci. English translation, Springer, 2003.
  55. ^ Grimm, R.E., «The Autobiography of Leonardo Pisano», Fibonacci Quarterly 11/1 (February 1973), pp. 99–104.
  56. ^ Hansen, Alice (9 June 2008). Primary Mathematics: Extending Knowledge in Practice. SAGE. ISBN 978-0-85725-233-3. Archived from the original on 7 March 2021. Retrieved 7 November 2020.
  57. ^ Lemma B.2.2, The integer 0 is even and is not odd, in Penner, Robert C. (1999). Discrete Mathematics: Proof Techniques and Mathematical Structures. World Scientific. p. 34. ISBN 978-981-02-4088-2.
  58. ^ W., Weisstein, Eric. «Zero». mathworld.wolfram.com. Archived from the original on 1 June 2013. Retrieved 4 April 2018.
  59. ^ Weil, Andre (6 December 2012). Number Theory for Beginners. Springer Science & Business Media. ISBN 978-1-4612-9957-8. Archived from the original on 14 June 2021. Retrieved 6 April 2021.
  60. ^ Bunt, Lucas Nicolaas Hendrik; Jones, Phillip S.; Bedient, Jack D. (1976). The historical roots of elementary mathematics. Courier Dover Publications. pp. 254–255. ISBN 978-0-486-13968-5. Archived from the original on 23 June 2016. Retrieved 5 January 2016., Extract of pp. 254–255 Archived 10 May 2016 at the Wayback Machine
  61. ^ Reid, Constance (1992). From zero to infinity: what makes numbers interesting (4th ed.). Mathematical Association of America. p. 23. ISBN 978-0-88385-505-8. zero neither prime nor composite
  62. ^ «ResultSet (Java Platform SE 8 )». docs.oracle.com. Archived from the original on 9 May 2022. Retrieved 9 May 2022.
  63. ^ Wu, X.; Ichikawa, T.; Cercone, N. (25 October 1996). Knowledge-Base Assisted Database Retrieval Systems. World Scientific. ISBN 978-981-4501-75-0. Archived from the original on 31 March 2022. Retrieved 7 November 2020.
  64. ^ «Null values and the nullable type». IBM. 12 December 2018. Archived from the original on 23 November 2021. Retrieved 23 November 2021. In regard to services, sending a null value as an argument in a remote service call means that no data is sent. Because the receiving parameter is nullable, the receiving function creates a new, uninitialized value for the missing data then passes it to the requested service function.
  65. ^ Chris Woodford 2006, p. 9.
  66. ^ Paul DuBois.
    «MySQL Cookbook: Solutions for Database Developers and Administrators» Archived 24 February 2017 at the Wayback Machine
    2014.
    p. 204.
  67. ^ Arnold Robbins; Nelson Beebe.
    «Classic Shell Scripting» Archived 24 February 2017 at the Wayback Machine.
    2005.
    p. 274
  68. ^ Iztok Fajfar.
    «Start Programming Using HTML, CSS, and JavaScript» Archived 24 February 2017 at the Wayback Machine.
    2015.
    p. 160.
  69. ^ Darren R. Hayes.
    «A Practical Guide to Computer Forensics Investigations» Archived 24 February 2017 at the Wayback Machine.
    2014.
    p. 399
  70. ^ «Font Survey: 42 of the Best Monospaced Programming Fonts». codeproject.com. 18 August 2010. Archived from the original on 24 January 2012. Retrieved 22 July 2021.
  71. ^ Cepelewicz, Jordana Animals Count and Use Zero. How Far Does Their Number Sense Go? Archived 18 August 2021 at the Wayback Machine, Quanta, August 9, 2021
  72. ^ a b Bemer, R. W. (1967). «Towards standards for handwritten zero and oh: much ado about nothing (and a letter), or a partial dossier on distinguishing between handwritten zero and oh». Communications of the ACM. 10 (8): 513–518. doi:10.1145/363534.363563. S2CID 294510.
  73. ^ Steel, Duncan (2000). Marking time: the epic quest to invent the perfect calendar. John Wiley & Sons. p. 113. ISBN 978-0-471-29827-4. In the B.C./A.D. scheme there is no year zero. After 31 December 1 BC came 1 January AD 1. … If you object to that no-year-zero scheme, then don’t use it: use the astronomer’s counting scheme, with negative year numbers.

Bibliography

  • Aczel, Amir D. (2015). Finding Zero. New York: Palgrave Macmillan. ISBN 978-1-137-27984-2.
  • Asimov, Isaac (1978). «Nothing Counts». Asimov on Numbers. New York: Pocket Books. ISBN 978-0-671-82134-0. OCLC 1105483009.
  • Barrow, John D. (2001). The Book of Nothing. Vintage. ISBN 0-09-928845-1.
  • Woodford, Chris (2006). Digital Technology. Evans Brothers. ISBN 978-0-237-52725-9. Archived from the original on 17 August 2019. Retrieved 24 March 2016.

Historical studies

  • Bourbaki, Nicolas (1998). Elements of the History of Mathematics. Berlin, Heidelberg, and New York: Springer-Verlag. ISBN 3-540-64767-8.
  • Diehl, Richard A. (2004). The Olmecs: America’s First Civilization. London: Thames & Hudson.
  • Ifrah, Georges (2000). The Universal History of Numbers: From Prehistory to the Invention of the Computer. Wiley. ISBN 0-471-39340-1.
  • Kaplan, Robert (2000). The Nothing That Is: A Natural History of Zero. Oxford University Press.
  • Seife, Charles (2000). Zero: The Biography of a Dangerous Idea. Penguin USA. ISBN 0-14-029647-6.

External links

Look up zero in Wiktionary, the free dictionary.

  • Searching for the World’s First Zero
  • A History of Zero
  • Zero Saga
  • The History of Algebra
  • Edsger W. Dijkstra: Why numbering should start at zero, EWD831 (PDF of a handwritten manuscript)
  • Zero on In Our Time at the BBC
  • Weisstein, Eric W. «0». MathWorld.
  • Texts on Wikisource:
    • «Zero». Encyclopædia Britannica (11th ed.). 1911.
    • «Zero». Encyclopedia Americana. 1920.

This article is about the number and digit 0. Not to be confused with the letter O or the O mark used to represent affirmation.

← −1 0 1 →

−1 0 1 2 3 4 5 6 7 8 9 →

  • List of numbers
  • Integers

← 0 10 20 30 40 50 60 70 80 90 →

Cardinal 0, zero, «oh» (), nought, naught, nil
Ordinal Zeroth, noughth, 0th
Binary 02
Ternary 03
Senary 06
Octal 08
Duodecimal 012
Hexadecimal 016
Arabic, Kurdish, Persian, Sindhi, Urdu ٠
Hindu Numerals
Chinese 零, 〇
Khmer
Thai
Bangla

0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usually by 10. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures.

Common names for the number 0 in English are zero, nought, naught (), nil. In contexts where at least one adjacent digit distinguishes it from the letter O, the number is sometimes pronounced as oh or o (). Informal or slang terms for 0 include zilch and zip. Historically, ought, aught (), and cipher, have also been used.

Etymology

The word zero came into the English language via French zéro from the Italian zero, a contraction of the Venetian zevero form of Italian zefiro via ṣafira or ṣifr.[1] In pre-Islamic time the word ṣifr (Arabic صفر) had the meaning «empty».[2] Sifr evolved to mean zero when it was used to translate śūnya (Sanskrit: शून्य) from India.[2] The first known English use of zero was in 1598.[3]

The Italian mathematician Fibonacci (c. 1170–1250), who grew up in North Africa and is credited with introducing the decimal system to Europe, used the term zephyrum. This became zefiro in Italian, and was then contracted to zero in Venetian. The Italian word zefiro was already in existence (meaning «west wind» from Latin and Greek zephyrus) and may have influenced the spelling when transcribing Arabic ṣifr.[4]

Modern usage

Depending on the context, there may be different words used for the number zero, or the concept of zero. For the simple notion of lacking, the words «nothing» and «none» are often used. Sometimes, the word «nought» or «naught» is used.

It is often called «oh» in the context of reading out a string of digits, such as telephone numbers, street addresses, credit card numbers, military time, or years (e.g. the area code 201 would be pronounced «two oh one»; a year such as 1907 is often pronounced «nineteen oh seven»). The presence of other digits, indicating that the string contains only numbers, avoids confusion with the letter O. For this reason, systems that include strings with both letters and numbers (e.g. Canadian postal codes) may exclude the use of the letter O.

Slang words for zero include «zip», «zilch», «nada», and «scratch».[5]

«Nil» is used for many sports in British English. Several sports have specific words for a score of zero, such as «love» in tennis – from French l’oeuf, «the egg» – and «duck» in cricket, a shortening of «duck’s egg»; «goose egg» is another general slang term used for zero.[5]

History

Ancient Near East

nfr
 
heart with trachea
beautiful, pleasant, good

F35

Ancient Egyptian numerals were of base 10.[6] They used hieroglyphs for the digits and were not positional. By 1770 BC, the Egyptians had a symbol for zero in accounting texts. The symbol nfr, meaning beautiful, was also used to indicate the base level in drawings of tombs and pyramids, and distances were measured relative to the base line as being above or below this line.[7]

By the middle of the 2nd millennium BC, the Babylonian mathematics had a sophisticated base 60 positional numeral system. The lack of a positional value (or zero) was indicated by a space between sexagesimal numerals. In a tablet unearthed at Kish (dating to as early as 700 BC), the scribe Bêl-bân-aplu used three hooks as a placeholder in the same Babylonian system.[8] By 300 BC, a punctuation symbol (two slanted wedges) was co-opted to serve as this placeholder.[9][10]

The Babylonian placeholder was not a true zero because it was not used alone, nor was it used at the end of a number. Thus numbers like 2 and 120 (2×60), 3 and 180 (3×60), 4 and 240 (4×60) looked the same, because the larger numbers lacked a final sexagesimal placeholder. Only context could differentiate them.[citation needed]

Pre-Columbian Americas

The Mesoamerican Long Count calendar developed in south-central Mexico and Central America required the use of zero as a placeholder within its vigesimal (base-20) positional numeral system. Many different glyphs, including the partial quatrefoil were used as a zero symbol for these Long Count dates, the earliest of which (on Stela 2 at Chiapa de Corzo, Chiapas) has a date of 36 BC.[a]

Since the eight earliest Long Count dates appear outside the Maya homeland,[11] it is generally believed that the use of zero in the Americas predated the Maya and was possibly the invention of the Olmecs.[12] Many of the earliest Long Count dates were found within the Olmec heartland, although the Olmec civilization ended by the 4th century BC, several centuries before the earliest known Long Count dates.

Although zero became an integral part of Maya numerals, with a different, empty tortoise-like «shell shape» used for many depictions of the «zero» numeral, it is assumed not to have influenced Old World numeral systems.

Quipu, a knotted cord device, used in the Inca Empire and its predecessor societies in the Andean region to record accounting and other digital data, is encoded in a base ten positional system. Zero is represented by the absence of a knot in the appropriate position.

Classical antiquity

The ancient Greeks had no symbol for zero (μηδέν), and did not use a digit placeholder for it.[13] According to mathematician Charles Seife, the ancient Greeks did begin to adopt the Babylonian placeholder zero for their work in astronomy after 500 BC, representing it with the lowercase Greek letter ό (όμικρον) or omicron.[14] However, after using the Babylonian placeholder zero for astronomical calculations they would typically convert the numbers back into Greek numerals.[14] Greeks seemed to have a philosophical opposition to using zero as a number.[14] Other scholars give the Greek partial adoption of the Babylonian zero a later date, with the scientist Andreas Nieder giving a date of after 400 BC and the mathematician Robert Kaplan dating it after the conquests of Alexander.[15][16]

Greeks seemed unsure about the status of zero as a number. Some of them asked themselves, «How can not being be?», leading to philosophical and, by the medieval period, religious arguments about the nature and existence of zero and the vacuum. The paradoxes of Zeno of Elea depend in large part on the uncertain interpretation of zero.[17]

Fragment of papyrus with clear Greek script, lower-right corner suggests a tiny zero with a double-headed arrow shape above it

Example of the early Greek symbol for zero (lower right corner) from a 2nd-century papyrus

By AD 150, Ptolemy, influenced by Hipparchus and the Babylonians, was using a symbol for zero (°)[18][19] in his work on mathematical astronomy called the Syntaxis Mathematica, also known as the Almagest.[20] This Hellenistic zero was perhaps the earliest documented use of a numeral representing zero in the Old World.[21] Ptolemy used it many times in his Almagest (VI.8) for the magnitude of solar and lunar eclipses. It represented the value of both digits and minutes of immersion at first and last contact. Digits varied continuously from 0 to 12 to 0 as the Moon passed over the Sun (a triangular pulse), where twelve digits was the angular diameter of the Sun. Minutes of immersion was tabulated from 00″ to 3120″ to 00″, where 00″ used the symbol as a placeholder in two positions of his sexagesimal positional numeral system,[b] while the combination meant a zero angle. Minutes of immersion was also a continuous function 1/12 3120″ d(24−d) (a triangular pulse with convex sides), where d was the digit function and 3120″ was the sum of the radii of the Sun’s and Moon’s discs.[22] Ptolemy’s symbol was a placeholder as well as a number used by two continuous mathematical functions, one within another, so it meant zero, not none.

The earliest use of zero in the calculation of the Julian Easter occurred before AD 311, at the first entry in a table of epacts as preserved in an Ethiopic document for the years AD 311 to 369, using a Ge’ez word for «none» (English translation is «0» elsewhere) alongside Ge’ez numerals (based on Greek numerals), which was translated from an equivalent table published by the Church of Alexandria in Medieval Greek.[23] This use was repeated in AD 525 in an equivalent table, that was translated via the Latin nulla or «none» by Dionysius Exiguus, alongside Roman numerals.[24] When division produced zero as a remainder, nihil, meaning «nothing», was used. These medieval zeros were used by all future medieval calculators of Easter. The initial «N» was used as a zero symbol in a table of Roman numerals by Bede—or his colleagues—around AD 725.[25]

China

Five illustrated boxes from left to right contain a T-shape, an empty box, three vertical bars, three lower horizontal bars with an inverted wide T-shape above, and another empty box. Numerals underneath left to right are six, zero, three, nine, and zero

This is a depiction of zero expressed in Chinese counting rods, based on the example provided by A History of Mathematics. An empty space is used to represent zero.[26]

The Sūnzĭ Suànjīng, of unknown date but estimated to be dated from the 1st to 5th centuries AD, and Japanese records dated from the 18th century, describe how the c. 4th century BC Chinese counting rods system enabled one to perform decimal calculations. As noted in Xiahou Yang’s Suanjing (425–468 AD) that states that to multiply or divide a number by 10, 100, 1000, or 10000, all one needs to do, with rods on the counting board, is to move them forwards, or back, by 1, 2, 3, or 4 places,[27] According to A History of Mathematics, the rods «gave the decimal representation of a number, with an empty space denoting zero».[26] The counting rod system is considered a positional notation system.[28]

In AD 690, Empress Wǔ promulgated Zetian characters, one of which was «〇»; originally meaning ‘star’, it subsequently[when?] came to represent zero.

Zero was not treated as a number at that time, but as a «vacant position».[29] Qín Jiǔsháo’s 1247 Mathematical Treatise in Nine Sections is the oldest surviving Chinese mathematical text using a round symbol for zero.[30] Chinese authors had been familiar with the idea of negative numbers by the Han Dynasty (2nd century AD), as seen in The Nine Chapters on the Mathematical Art.[31]

India

Pingala (c. 3rd/2nd century BC[32]), a Sanskrit prosody scholar,[33] used binary numbers in the form of short and long syllables (the latter equal in length to two short syllables), a notation similar to Morse code.[34] Pingala used the Sanskrit word śūnya explicitly to refer to zero.[32]

The concept of zero as a written digit in the decimal place value notation was developed in India.[35] A symbol for zero, a large dot likely to be the precursor of the still-current hollow symbol, is used throughout the Bakhshali manuscript, a practical manual on arithmetic for merchants.[36] In 2017, three samples from the manuscript were shown by radiocarbon dating to come from three different centuries: from AD 224–383, AD 680–779, and AD 885–993, making it South Asia’s oldest recorded use of the zero symbol. It is not known how the birch bark fragments from different centuries forming the manuscript came to be packaged together.[37][38][39]

The Lokavibhāga, a Jain text on cosmology surviving in a medieval Sanskrit translation of the Prakrit original, which is internally dated to AD 458 (Saka era 380), uses a decimal place-value system, including a zero. In this text, śūnya («void, empty») is also used to refer to zero.[40]

The Aryabhatiya (c. 500), states sthānāt sthānaṁ daśaguṇaṁ syāt «from place to place each is ten times the preceding».[41][42][43]

Rules governing the use of zero appeared in Brahmagupta’s Brahmasputha Siddhanta (7th century), which states the sum of zero with itself as zero, and incorrectly division by zero as:[44][45]

A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero.

Epigraphy

script from left to right with a one and a half rotation swirl, a large dot, and a stretched-bent swirl

The number 605 in Khmer numerals, from the Sambor inscription (Saka era 605 corresponds to AD 683). The earliest known material use of zero as a decimal figure.

A black dot is used as a decimal placeholder in the Bakhshali manuscript, portions of which date from AD 224–993.[46]

There are numerous copper plate inscriptions, with the same small o in them, some of them possibly dated to the 6th century, but their date or authenticity may be open to doubt.[8]

A stone tablet found in the ruins of a temple near Sambor on the Mekong, Kratié Province, Cambodia, includes the inscription of «605» in Khmer numerals (a set of numeral glyphs for the Hindu–Arabic numeral system). The number is the year of the inscription in the Saka era, corresponding to a date of AD 683.[47]

The first known use of special glyphs for the decimal digits that includes the indubitable appearance of a symbol for the digit zero, a small circle, appears on a stone inscription found at the Chaturbhuj Temple, Gwalior, in India, dated 876.[48][49]

Middle Ages

Transmission to Islamic culture

The Arabic-language inheritance of science was largely Greek,[50] followed by Hindu influences.[51] In 773, at Al-Mansur’s behest, translations were made of many ancient treatises including Greek, Roman, Indian, and others.

In AD 813, astronomical tables were prepared by a Persian mathematician, Muḥammad ibn Mūsā al-Khwārizmī, using Hindu numerals;[51] and about 825, he published a book synthesizing Greek and Hindu knowledge and also contained his own contribution to mathematics including an explanation of the use of zero.[52] This book was later translated into Latin in the 12th century under the title Algoritmi de numero Indorum. This title means «al-Khwarizmi on the Numerals of the Indians». The word «Algoritmi» was the translator’s Latinization of Al-Khwarizmi’s name, and the word «Algorithm» or «Algorism» started to acquire a meaning of any arithmetic based on decimals.[51]

Muhammad ibn Ahmad al-Khwarizmi, in 976, stated that if no number appears in the place of tens in a calculation, a little circle should be used «to keep the rows». This circle was called ṣifr.[53]

Transmission to Europe

The Hindu–Arabic numeral system (base 10) reached Western Europe in the 11th century, via Al-Andalus, through Spanish Muslims, the Moors, together with knowledge of classical astronomy and instruments like the astrolabe; Gerbert of Aurillac is credited with reintroducing the lost teachings into Catholic Europe. For this reason, the numerals came to be known in Europe as «Arabic numerals». The Italian mathematician Fibonacci or Leonardo of Pisa was instrumental in bringing the system into European mathematics in 1202, stating:

After my father’s appointment by his homeland as state official in the customs house of Bugia for the Pisan merchants who thronged to it, he took charge; and in view of its future usefulness and convenience, had me in my boyhood come to him and there wanted me to devote myself to and be instructed in the study of calculation for some days. There, following my introduction, as a consequence of marvelous instruction in the art, to the nine digits of the Hindus, the knowledge of the art very much appealed to me before all others, and for it I realized that all its aspects were studied in Egypt, Syria, Greece, Sicily, and Provence, with their varying methods; and at these places thereafter, while on business. I pursued my study in depth and learned the give-and-take of disputation. But all this even, and the algorism, as well as the art of Pythagoras, I considered as almost a mistake in respect to the method of the Hindus (Modus Indorum). Therefore, embracing more stringently that method of the Hindus, and taking stricter pains in its study, while adding certain things from my own understanding and inserting also certain things from the niceties of Euclid’s geometric art. I have striven to compose this book in its entirety as understandably as I could, dividing it into fifteen chapters. Almost everything which I have introduced I have displayed with exact proof, in order that those further seeking this knowledge, with its pre-eminent method, might be instructed, and further, in order that the Latin people might not be discovered to be without it, as they have been up to now. If I have perchance omitted anything more or less proper or necessary, I beg indulgence, since there is no one who is blameless and utterly provident in all things. The nine Indian figures are: 9 8 7 6 5 4 3 2 1. With these nine figures, and with the sign 0  … any number may be written.[54][55][56]

Here Leonardo of Pisa uses the phrase «sign 0», indicating it is like a sign to do operations like addition or multiplication. From the 13th century, manuals on calculation (adding, multiplying, extracting roots, etc.) became common in Europe where they were called algorismus after the Persian mathematician al-Khwārizmī. The most popular was written by Johannes de Sacrobosco, about 1235 and was one of the earliest scientific books to be printed in 1488. Until the late 15th century, Hindu–Arabic numerals seem to have predominated among mathematicians, while merchants preferred to use the Roman numerals. In the 16th century, they became commonly used in Europe.

Mathematics

0 is the integer immediately preceding 1. Zero is an even number[57] because it is divisible by 2 with no remainder. 0 is neither positive nor negative,[58] or both positive and negative.[59] Many definitions[60] include 0 as a natural number, in which case it is the only natural number that is not positive. Zero is a number which quantifies a count or an amount of null size. In most cultures, 0 was identified before the idea of negative things (i.e., quantities less than zero) was accepted.

As a value or a number, zero is not the same as the digit zero, used in numeral systems with positional notation. Successive positions of digits have higher weights, so the digit zero is used inside a numeral to skip a position and give appropriate weights to the preceding and following digits. A zero digit is not always necessary in a positional number system (e.g., the number 02). In some instances, a leading zero may be used to distinguish a number.

Elementary algebra

The number 0 is the smallest non-negative integer. The natural number following 0 is 1 and no natural number precedes 0. The number 0 may or may not be considered a natural number, but it is an integer, and hence a rational number and a real number (as well as an algebraic number and a complex number).

The number 0 is neither positive nor negative, and is usually displayed as the central number in a number line. It is neither a prime number nor a composite number. It cannot be prime because it has an infinite number of factors, and cannot be composite because it cannot be expressed as a product of prime numbers (as 0 must always be one of the factors).[61] Zero is, however, even (i.e. a multiple of 2, as well as being a multiple of any other integer, rational, or real number).

The following are some basic (elementary) rules for dealing with the number 0. These rules apply for any real or complex number x, unless otherwise stated.

  • Addition: x + 0 = 0 + x = x. That is, 0 is an identity element (or neutral element) with respect to addition.
  • Subtraction: x − 0 = x and 0 − x = −x.
  • Multiplication: x · 0 = 0 · x = 0.
  • Division: 0/x = 0, for nonzero x. But x/0 is undefined, because 0 has no multiplicative inverse (no real number multiplied by 0 produces 1), a consequence of the previous rule.
  • Exponentiation: x0 = x/x = 1, except that the case x = 0 may be left undefined in some contexts. For all positive real x, 0x = 0.

The expression 0/0, which may be obtained in an attempt to determine the limit of an expression of the form f(x)/g(x) as a result of applying the lim operator independently to both operands of the fraction, is a so-called «indeterminate form». That does not mean that the limit sought is necessarily undefined; rather, it means that the limit of f(x)/g(x), if it exists, must be found by another method, such as l’Hôpital’s rule.

The sum of 0 numbers (the empty sum) is 0, and the product of 0 numbers (the empty product) is 1. The factorial 0! evaluates to 1, as a special case of the empty product.

Other branches of mathematics

The empty set has zero elements

  • In set theory, 0 is the cardinality of the empty set: if one does not have any apples, then one has 0 apples. In fact, in certain axiomatic developments of mathematics from set theory, 0 is defined to be the empty set. When this is done, the empty set is the von Neumann cardinal assignment for a set with no elements, which is the empty set. The cardinality function, applied to the empty set, returns the empty set as a value, thereby assigning it 0 elements.
  • Also in set theory, 0 is the lowest ordinal number, corresponding to the empty set viewed as a well-ordered set.
  • In propositional logic, 0 may be used to denote the truth value false.
  • In abstract algebra, 0 is commonly used to denote a zero element, which is a neutral element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined).
  • In lattice theory, 0 may denote the bottom element of a bounded lattice.
  • In category theory, 0 is sometimes used to denote an initial object of a category.
  • In recursion theory, 0 can be used to denote the Turing degree of the partial computable functions.

  • A zero of a function f is a point x in the domain of the function such that f(x) = 0. When there are finitely many zeros these are called the roots of the function. This is related to zeros of a holomorphic function.
  • The zero function (or zero map) on a domain D is the constant function with 0 as its only possible output value, i.e., the function f defined by f(x) = 0 for all x in D. The zero function is the only function that is both even and odd. A particular zero function is a zero morphism in category theory; e.g., a zero map is the identity in the additive group of functions. The determinant on non-invertible square matrices is a zero map.
  • Several branches of mathematics have zero elements, which generalize either the property 0 + x = x, or the property 0 · x = 0, or both.

Physics

The value zero plays a special role for many physical quantities. For some quantities, the zero level is naturally distinguished from all other levels, whereas for others it is more or less arbitrarily chosen. For example, for an absolute temperature (as measured in kelvins), zero is the lowest possible value (negative temperatures are defined, but negative-temperature systems are not actually colder). This is in contrast to for example temperatures on the Celsius scale, where zero is arbitrarily defined to be at the freezing point of water. Measuring sound intensity in decibels or phons, the zero level is arbitrarily set at a reference value—for example, at a value for the threshold of hearing. In physics, the zero-point energy is the lowest possible energy that a quantum mechanical physical system may possess and is the energy of the ground state of the system.

Chemistry

Zero has been proposed as the atomic number of the theoretical element tetraneutron. It has been shown that a cluster of four neutrons may be stable enough to be considered an atom in its own right. This would create an element with no protons and no charge on its nucleus.

As early as 1926, Andreas von Antropoff coined the term neutronium for a conjectured form of matter made up of neutrons with no protons, which he placed as the chemical element of atomic number zero at the head of his new version of the periodic table. It was subsequently placed as a noble gas in the middle of several spiral representations of the periodic system for classifying the chemical elements.

Computer science

The most common practice throughout human history has been to start counting at one, and this is the practice in early classic computer programming languages such as Fortran and COBOL. However, in the late 1950s LISP introduced zero-based numbering for arrays while Algol 58 introduced completely flexible basing for array subscripts (allowing any positive, negative, or zero integer as base for array subscripts), and most subsequent programming languages adopted one or other of these positions. For example, the elements of an array are numbered starting from 0 in C, so that for an array of n items the sequence of array indices runs from 0 to n−1.

There can be confusion between 0- and 1-based indexing; for example, Java’s JDBC indexes parameters from 1 although Java itself uses 0-based indexing.[62]

In databases, it is possible for a field not to have a value. It is then said to have a null value.[63] For numeric fields it is not the value zero. For text fields this is not blank nor the empty string. The presence of null values leads to three-valued logic. No longer is a condition either true or false, but it can be undetermined. Any computation including a null value delivers a null result.[64]

A null pointer is a pointer in a computer program that does not point to any object or function. In C, the integer constant 0 is converted into the null pointer at compile time when it appears in a pointer context, and so 0 is a standard way to refer to the null pointer in code. However, the internal representation of the null pointer may be any bit pattern (possibly different values for different data types).[citation needed]

In mathematics, −0 and +0 is equivalent to 0; both −0 and +0 represent exactly the same number, i.e., there is no «positive zero» or «negative zero» distinct from zero. However, in some computer hardware signed number representations, zero has two distinct representations, a positive one grouped with the positive numbers and a negative one grouped with the negatives; this kind of dual representation is known as signed zero, with the latter form sometimes called negative zero. These representations include the signed magnitude and one’s complement binary integer representations (but not the two’s complement binary form used in most modern computers), and most floating-point number representations (such as IEEE 754 and IBM S/390 floating-point formats).

In binary, 0 represents the value for «off», which means no electricity flow.[65]

Zero is the value of false in many programming languages.

The Unix epoch (the date and time associated with a zero timestamp) begins the midnight before the first of January 1970.[66][67][68]

The Classic Mac OS epoch and Palm OS epoch (the date and time associated with a zero timestamp) begins the midnight before the first of January 1904.[69]

Many APIs and operating systems that require applications to return an integer value as an exit status typically use zero to indicate success and non-zero values to indicate specific error or warning conditions.

Programmers often use a slashed zero to avoid confusion with the letter «O».[70]

Other fields

  • In comparative zoology and cognitive science, recognition that some animals display awareness of the concept of zero leads to the conclusion that the capability for numerical abstraction arose early in the evolution of species.[71]
  • In telephony, pressing 0 is often used for dialling out of a company network or to a different city or region, and 00 is used for dialling abroad. In some countries, dialling 0 places a call for operator assistance.
  • DVDs that can be played in any region are sometimes referred to as being «region 0»
  • Roulette wheels usually feature a «0» space (and sometimes also a «00» space), whose presence is ignored when calculating payoffs (thereby allowing the house to win in the long run).
  • In Formula One, if the reigning World Champion no longer competes in Formula One in the year following their victory in the title race, 0 is given to one of the drivers of the team that the reigning champion won the title with. This happened in 1993 and 1994, with Damon Hill driving car 0, due to the reigning World Champion (Nigel Mansell and Alain Prost respectively) not competing in the championship.
  • On the U.S. Interstate Highway System, in most states exits are numbered based on the nearest milepost from the highway’s western or southern terminus within that state. Several that are less than half a mile (800 m) from state boundaries in that direction are numbered as Exit 0.

Symbols and representations

horizontal guidelines with a zero touching top and bottom, a three dipping below, and a six cresting above the guidelines, from left to right

The modern numerical digit 0 is usually written as a circle or ellipse. Traditionally, many print typefaces made the capital letter O more rounded than the narrower, elliptical digit 0.[72] Typewriters originally made no distinction in shape between O and 0; some models did not even have a separate key for the digit 0. The distinction came into prominence on modern character displays.[72]

A slashed zero ({displaystyle 0!!!{/}}) can be used to distinguish the number from the letter (mostly used in computing, navigation and in the military). The digit 0 with a dot in the center seems to have originated as an option on IBM 3270 displays and has continued with some modern computer typefaces such as Andalé Mono, and in some airline reservation systems. One variation uses a short vertical bar instead of the dot. Some fonts designed for use with computers made one of the capital-O–digit-0 pair more rounded and the other more angular (closer to a rectangle). A further distinction is made in falsification-hindering typeface as used on German car number plates by slitting open the digit 0 on the upper right side. In some systems either the letter O or the numeral 0, or both, are excluded from use, to avoid confusion.

Year label

In the BC calendar era, the year 1 BC is the first year before AD 1; there is not a year zero. By contrast, in astronomical year numbering, the year 1 BC is numbered 0, the year 2 BC is numbered −1, and so forth.[73]

See also

  • Brahmagupta
  • Aryabhata
  • Division by zero
  • Grammatical number
  • Gwalior Fort
  • Mathematical constant
  • Number theory
  • Peano axioms
  • Signed zero

Notes

  1. ^ No long count date actually using the number 0 has been found before the 3rd century AD, but since the long count system would make no sense without some placeholder, and since Mesoamerican glyphs do not typically leave empty spaces, these earlier dates are taken as indirect evidence that the concept of 0 already existed at the time.
  2. ^ Each place in Ptolemy’s sexagesimal system was written in Greek numerals from 0 to 59, where 31 was written λα meaning 30+1, and 20 was written κ meaning 20.

References

  1. ^ See:
    • Douglas Harper (2011), Zero Archived 3 July 2017 at the Wayback Machine, Etymology Dictionary, Quote=»figure which stands for naught in the Arabic notation,» also «the absence of all quantity considered as quantity», c. 1600, from French zéro or directly from Italian zero, from Medieval Latin zephirum, from Arabic sifr «cipher», translation of Sanskrit sunya-m «empty place, desert, naught»;
    • Menninger, Karl (1992). Number words and number symbols: a cultural history of numbers. Courier Dover Publications. pp. 399–404. ISBN 978-0-486-27096-8. Archived from the original on 25 April 2016. Retrieved 5 January 2016.;
    • «zero, n.» OED Online. Oxford University Press. December 2011. Archived from the original on 7 March 2012. Retrieved 4 March 2012. French zéro (1515 in Hatzfeld & Darmesteter) or its source Italian zero, for *zefiro, < Arabic çifr

  2. ^ a b See:
    • Smithsonian Institution, Oriental Elements of Culture in the Occident, p. 518, at Google Books, Annual Report of the Board of Regents of the Smithsonian Institution; Harvard University Archives, Quote=»Sifr occurs in the meaning of «empty» even in the pre-Islamic time. … Arabic sifr in the meaning of zero is a translation of the corresponding India sunya.»;
    • Jan Gullberg (1997), Mathematics: From the Birth of Numbers, W.W. Norton & Co., ISBN 978-0-393-04002-9, p. 26, Quote = Zero derives from Hindu sunya – meaning void, emptiness – via Arabic sifr, Latin cephirum, Italian zevero.;
    • Robert Logan (2010), The Poetry of Physics and the Physics of Poetry, World Scientific, ISBN 978-981-4295-92-5, p. 38, Quote = The idea of sunya and place numbers was transmitted to the Arabs who translated sunya or «leave a space» into their language as sifr.

  3. ^ Zero Archived 6 December 2017 at the Wayback Machine, Merriam Webster online Dictionary
  4. ^ Ifrah, Georges (2000). The Universal History of Numbers: From Prehistory to the Invention of the Computer. Wiley. ISBN 978-0-471-39340-5.
  5. ^ a b ‘Aught’ synonyms Archived 23 August 2014 at the Wayback Machine, Thesaurus.com – Retrieved April 2013.
  6. ^ «Egyptian numerals». mathshistory.st-andrews.ac.uk. Archived from the original on 15 November 2019. Retrieved 21 December 2019.
  7. ^ Joseph, George Gheverghese (2011). The Crest of the Peacock: Non-European Roots of Mathematics (Third ed.). Princeton UP. p. 86. ISBN 978-0-691-13526-7.
  8. ^ a b Kaplan, Robert. (2000). The Nothing That Is: A Natural History of Zero. Oxford: Oxford University Press.
  9. ^ «Zero». Maths History. Archived from the original on 21 September 2021. Retrieved 7 September 2021.
  10. ^ «Babylonian mathematics: View as single page». www.open.edu. Archived from the original on 7 September 2021. Retrieved 7 September 2021.
  11. ^ Diehl, p. 186
  12. ^ Mortaigne, Véronique (28 November 2014). «The golden age of Mayan civilisation – exhibition review». The Guardian. Archived from the original on 28 November 2014. Retrieved 10 October 2015.
  13. ^ Wallin, Nils-Bertil (19 November 2002). «The History of Zero». YaleGlobal online. The Whitney and Betty Macmillan Center for International and Area Studies at Yale. Archived from the original on 25 August 2016. Retrieved 1 September 2016.
  14. ^ a b c Seife, Charles (1 September 2000). Zero: The Biography of a Dangerous Idea. Penguin. p. 39. ISBN 978-0-14-029647-1. OCLC 1005913932. Archived from the original on 30 April 2022. Retrieved 30 April 2022.
  15. ^ Nieder, Andreas (19 November 2019). A Brain for Numbers: The Biology of the Number Instinct. MIT Press. p. 286. ISBN 978-0-262-35432-5. Archived from the original on 30 April 2022. Retrieved 30 April 2022.
  16. ^ Kaplan, Robert (28 October 1999). The Nothing that Is: A Natural History of Zero. Oxford University Press. p. 17. ISBN 978-0-19-802945-8. OCLC 466431211. Archived from the original on 24 June 2014. Retrieved 30 April 2022.
  17. ^ Huggett, Nick (2019). «Zeno’s Paradoxes». In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Winter 2019 ed.). Metaphysics Research Lab, Stanford University. Archived from the original on 10 January 2021. Retrieved 9 August 2020.
  18. ^ Neugebauer, Otto (1969) [1957]. The Exact Sciences in Antiquity. Acta Historica Scientiarum Naturalium et Medicinalium. Vol. 9 (2 ed.). Dover Publications. pp. 13–14, plate 2. ISBN 978-0-486-22332-2. PMID 14884919.
  19. ^ Mercier, Raymond. «Consideration of the Greek symbol ‘zero’» (PDF). Home of Kairos. Archived (PDF) from the original on 5 November 2020. Retrieved 28 March 2020.
  20. ^ Ptolemy (1998) [1984, c.150]. Ptolemy’s Almagest. Translated by Toomer, G. J. Princeton University Press. pp. 306–307. ISBN 0-691-00260-6.
  21. ^ O’Connor, J J; Robertson, E F. «A history of Zero». MacTutor History of Mathematics. Archived from the original on 7 April 2020. Retrieved 28 March 2020.
  22. ^ Pedersen, Olaf (2010) [1974]. A Survey of the Almagest. Springer. pp. 232–235. ISBN 978-0-387-84825-9.
  23. ^ Neugebauer, Otto (2016) [1979]. Ethiopic Astronomy and Computus (Red Sea Press ed.). Red Sea Press. pp. 25, 53, 93, 183, Plate I. ISBN 978-1-56902-440-9.. The pages in this edition have numbers six less than the same pages in the original edition.
  24. ^ Deckers, Michael (2003) [525]. «Cyclus Decemnovennalis Dionysii – Nineteen Year Cycle of Dionysius». Archived from the original on 15 January 2019.
  25. ^ C. W. Jones, ed., Opera Didascalica, vol. 123C in Corpus Christianorum, Series Latina.
  26. ^ a b Hodgkin, Luke (2005). A History of Mathematics : From Mesopotamia to Modernity: From Mesopotamia to Modernity. Oxford University Press. p. 85. ISBN 978-0-19-152383-0.
  27. ^ O’Connor, J.J. (January 2004). «Chinese numerals». Mac Tutor. School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 14 June 2020. Retrieved 14 June 2020.
  28. ^ Crossley, Lun. 1999, p. 12 «the ancient Chinese system is a place notation system»
  29. ^ Kang-Shen Shen; John N. Crossley; Anthony W.C. Lun; Hui Liu (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford UP. p. 35. ISBN 978-0-19-853936-0. zero was regarded as a number in India … whereas the Chinese employed a vacant position
  30. ^ «Mathematics in the Near and Far East» (PDF). grmath4.phpnet.us. p. 262. Archived (PDF) from the original on 10 August 2018. Retrieved 7 June 2012.
  31. ^ Struik, Dirk J. (1987). A Concise History of Mathematics. New York: Dover Publications. pp. 32–33. «In these matrices we find negative numbers, which appear here for the first time in history.«
  32. ^ a b Plofker, Kim (2009). Mathematics in India. Princeton University Press. pp. 54–56. ISBN 978-0-691-12067-6. In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, [ …] Pingala’s use of a zero symbol [śūnya] as a marker seems to be the first known explicit reference to zero. … In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, there are five questions concerning the possible meters for any value «n». [ …] The answer is (2)7 = 128, as expected, but instead of seven doublings, the process (explained by the sutra) required only three doublings and two squarings – a handy time saver where «n» is large. Pingala’s use of a zero symbol as a marker seems to be the first known explicit reference to zero
  33. ^ Vaman Shivaram Apte (1970). Sanskrit Prosody and Important Literary and Geographical Names in the Ancient History of India. Motilal Banarsidass. pp. 648–649. ISBN 978-81-208-0045-8. Archived from the original on 22 April 2017. Retrieved 21 April 2017.
  34. ^ «Math for Poets and Drummers» (PDF). people.sju.edu. Archived from the original (PDF) on 22 January 2019. Retrieved 20 December 2015.
  35. ^ Bourbaki, Nicolas Elements of the History of Mathematics (1998), p. 46
  36. ^ Weiss, Ittay (20 September 2017). «Nothing matters: How India’s invention of zero helped create modern mathematics». The Conversation. Archived from the original on 12 July 2018. Retrieved 12 July 2018.
  37. ^ Devlin, Hannah (13 September 2017). «Much ado about nothing: ancient Indian text contains earliest zero symbol». The Guardian. ISSN 0261-3077. Archived from the original on 20 November 2017. Retrieved 14 September 2017.
  38. ^ Revell, Timothy (14 September 2017). «History of zero pushed back 500 years by ancient Indian text». New Scientist. Archived from the original on 25 October 2017. Retrieved 25 October 2017.
  39. ^ «Carbon dating finds Bakhshali manuscript contains oldest recorded origins of the symbol ‘zero’«. Bodleian Library. 14 September 2017. Archived from the original on 14 September 2017. Retrieved 25 October 2017.
  40. ^ Ifrah, Georges (2000), p. 416.
  41. ^ Aryabhatiya of Aryabhata, translated by Walter Eugene Clark.
  42. ^ O’Connor, Robertson, J.J., E.F. «Aryabhata the Elder». School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 11 July 2015. Retrieved 26 May 2013.
  43. ^ William L. Hosch, ed. (15 August 2010). The Britannica Guide to Numbers and Measurement (Math Explained). The Rosen Publishing Group. pp. 97–98. ISBN 978-1-61530-108-9. Archived from the original on 4 August 2016. Retrieved 26 September 2016.
  44. ^ Algebra with Arithmetic of Brahmagupta and Bhaskara, translated to English by Henry Thomas Colebrooke (1817) London
  45. ^ Kaplan, Robert (1999). The Nothing That Is: A Natural History of Zero. New York: Oxford University Press. pp. 68–75. ISBN 978-0-19-514237-2.
  46. ^ «Much ado about nothing: ancient Indian text contains earliest zero symbol». The Guardian. 13 September 2017. Archived from the original on 20 November 2017. Retrieved 14 September 2017.
  47. ^ Cœdès, George, «A propos de l’origine des chiffres arabes,» Bulletin of the School of Oriental Studies, University of London, Vol. 6, No. 2, 1931, pp. 323–328. Diller, Anthony, «New Zeros and Old Khmer,» The Mon-Khmer Studies Journal, Vol. 25, 1996, pp. 125–132.
  48. ^ Casselman, Bill. «All for Nought». ams.org. University of British Columbia), American Mathematical Society. Archived from the original on 6 December 2015. Retrieved 20 December 2015.
  49. ^ Ifrah, Georges (2000), p. 400.
  50. ^ Pannekoek, A. (1961). A History of Astronomy. George Allen & Unwin. p. 165.
  51. ^ a b c Will Durant (1950), The Story of Civilization, Volume 4, The Age of Faith: Constantine to Dante – A.D. 325–1300, Simon & Schuster, ISBN 978-0-9650007-5-8, p. 241, «The Arabic inheritance of science was overwhelmingly Greek, but Hindu influences ranked next. In 773, at Mansur’s behest, translations were made of the Siddhantas – Indian astronomical treatises dating as far back as 425 BC; these versions may have the vehicle through which the «Arabic» numerals and the zero were brought from India into Islam. In 813, al-Khwarizmi used the Hindu numerals in his astronomical tables.»
  52. ^ Brezina, Corona (2006). Al-Khwarizmi: The Inventor of Algebra. The Rosen Publishing Group. ISBN 978-1-4042-0513-0. Archived from the original on 29 February 2020. Retrieved 26 September 2016.
  53. ^ Will Durant (1950), The Story of Civilization, Volume 4, The Age of Faith, Simon & Schuster, ISBN 978-0-9650007-5-8, p. 241, «In 976, Muhammad ibn Ahmad, in his Keys of the Sciences, remarked that if, in a calculation, no number appears in the place of tens, a little circle should be used «to keep the rows». This circle the Mosloems called ṣifr, «empty» whence our cipher.»
  54. ^ Sigler, L., Fibonacci’s Liber Abaci. English translation, Springer, 2003.
  55. ^ Grimm, R.E., «The Autobiography of Leonardo Pisano», Fibonacci Quarterly 11/1 (February 1973), pp. 99–104.
  56. ^ Hansen, Alice (9 June 2008). Primary Mathematics: Extending Knowledge in Practice. SAGE. ISBN 978-0-85725-233-3. Archived from the original on 7 March 2021. Retrieved 7 November 2020.
  57. ^ Lemma B.2.2, The integer 0 is even and is not odd, in Penner, Robert C. (1999). Discrete Mathematics: Proof Techniques and Mathematical Structures. World Scientific. p. 34. ISBN 978-981-02-4088-2.
  58. ^ W., Weisstein, Eric. «Zero». mathworld.wolfram.com. Archived from the original on 1 June 2013. Retrieved 4 April 2018.
  59. ^ Weil, Andre (6 December 2012). Number Theory for Beginners. Springer Science & Business Media. ISBN 978-1-4612-9957-8. Archived from the original on 14 June 2021. Retrieved 6 April 2021.
  60. ^ Bunt, Lucas Nicolaas Hendrik; Jones, Phillip S.; Bedient, Jack D. (1976). The historical roots of elementary mathematics. Courier Dover Publications. pp. 254–255. ISBN 978-0-486-13968-5. Archived from the original on 23 June 2016. Retrieved 5 January 2016., Extract of pp. 254–255 Archived 10 May 2016 at the Wayback Machine
  61. ^ Reid, Constance (1992). From zero to infinity: what makes numbers interesting (4th ed.). Mathematical Association of America. p. 23. ISBN 978-0-88385-505-8. zero neither prime nor composite
  62. ^ «ResultSet (Java Platform SE 8 )». docs.oracle.com. Archived from the original on 9 May 2022. Retrieved 9 May 2022.
  63. ^ Wu, X.; Ichikawa, T.; Cercone, N. (25 October 1996). Knowledge-Base Assisted Database Retrieval Systems. World Scientific. ISBN 978-981-4501-75-0. Archived from the original on 31 March 2022. Retrieved 7 November 2020.
  64. ^ «Null values and the nullable type». IBM. 12 December 2018. Archived from the original on 23 November 2021. Retrieved 23 November 2021. In regard to services, sending a null value as an argument in a remote service call means that no data is sent. Because the receiving parameter is nullable, the receiving function creates a new, uninitialized value for the missing data then passes it to the requested service function.
  65. ^ Chris Woodford 2006, p. 9.
  66. ^ Paul DuBois.
    «MySQL Cookbook: Solutions for Database Developers and Administrators» Archived 24 February 2017 at the Wayback Machine
    2014.
    p. 204.
  67. ^ Arnold Robbins; Nelson Beebe.
    «Classic Shell Scripting» Archived 24 February 2017 at the Wayback Machine.
    2005.
    p. 274
  68. ^ Iztok Fajfar.
    «Start Programming Using HTML, CSS, and JavaScript» Archived 24 February 2017 at the Wayback Machine.
    2015.
    p. 160.
  69. ^ Darren R. Hayes.
    «A Practical Guide to Computer Forensics Investigations» Archived 24 February 2017 at the Wayback Machine.
    2014.
    p. 399
  70. ^ «Font Survey: 42 of the Best Monospaced Programming Fonts». codeproject.com. 18 August 2010. Archived from the original on 24 January 2012. Retrieved 22 July 2021.
  71. ^ Cepelewicz, Jordana Animals Count and Use Zero. How Far Does Their Number Sense Go? Archived 18 August 2021 at the Wayback Machine, Quanta, August 9, 2021
  72. ^ a b Bemer, R. W. (1967). «Towards standards for handwritten zero and oh: much ado about nothing (and a letter), or a partial dossier on distinguishing between handwritten zero and oh». Communications of the ACM. 10 (8): 513–518. doi:10.1145/363534.363563. S2CID 294510.
  73. ^ Steel, Duncan (2000). Marking time: the epic quest to invent the perfect calendar. John Wiley & Sons. p. 113. ISBN 978-0-471-29827-4. In the B.C./A.D. scheme there is no year zero. After 31 December 1 BC came 1 January AD 1. … If you object to that no-year-zero scheme, then don’t use it: use the astronomer’s counting scheme, with negative year numbers.

Bibliography

  • Aczel, Amir D. (2015). Finding Zero. New York: Palgrave Macmillan. ISBN 978-1-137-27984-2.
  • Asimov, Isaac (1978). «Nothing Counts». Asimov on Numbers. New York: Pocket Books. ISBN 978-0-671-82134-0. OCLC 1105483009.
  • Barrow, John D. (2001). The Book of Nothing. Vintage. ISBN 0-09-928845-1.
  • Woodford, Chris (2006). Digital Technology. Evans Brothers. ISBN 978-0-237-52725-9. Archived from the original on 17 August 2019. Retrieved 24 March 2016.

Historical studies

  • Bourbaki, Nicolas (1998). Elements of the History of Mathematics. Berlin, Heidelberg, and New York: Springer-Verlag. ISBN 3-540-64767-8.
  • Diehl, Richard A. (2004). The Olmecs: America’s First Civilization. London: Thames & Hudson.
  • Ifrah, Georges (2000). The Universal History of Numbers: From Prehistory to the Invention of the Computer. Wiley. ISBN 0-471-39340-1.
  • Kaplan, Robert (2000). The Nothing That Is: A Natural History of Zero. Oxford University Press.
  • Seife, Charles (2000). Zero: The Biography of a Dangerous Idea. Penguin USA. ISBN 0-14-029647-6.

External links

Look up zero in Wiktionary, the free dictionary.

  • Searching for the World’s First Zero
  • A History of Zero
  • Zero Saga
  • The History of Algebra
  • Edsger W. Dijkstra: Why numbering should start at zero, EWD831 (PDF of a handwritten manuscript)
  • Zero on In Our Time at the BBC
  • Weisstein, Eric W. «0». MathWorld.
  • Texts on Wikisource:
    • «Zero». Encyclopædia Britannica (11th ed.). 1911.
    • «Zero». Encyclopedia Americana. 1920.

  • Носить подмышкой как пишется
  • Ноктюрн или нактюрн как пишется
  • Носить воду в решете из какой сказки
  • Нокоть или ноготь как пишется правильно
  • Носите с удовольствием как правильно пишется