Рассказ как появилась наша планета

Мы много можем рассуждать о космосе, но все-таки самый важный для нас здесь объект — планета Земля.

Давайте посмотрим, откуда она взялась и какое ее ждет будущее.

Как появилась Земля

У звезд есть протопланетные диски. Это облака пыли, которые вращаются вокруг своих звезд когда они только образовались. Протопланетный диск в начале раскаленный. И подпитывает звезду веществом.

Со временем протопланетный диск начинает остыватьЧ частицы собираются в более плотные комки вещества. Сперва появляются частички размером до 1 сантиметра. Затем из них начинают образовываться глыбы из льда и камня. Они сталкиваются друг с другом и постепенно слипаются.

Глыба становится все больше, вещество начинает уплотняться все сильнее, собирая окрестные микрочастицы.

Формируется объект, который в астрофизике называется планетезималь. Глыба, напоминающая астероид.

В определенный момент, когда масса становится очень большой, планета начинает принимать форму шара. Это максимально эргономичная форма для объекта с большой гравитацией.

Удивительно, но процесс формирования из глыбы полноценной планеты — очень быстрый, несмотря на космические расстояния. Планета типа Земли может образоваться всего за 100 тысяч лет, что по космическим меркам — буквально, миг. Всего же процесс образования полноценной планеты из микропылинок занял до 20 миллионов лет.

Параллельно идет зачистка орбиты. Объекты с пересекающимися орбитами сталкиваются, в результате у каждой планеты возникает своя, самостоятельная орбита.

Так 4,57 млрд лет назад появилась наша Земля. Чуть позже — спустя примерно 20 млн лет. Вероятная причина — столкновение Земли с объектом размером с Марс. Из-за которого и откололся кусок, который и стал нашим спутником — Луной.

В раскаленном шарике более плотное вещество погружалось вниз. В итоге образовались слои с ядром внутри. Земное ядро состоит из сплава железа и никеля с небольшими добавками. Металлическое ядро в дальнейшем сыграет огромную роль для всего живого на Земле.

Ведь такая слоистая структура с металлическим ядром внутри привело к появлению магнитного поля. Это поле отклоняет космическую радиацию, которая разрушительна для всего живого. Также магнитное поле защищает атмосферу, не дает ей рассеяться.

Газы, которые выходили из земной коры, образовали первичную атмосферу, состоящую, преимущественно, из водорода и гелия. Хоть Земля и успешно отбивала радиацию и солнечный ветер, условия на ней были слабо пригодны для жизни.

Откуда же на Земле появилась вода?

Тяжелая бомбардировка: как 4 млрд лет назад Земля была расстреляна метеоритами

Поздняя тяжелая бомбардировка – так в геофизике называется период 4 млрд лет назад, когда Земля была буквально расстреляна метеоритами.

Метеориты буквально взрывали земную кору, оплавляли поверхность. И сильно повлияли на геологию нашей планеты и на состав полезных ископаемых.

Оценить, сколько метеоритов упало на Землю, сейчас сложно – океаны, земля, живые организмы внесли свои коррективы. Но масштаб проблемы можно оценить по Луне. В то время на спутнике Земли образовалось более 22 тысяч крупных кратеров, диаметр которых превышает 20 км. При этом 40 кратеров превышает 1 тыс км, есть несколько свыше 5 тыс км.


Кратер от метеорита, который вероятно уничтожил динозавров — вид из космоса

Для сравнения: кратер, который уничтожил динозавров, в диаметре достигает 180 км. А кратер, из-за которого предположительно случилось пермское вымирание, когда погибло 96% видов живых организмов – в диаметре составляет 500 км.

Последняя метеоритная бомбардировка состоялась 3,8 млрд лет назад. Воды на Земле очень мало. Но достаточно для жизни


Слева — спутник Юпитера Европа, справа — наша Земля

Считаете, что наша планета богата водой?

Если собрать всю воду, что есть на Земле, она поместится в сферу диаметром 1385 километров. Да даже расстояние от Москвы до Анапы больше — 1510 км!

Просто все океаны, ледники и озера размазаны по Земле тонким слоем. На воду приходится лишь 0,12% всего объема нашей планеты. И 97,5% этой воды — морская, не пригодная для питья.

И Земля даже не лидирует по содержанию воды среди планет Солнечной системы. На первом месте — Европа, спутник Юпитера. Европа по структуре похожа не нашу планету, но, как видите на фото, заметно уступает Земле в габаритах. Европа покрыта слоем льда толщиной в 30 километров. А под этим льдом находится океан из жидкой воды.

Но у нашей планеты есть другое важное свойство — только на Земле есть вода в жидком виде прямо на поверхности.

Какая форма у нашей Земли

Разумеется, не плоская. Но и не…шар! Земля представляет собой эллипсоид. Ее диаметр не равномерен по поверхности. На экваторе диаметр на 43 километра больше, чем на полюсах. Получается, наша планета немножко сплюснута.

Когда возникла жизнь на Земле

Ученые сходятся во мнении, что жизнь на Земле появилась в период 3,7 — 4 миллиардов лет назад.

Интересный факт. Жизнь меняет Землю
Жизнь появилась на нашей планете, но она, в свою очередь, сильно влияет на экосистему Земли. Например, на нашей планете не было кислорода в таком количестве. Он возник из-за деятельности микроорганизмов.

Сперва развилась до одноклеточных форм, которые тонким слоем покрывали дно океана. Питались они с помощью фотосинтеза и плавно наполняли атмосферу нашей планеты кислородом.

Довольно большой период времени планета была покрыта льдом. Причина этого проста — активность Солнца была на треть слабее чем в наши дни.

Со временем активность Солнца росла, льды отступали. Это стимулировало развитие жизни. Сложные многоклеточные появились лишь 580 миллионов лет назад.

Сколько времени осталось для жизни на Земле

Не так то много, как могло бы показаться на первый взгляд. По разным оценкам, условия на Земле будут благоприятны для жизни еще в течение от 0,5 до 1 миллиардов лет.

Если учесть, что жизнь на Земле появилась примерно 4 миллиарда лет назад — мы уже давно прошли половину пути и плавно движемся к закату.

Однако Солнце, по оценкам современных ученых, будет существовать еще, как минимум, 7,5 миллиардов лет. Что же такого произойдет с Землей, что жить на нашей планете станет невозможно?

Что ждет Землю дальше

Благоприятный период для нашей планеты продлится не так уж долго. Произойдет ряд внешних и внутренних изменений, которые сильно ударят по всему живому на планете.

Активность Солнца продолжит расти. Она и сейчас набирает обороты. Это происходит из-за накопления гелия — важного вещества для ядерных реакций внутри нашего светила. Поэтому Солнце светит все ярче и жарче.

Через 1 миллиард лет это будет сильно заметно. Температура поднимется настолько, что океаны начнут испаряться. Вода на планете будет все больше существовать не в жидком и твердом состоянии, а в виде пара. А через 1,1 миллиард лет все океаны, скорее всего, испарятся с поверхности планеты.

Через 3,5 миллиарда лет на нашей планете будет также жарко, как на Венере.

Кроме этого, активность Солнца приведет к снижению концентрации углекислого газа в атмосфере планеты, так как будут выветриваться силикатные материалы. Углекислого газа станет мало для фотосинтеза. Именно на этом факте основан прогноз, что жизнь на Земле начнет резко исчезать уже через 500 миллионов лет.

Через 1,5 миллиарда лет наклон оси нашей планеты начнет хаотично меняться, вплоть до отклонения на 90 градусов. Почему наклон оси будет меняться? Во-первых, будет меняться трение между внутренними слоями, в частности, между мантией и ядром. Во-вторых, Луна постепенно удаляется от Земли почти на 4 сантиметра в год. И через полтора миллиарда лет ее влияние заметно снизится.

Если Земля будет направлена к Солнцу под углом 90 градусов, то полюса станут перпендикулярны. Одна половина будет получать много тепла и света, а другая страдать от их нехватки. Соответственно, в первом случае климат будет слишком жарким, когда температура поверхности будет подниматься до 80 градусов. В темной части планеты будет сильный холод.

Земное ядро будет остывать. Это приведет к серьезным климатическим переменам. Как я писал выше, трение между мантией и ядром изменится, что повлияет на скорость вращения и угол наклона.

Сутки увеличатся из-за замедления вращения. Через 250 миллионов лет сутки будут длиться 25,5 часов.

Красный гигант. Если жизнь на Земле чудом выживет, несмотря на все эти факторы — спустя примерно 5 миллиардов лет нас ждет неминуемое.


Вид с Земли на Солнце, которое стало растущим красным гигантом

Солнце начнет превращаться в красного гиганта и резко расти в размерах. Это связано с падением давления внутри светила, так как вещество постепенно прогорает в его недрах.

И через 5 миллиардов лет красный гигант достигнет орбиты Земли и захватит нашу планету.

После стадии красного гиганта (расплавив при этом все планеты земной группы) Солнце просто сбросит внешнюю оболочку, образовав планетарную туманность, которая постепенно рассеется. А оставшееся на своем месте ядро Солнца, лишенное оболочек, станет гелиевым белым карликом и будет остывать несколько миллиардов лет.


Последние дни Земли будут выглядеть так

На самом деле жить на Земле станет абсолютно невозможно гораздо раньше. Нам отпущено примерно половина миллиарда.

500 миллионов лет… Не так уж много нам и осталось, чтобы суметь развиться до такой степени, чтобы улететь от катастрофических изменений на нашей планете.

С другой стороны, представьте, как люди, уже из другой звездной системы, будут со стороны смотреть на рост красного гиганта. И рассказывать, как когда-то в этой звездной системе родилась жизнь, которая распространилась по всей галактике!

[источники]источники
https://zen.yandex.ru/media/nauka/evoliuciia-zemli-kak-poiavilas-nasha-planeta-i-chto-ee-jdet-v-buduscem-6196dfa975507c1bf8e81a7e

Как образовалась Земля?

Сотни миллионов лет силы притяжения сжимали «строительный материал» Земли — третьей по удаленности от Солнца планеты, которая появилась 4,6 млрд лет назад. Ее формирование не окончено и по сей день. До сих пор недра планеты и ее тонкая кора находятся в постоянном движении, изменяя очертания материков, рельеф и климат.

Газопылевой диск

Газопылевой диск, похожий на тот, благодаря которому сформировалась наша планета

Рождение Земли и ее структура (4,6 млрд лет назад)

Туманность, из которой появилась Земля, представляла собой обломки звезд более ранних поколений. Она состояла из микроскопических частиц льда, железа и других веществ, собранных в более охлажденных слоях звезд и выброшенных в космос. Силы притяжения сталкивали эти частицы газового диска и склеивали их между собой. Такое явление называется аккрецией.

История нашей планеты записана в горных породах, но даже самые древние из них насчитывают только 3,7 млрд лет, поэтому о более ранних событиях земной эволюции можно судить лишь на основании косвенных данных и построенных на их основе гипотез.

На следующем этапе формирования планеты мелкие частицы соединялись в крупные (размером до километра) — «строительные блоки», называемые планетезималями, которые сталкивались, то разрушаясь, то, наоборот, соединяясь вместе. Таким образом постепенно 5–4,6 млрд лет назад возникло ядро — центр-зародыш будущей планеты Земля.

Наиболее крупные из таких зародышей стали конкурировать между собой за планетезимали, которые оставались свободными. Это происходило на протяжении 1–10 млн лет. Зародыши планет внутренней части Солнечной системы захватывали газовые облака и сливались друг с другом. Процесс образования каждой планеты оказался уникальным, этим и объясняется их разнообразие.

астероид

Некоторые планетезимали после столкновений между собой, подобно астероидам, стали основой будущих планет

Современная наука считает, что Земля сформировалась за 300–400 млн лет. Этот процесс был достаточно бурным, его сопровождали столкновения с астероидами и падения метеоритов.

Как в гигантской центрифуге, более плотные вещества опускались к центру планеты, в то время как легкие всплывали на поверхность. Эволюция Земли продолжалась и после ее рождения. Два вида энергии: та, которая образовывалась при склеивании частиц, та, что высвобождалась в результате ядерных реакций, разогревали недра юной планеты. В результате этого стало интенсивно формироваться ядро и внутренние оболочки Земли.

Внутренние слои планеты были настолько раскалены, что на глубине всего в несколько десятков километров лежал пласт расплавленных горных пород. С момента формирования Земли вещество и энергия недр, поверхности и атмосферы находились в состоянии постоянного взаимного обмена. Тем самым были созданы условия для зарождения будущей жизни.

Начальный этап жизни юной планеты после ее рождения принято называть догеологическим. Этот период длился 0,9 млрд лет, он пока еще недостаточно изучен и скрывает множество загадок. В то время появлялось множество вулканов, которые выбрасывали газы и водяные пары.

Принято считать, что в догеологический период сформировались важнейшие оболочки, которые современная наука выделяет в структуре Земли, — ядро, мантия и земная кора. Такое расслоение было вызвано мощной метеоритной бомбардировкой планеты и последующим плавлением некоторых ее частей.

Существует две гипотезы того, как появилось земное ядро. Согласно первой изначально однородное вещество, из которого состояла Земля, разделилось на тяжелый центр, куда «стекало» расплавленное железо, и более легкую мантию, состоящую из силикатов. Образование ядра, которое и по сей день остается жидким, происходило по мере того, как капли металла и другие тяжелые химические соединения как бы просачивались к сердцу планеты. Место опускающихся тяжелых соединений занимали более легкие шлаки — они поднимались к поверхности Земли. Из них состоит современная кора планеты и внешняя часть мантии. Это предположение не дает убедительного объяснения тому, как расплавленный железно-никелевый сплав мог «просочиться» более чем на тысячу километров вглубь земного шара и достичь его центра.

Сторонники второй гипотезы считают, что железное ядро Земли — это остатки железных метеоритов, с которыми сталкивалась планета вскоре после своего рождения. Потом их покрыл слой каменных (силикатных) метеоритов, из которого образовалась мантия. Уязвимое место этой гипотезы в том, что для такого хода событий железные и каменные метеориты должны были существовать раздельно и падать на Землю в строгой очередности. В то же время исследования показывают, что те из них, которые имеют железную структуру, могут появиться только в результате разрушения уже сформированной планеты. Таким образом, они не могут быть младше других планет Солнечной системы. Так как обе гипотезы не вполне убедительны, остается признать, что точным знанием о возникновении ядра Земли люди пока не обладают.

Плотное внутреннее ядро Земли очень важно для всего живого. Благодаря ему масса планеты достаточно велика, чтобы удерживать в своем гравитационном поле атмосферные газы, водяные пары, без которых не было бы гидросферы, и другие земные слои. Если бы Земля лишилась своего ядра, то мы остались бы и без воды, и без воздуха.

Как же устроено земное ядро, которое, очевидно, возникло в самом начале жизни планеты? В нем есть внешние и внутренние оболочки. Считается, что внешний слой лежит на глубине в 2900–5100 км от поверхности Земли и по своим физическим свойствам характеризуется почти как жидкость. Он состоит из потоков расплавленного железа и никеля и является прекрасным проводником электрического тока. Именно этому слою мы обязаны существованием магнитного поля нашей планеты, которое создается по законам электромагнитной индукции постоянно движущимся проводником тока.

Структура Земли

Структура Земли

Промежуток в 1270 км от внешнего слоя до центра земного шара занимает внутреннее ядро, состоящее на 4/5 из железа и на 1/5 из диоксида кремния. Оно обладает очень высокой температурой и большой плотностью. Внешнее ядро связано с земной мантией, тогда как внутреннее существует само по себе. Высокие температуры сочетаются в последнем с огромным давлением (до 3 млн атмосфер), поэтому его вещество остается твердым. Предполагают, что даже легчайший из земных газов — водород — в таких условиях существует в твердой фазе.

Происхождение земного ядра и внутренняя структура нашей планеты продолжают быть научными загадками. Очень многое остается непознанным по сей день. Пока большинство ученых сходятся во мнении, что формирование центральной оболочки началось одновременно с рождением самой Земли.

Ядро покрывает мантия. Ее пластическое (полурасплавленное, нетвердое) вещество заполняет толщу пространства на глубину 2900 км от земной коры к центру планеты. Масса мантии составляет примерно 67% от общей массы планеты. Считается, что этот слой неустойчив за счет своего пластического состояния и находится в постоянном движении. В наиболее глубоких слоях мантии, где давление выше, его состояние переходит в твердое. Внешняя оболочка Земли — кора — имеет толщину от нескольких километров под дном океанов до нескольких десятков километров под материками.

В самом начале истории нашей планеты земная кора была относительно тонкая и представляла собой застывший слой расплавленного базальта. На сегодняшний день в ней различают три слоя: осадочный — у самой поверхности, гранитный и самый глубокий — базальтовый. Первые два хорошо изучены геологами, а вот третий пока никто не видел. На континентах базальтовый слой не выходит на поверхность, а из-за нахождения на большой глубине он недоступен даже для самых современных буровых скважин.

Однако мы все равно знаем о нем кое-что благодаря новейшим сейсмическим методам. Во время землетрясений на глубине 10–700 км возникают волны, которые называют сейсмическими. Как у всякой волны, их скорость тем выше, чем плотнее та среда, в которой они распространяются (например, звуковые волны распространяются в воде в 4,5 раза быстрее, чем в воздухе). Анализируя скорость сейсмических волн, можно судить о плотности вещества на разных уровнях в земной коре.

С помощью такого метода была построена карта глубины нашей планеты и доказано, что скорость сейсмических волн в самом нижнем слое земной коры близка к той, которая развивается в базальтовом. Еще одно косвенное подтверждение существования этого третьего загадочного слоя — повсеместное распространение на Земле базальтовых лав. Современные поля, состоящие из этого вещества, на поверхности планеты — след древних вулканических извержений. По глубоким разломам расплавленный базальт поднимался из земных недр, выплескивался на поверхность и застывал.

Сейсмические волны

Сейсмические волны помогли установить существование базальтового слоя

Как же возник базальтовый слой земной коры? В самом начале жизни нашей планеты, примерно 4–4,5 млрд лет назад, Земля была сильно раскалена. В верхней части мантии давление было немного ниже, поэтому там был возможен переход части веществ из твердого состояния в жидкое. Образовывалась магма, близкая по составу к базальту. Она медленно двигалась вверх к поверхности Земли. Извергаясь, магма остывала и отвердевала. Так постепенно складывалась кора из базальтов.

Говоря о строении Земли, нам часто придется пользоваться термином «горные породы». Считается, что впервые так назвал разные группы минералов русский ученый Василий Михайлович Севергин в конце XVIII в. В те времена изучение камней было частью горного дела, поэтому использовалось слово «горные», хотя камни, разумеется, существуют не только в горах.

Горные породы делятся на три основных типа: магматические, осадочные и метаморфические. Происхождение первого типа нам уже понятно: эти породы образованы застывшей магмой. Они имеют ярко выраженное кристаллическое строение, при этом чем медленнее остывала вулканическая лава, тем крупнее получались кристаллы. К таким породам относятся, например, граниты и базальты.

Осадочные породы возникают из обломков кристаллических минералов, их так и называют — обломочные (песок, речная галька или мельчайшие частицы, которые образуют глину), а также из останков живых организмов — тогда они называются органическими (это и каменный уголь, и известняк, в котором видны осколки морских ракушек, и, конечно же, нефть). Когда минералы подвергаются глубоким физическим и химическим изменениям (метаморфозам) под действием высоких температур и давления, получаются метаморфические породы.

Метаморфизму могут подвергаться как магматические, так и осадочные породы. К первым относятся многие сланцы, а ко вторым — хорошо известный мрамор, который возник в результате глубоких преобразований известняка.

Одной из самых распространенных в земной коре пород считаются метаморфические гнейсы.

Формирование поверхности древней Земли и возникновение Луны (4,6–4 млрд лет назад)

На начальном этапе формирования Земли (около 4,6–4 млрд лет назад) расслоение внутренней материи земного шара сопровождалось интенсивной метеоритной бомбардировкой поверхности планеты. Метеориты падали на Землю и образовывали кратеры. Огромная энергия ударов, подчиняясь закону ее сохранения, переходила в тепло: холодные (около абсолютного нуля!) метеориты разогревали земную поверхность и недра планеты. Одновременно с метеоритным подогревом шло постоянное извержение огромного количества вулканов. Пары и газы выходили наружу из глубин планеты.

Процесс извержения вулкана

Процесс извержения вулкана

Из раскаленных недр вырывалась расплавленная магма, которая покрывала огромные пространства юной планеты и образовывала базальтовые поля — в то время земная поверхность была похожа на лунную.

Шаг за шагом внутренняя структура Земли приближалась к современной научной модели. Формировались ядро, мантия и кора, которая еще многократно изменялась, прежде чем приняла знакомые нам очертания.

Луна превосходит любой другой спутник в Солнечной системе по соотношению собственного размера к такой же характеристике Земли. В этом заключатся непохожесть Луны на другие планеты-спутники. Ее загадку долго пыталась разгадать современная наука. Наиболее убедительной считается гипотеза, согласно которой Луна появилась после мощного столкновения небесных тел. О подробностях этой космической катастрофы и ее влиянии на историю Земли мы поговорим позже.

Луна не похожа на нашу планету: на ее поверхности нет воды, не существует лунной атмосферы, в ее составе мало железа, а также летучих соединений. Однако соотношение изотопов кислорода у этих планет почти одинаково. Этот важный показатель еще называют кислородной подписью. Такие данные позволяют выдвинуть гипотезу о том, что и Земля, и Луна сформировались из одних и тех же планетезималей («строительных блоков») на одинаковом расстоянии от Солнца.

Присутствием огромного спутника объясняются многие явления на нашей планете. Луна находится по космическим меркам не очень далеко от нас, поэтому ее притяжение хорошо ощущается на Земле. Оно вызывает приливы и отливы не только в океанах, но и в закрытых водоемах земной коры.

Лунное притяжение вызывает волны, которые пробегают по земной поверхности и вытягивают ее примерно на 50 см в сторону планеты-спутника.

Великая космическая катастрофа и метеоритные бомбардировки

Ученые Дональд Дэвис и Уильям Хартманн объясняли появление Луны с помощью гипотезы космической катастрофы. Суть ее в том, что протоземля в некоторый момент столкнулась с другой древней планетой, размер которой был, как у современного Марса. Этой гипотетической планете дали имя Тея — так греки называли мать богов солнца, зари и луны (Гелиоса, Эос и Селены).

Считается, что Тея появилась 4,6 млрд лет назад одновременно с другими планетами Солнечной системы и тоже вращалась по орбите Земли, но притяжение Солнца и Земли сместили ее, и она врезалась в Землю.

Иллюстрация теории гигантского столкновения

Иллюстрация теории гигантского столкновения

Столкновение произошло на небольшой скорости и почти по касательной — планеты не разрушились и только часть вещества Земли и Теи была выброшена в космос. Эти попавшие на околоземную орбиту обломки и дали начало Луне, которая стала двигаться по земной орбите. Земля же после столкновения увеличила скорость своего вращения (цикл «день-ночь») и наклон его оси.

Компьютерное моделирование подтвердило возможность такого хода событий и указало на то, что Луне после столкновения потребовалась сто лет — лишь миг по космическим меркам, — чтобы стать шаром. Низкое содержание железа в составе спутника нашей планеты объясняется тем, что столкновение произошло уже после формирования земного ядра, которое вобрало в себя большую часть земного железа.

Обломки астероидов, блуждающие в космосе, куски планетезималей, которые так и не стали планетами, — весь этот космический мусор выпадал на поверхности Земли и Луны в виде метеоритов. Предполагают, что в первые 700 млн лет своей жизни наша планета притягивала больше метеоритов, чем ее спутник, из-за своей массы, превосходящей лунную.

Масштабные геологические изменения последующих временных эпох скрыли от нас следы былых космических атак. На поверхности же Луны, а также таких планет, как Марс и Меркурий, остались отметки соударений — кратеры. Они могут быть огромными и напоминать моря размером в тысячи километров или совсем маленькими. Земля в начале своей жизни также подвергалась бомбардировке метеоритами самых разных размеров.

Метеоритная бомбардировка Земли

Метеоритная бомбардировка Земли

На поверхность нашей планеты за 100 млн лет упало 3 ´ 1022 кг космических обломков — этого хватило бы, чтобы составить грузовой поезд из 500 000 000 000 000 000 нагруженных вагонов! При падении метеоритов их кинетическая энергия переходила в тепловую. Они разрушались и взрывались, нагревая Землю, выделяя газы и смешивая вещества из своего состава с земными.

Тепло, которое при этом выделялось, частично расплавило оболочку молодой планеты, но последовавшие гигантские извержения вулканов почти полностью уничтожили следы космической бомбардировки.

Более 160 метеоритных кратеров найдено на поверхности Земли. Они сразу возникали группами в зонах метеоритных дождей, которые покрывали десятки квадратных километров земной поверхности. Метеоритный дождь — это падение множества обломков одного крупного метеорита.

При этом вместо одного углубления появляется целое поле из них — серия кратеров, направление которой может указать путь, по которому двигались обломки, оказавшись в атмосфере.

Метеоритный кратер Лейк (Орегон, США)

Метеоритный кратер Лейк (Орегон, США)

Кратеры, как правило, имеют округлую форму, они около 100 км в диаметре и обнесены возвышающимся по краям насыпным валом.

Метеориты достигают Земли по сей день. Фрагменты разрушившегося астероида упали из космоса 15 февраля 2013 г. на город Челябинск в России. Всего на территории этого государства существует 16 крупных кратеров, метеоритное происхождение которых доказано. Их помогают выявить снимки, сделанные со спутников.

В 1908 г. на Землю упал Тунгусский метеорит. Взрыв при этом был сравним с эффектом от взрыва очень мощной водородной бомбы (40–50 мегатонн в тротилловом эквиваленте). В радиусе 25–30 км от места падения были повалены деревья, а на значительной части Евразии заметно свечение неба и облаков. Далеко не всегда падение метеоритов выглядит так катастрофично. Большинство из найденных более скромны по размеру.

Метеориты по своему составу делятся на железные, каменные и смешанного типа (железокаменные). Железные метеориты в своем составе всегда имеют металл никель, анализ содержания которого в найденном камне позволяет признать его небесное происхождение.

Метеорит «Палласово железо»

Метеорит «Палласово железо»

Поверхность метеорита хранит следы его прохождения через земную атмосферу. Обломки космических тел проникают в верхние слои атмосферы с чудовищной скоростью — более 11 км/с! Возникающее при этом трение очень велико — летящее тело разогревается и плавится. Встречный поток воздуха мгновенно срывает размягчившийся слой, и за движущимся метеоритом тянется дымовой след — шлейф мелких капелек расплава. Сопротивление воздуха тормозит разогнавшееся тело, снижая его скорость до скорости свободного падения. При этом последний из расплавленных слоев застывает на поверхности небесного камня в виде тонкой (менее 1 мм) пленки, которую называют корой плавления. Она не отличается по своему составу от самого метеорита, но выделяется своей структурой и видом. Кора плавления почти всех метеоритов черного цвета.

В Российской Академии наук существует специальный комитет, который занимается поиском и изучением метеоритов. За долгое время им собрана одна из лучших в мире коллекций небесных камней — ее начало было положено еще в XVIII в. Метеориты собирают во многих городах России, с ними можно познакомиться в краеведческих и геологических музеях.

Десятки и сотни миллионов лет метеоритные обстрелы не только разогревали недра Земли, но и меняли ее облик. Даже процессы в первичной атмосфере, которые сделали ее наконец пригодной для жизни, могли быть вызваны такими небесными камнями. Когда метеорит на огромной скорости входит в плотные воздушные слои, он раскаляется и начинает гореть, при этом выделяются водяной пар и углекислый газ — обычные для многих реакций горения.

Типичный метеорит, попадая в атмосферу Земли, высвобождает около 12% своей массы в виде водяного пара и около 6% углекислого газа, всего 18% — почти пятую часть. Если вспомнить наш воображаемый гигантский поезд, нагруженный метеоритным веществом, которое выпало на планету вскоре после ее рождения, получится, что масса выделившихся газов поместилась бы в 90 000 000 000 000 000 наполненных вагонов. Такое колоссальное количество новых газов, занесенных метеоритами, изменило первичную атмосферу — она обогатилась веществами, которые впоследствии стали строительными материалами для жизни на Земле.

Одно из лучших мест для сбора и изучения метеоритов — ледяные пустыни Антарктиды. Своих камней там очень мало, поэтому чернеющий на снегу обломок, скорее всего, в буквальном смысле упал с неба. Изучение метеоритов настолько важно для развития наших знаний о космосе, что создаются даже специальные машины-роботы, которые будут способны обследовать антарктические просторы в поисках упавших небесных камней.

Сильно увеличив содержание в атмосфере водяных паров и углекислого газа, метеориты повысили общую влажность земной атмосферы и ее температуру. Второе обстоятельство вызвано присутствием углекислого газа и создаваемого им парникового эффекта — о нем мы еще будем говорить не раз. Часть ученых считает также, что метеоритный обстрел из космоса помог образованию в древнем океане крупных органических молекул. Для подтверждения этой гипотезы группа японских ученых провела интересный эксперимент: с помощью специально сконструированной пушки они воспроизводили древнюю метеоритную бомбардировку, обстреливая океан «метеоритами» типичного для космических тел состава (то есть содержащих железо, никель и углерод). Результаты показали, что в воде после такой бомбежки действительно появился ряд органических молекул, в том числе аминокислоты, жирные кислоты и амины.

Атмосфера и гидросфера Земли — условия существования будущей жизни (4,3–3,8 млрд лет назад)

В начале земной эволюции базальтовый слой земной коры образовывался в недрах планеты и расплавленная магма поднималась вверх по разломам коры. Она содержала газы. При высоких температурах и давлении химические реакции протекали бурно. Их продуктами становились такие привычные нам земные вещества, как азот, водород, монооксид углерода (угарный газ), углекислый газ и вода. Можно сказать, что первичная атмосфера вышла из земных недр.

древняя Земля

Первичная атмосфера не была похожа на современную. Древние вулканы выбрасывали облака газов, и атмосфера представляла собой их смесь с парами воды, соляной, борной и плавиковой кислот

Масса Земли к тому времени была уже достаточно большой, чтобы удерживать атмосферные газы за счет сил притяжения.

Однако первичная атмосфера не была похожа на современную.

Древние вулканы выбрасывали облака газов. Более легкие из них (водород и гелий) поднимались вверх, достигая открытого космоса, а тяжелые удерживались земным притяжением у поверхности планеты. Из этих газов 4,3–3,8 млрд лет назад и сложилась первичная атмосфера Земли. Конечно, то, что выдыхали вулканы, сильно отличалось от сегодняшней азотно-кислородной атмосферы. Юная планета была окружена облаками азота, аммиака, углекислого газа, метана, водорода, инертных (благородных) газов, а также парами воды, соляной, борной и плавиковой кислот. Только кислорода в первичной атмосфере почти не было — его содержание в «воздухе» древней планеты составляло менее 0,001% от нынешней концентрации.

В те времена практически весь кислород был связан в различных химических соединениях и не существовал в свободном состоянии. Ядовитая, непригодная для дыхания атмосфера также не обладала и озоновым слоем, который защищает сегодня все живое от космической радиации. Однако постепенно она обогащалась продуктами сгорания метеоритов.

Земля из космоса

Так планета Земля выглядит из космоса

Современная атмосфера Земли совсем не похожа на древнюю: ее главные составляющие — азот (3/4 объема), кислород (1/5) и благородный газ аргон (около 1/100). В ней существенно меньше углекислого газа и водяных паров, а другие летучие элементы представлены в крайне малых, как говорят химики, следовых количествах.

Медленное охлаждение Земли и формирование первичной атмосферы помогли появиться и водной оболочке планеты — гидросфере. Как мы знаем, в древней атмосфере было очень много водяного пара, который вырывался из недр вместе с расплавленной лавой. Конденсируясь, он выпадал в виде дождей. На земной поверхности собирались потоки воды, они сливались вместе и заполняли углубления. Так возникали древнейшие озера. Поверхность Земли была еще слишком горячей, жидкость закипала, и столбы пара снова поднимались в атмосферу. Такая циркуляция воды помогала остудить поверхность планеты. Со временем озера становились все крупнее, превращаясь в океаны. Новые потоки воды несли в них частицы горных пород, продукты выветривания и растворенные вещества с земной поверхности. Последние представляли собой смесь солей. Таким образом морская вода обретала свой вкус — именно такой, какой мы знаем сегодня.

Мы не должны удивляться тому, что вода на Земле появилась в виде пара вместе с потоками расплавленной магмы, вырывающейся из щелей коры: и в настоящее время количество воды, которая в связанном виде хранится в земной мантии, столь велико, что значительно превышает объем всех океанов и морей планеты.

Описанная схема формирования первичной атмосферы и гидросферы выглядит последовательной и логичной, но ведь никто из ученых не мог непосредственно наблюдать за теми процессами, которые протекали около 4 млрд лет назад. Мы имеем дело с гипотезами, основанными на косвенных данных. В них пока еще немало противоречий и загадок. Наука знает очень немного про первый период земной эволюции.

Первоначально жизнь имела довольно странные формы

Первоначально жизнь имела довольно странные формы. Рыб еще не было, зато под водой обитали многоногие черви жутковатого вида и закованные в панцири трилобиты

Земля — единственная среди планет Солнечной системы, где существует развитая гидросфера. Воды на нашей планете так много, что она занимает примерно 2/3 ее поверхности, образуя Мировой океан. Верхние слои коры, земную поверхность, нижние слои атмосферы и гидросферу иногда объединяют вместе и называют географической (ландшафтной) оболочкой.

Поделиться ссылкой

Так приятно осознавать, что планета Земля оказалась наиболее пригодной для различных форм жизни. Здесь идеальные температурные условия, достаточно воздуха, кислорода и безопасного света. Трудно поверить, что когда-то ничего этого не было. Или почти ничего, кроме расплавленной космической массы неопределенной формы, плавающей в условиях невесомости. Но обо всем по порядку.

Взрыв вселенского масштаба

Ранние теории происхождения Вселенной

Ученые выдвигали разные гипотезы, объясняющие рождение Земли. В 18 веке французы утверждали, что причиной оказалась космическая катастрофа в результате столкновения Солнца с кометой. Англичане уверяли, что пролетающий мимо светила астероид отсек его часть, из которой в последствии появился целый ряд небесных тел.

Немецкие умы продвинулись дальше. Прототипом образования планет Солнечной системы они считали холодное пылевое облако невероятных размеров. Позже решили, что пыль была раскаленной. Ясно одно: образование Земли неразрывно связано с формированием всех планет и звезд, входящих в состав системы Солнца.

Большой взрыв

Большой взрыв

Большой взрыв

Сегодня астрономы и физики единодушны во мнении, что Вселенная образовалась после Большого Взрыва. Миллиарды лет назад гигантский огненный шар разлетелся на куски в космическом пространстве. Это вызвало гигантский выброс материи, частички которой обладали колоссальной энергией. Именно мощность последней мешала элементам создать атомы, заставляя отталкиваться друг от друга. Этому способствовала и высокая температура (примерно в миллиард градусов). Но через миллион лет пространство остыло приблизительно до отметки 4000º. С этого момента началось притяжение и образование атомов легких газообразных веществ (водорода и гелия).

Со временем они сгруппировались в скопления, называемыми туманностями. Такими были прототипы будущих небесных тел. Постепенно частицы внутри вращались все быстрее, наращивая температуру и энергию, заставляя туманность сжиматься. Достигнув критической точки, в определенный момент запустилась термоядерная реакция, способствующая формированию ядра. Так родилось яркое Солнце.

Появление Земли – от газа к твердому телу

Молодое светило обладало мощными силами гравитации. Их влияние послужило причиной формирования на разных расстояниях других планет из скоплений космической пыли и газов, в том числе и Земли. Если сравнить состав разных небесных тел солнечной системы, станет заметно, что они не одинаковы.

Меркурий в основном состоит из металла, наиболее стойкому к воздействию солнечного свечения. Венера, Земля обладают скальной поверхностью. А Сатурн и Юпитер остаются газовыми великанами из-за наибольшей удаленности. Кстати, они защищают другие планеты от метеоритов, отталкивая их от своих орбит.

Формирование Земли

Этапы формирования Солнечной системы и Земли

Этапы формирования Солнечной системы и Земли

Формирование Земли началось по тому же принципу, который лежал в основе появления самого Солнца. Происходило это примерно 4,6 миллиарда лет назад. Тяжелые металлы (железо, никель) в результате гравитации и сжатия проникали в центр молодой планеты, образуя ядро. Высокая температура создавала все условия для череды ядерных реакций. Произошло разделение мантии и ядра.

Выделение тепла плавило и выбрасывало на поверхность легкий кремний. Он стал прототипом первой коры. По мере остывания планеты летучие газы прорывались наружу из недр. Это сопровождалось извержениями вулканов. Расплавленная лава формировала в последствии горные породы.

Газовые смеси удерживались на расстоянии вокруг Земли силой притяжения. Они составили атмосферу, поначалу без кислорода. Встречи с ледяными кометами, метеоритами привели к появлению океанов из конденсата паров и растопленного льда. Материки разъединялись, вновь соединялись, плавая в горячей мантии. Это повторялось многократно почти 4 миллиарда лет.

История Вселенной

История Вселенной

Путь к жизни

Формируясь, Земля усиливала способность притягивать космические частицы (камни, астероиды, метеориты, пыль). Падая на поверхность, они проникали постепенно в недра (действовали центробежные силы), полностью отдавая собственную энергию. Планета уплотнялась. Химические реакции послужили предпосылками образования первых форм жизни – одноклеточных.

В процессе эволюции, когда начался фотосинтез, рождались новые виды – уже многоклеточные. Они смогли существовать благодаря появлению воздуха с кислородом и озонового слоя. За миллионы лет одни живые формы исчезали из-за разрушительных обледенений, потеплений, извержения вулканов. Сохранившиеся обретали новые признаки и возможность приспособиться к изменившимся условиям.

Наша планета возникла из сгустка космической пыли (туманности) под влиянием солнечной энергии, термоядерных реакций и силы притяжения. Ее формирование заняло так много лет, что по сравнению с этим человек со своей жизнедеятельностью занимает лишь миг с точки зрения Вселенной. И он обязан беречь свой дом, а не разрушать его, ведь жить ему больше негде.

Как появилась Земля – интересное видео

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Мы — земляне. Все известные нам страны, города, леса и океаны расположены на одной планете — Земля. Она относится к Солнечной системе. Солнечная система — это восемь планет, вращающихся вокруг одной звезды — Солнца. Кроме Земли, в систему входят Меркурий, Венера, Марс, Юпитер, Сатурн, Уран и Нептун.

Земля — третья планета по удалению от Солнца. И единственная из всех планет нашей системы, на которой есть жизнь. Почему?

Ученые считают, что существует много условий, необходимых для возникновения жизни на планете. Это и температурный режим — не слишком жаркий и не слишком холодный, — и наличие воды, и атмосфера, в которой должен быть ряд определенных элементов, и многое другое. Ни одна планета Солнечной системы, за исключением Земли, не отвечает всем требованиям. На Меркурии слишком жарко, на Уране очень холодно, на Венере совсем нет атмосферы. Зато наша планета как будто создана для того, чтобы на ней зародилась жизнь.

Наша сегодняшняя статья поможет вам ближе познакомить ребенка с нашей удивительной планетой, рассказать об истории возникновения Земли, ее месте в космосе, строении и других интересных фактах.

Описание планеты Земля для детей

Земля — не самая большая из планет Солнечной системы. Наоборот, она одна из самых маленьких — меньше нее только Меркурий и Венера. Но при этом радиус Земли — 6 тыс. 371 километр.

детям про планету Земля

Земля имеет почти совершенную круглую форму. У полюсов она немного приплюснута. Поэтому часто называют два разных радиуса Земли: экваториальный (на середине планеты) — 6378 км и полярный (на «концах») — 6357 км.

В древности люди не знали, что Земля имеет форму шара. Они представляли себе что-то вроде круглой плоской тарелки. Только после того как мореплаватели обошли вокруг Земли и вернулись в то же место, стало понятно, что наша планета — шар. Теперь в этом нет сомнений: мы много раз видели фотографии Земли, сделанные из космоса. На многих снимках, кстати, хорошо видны моря, горы и даже крупные города.

Вращение Земли

Земля, как и другие планеты Солнечной системы, совершает сложное вращение: вокруг Солнца и вокруг своей оси (воображаемой линии, проходящей через центр планеты). Причем вокруг Солнца Земля движется не по кругу, а по эллипсу — это такой вытянутый круг. 

Именно благодаря этому вращению на Земле наступают день и ночь, а лето сменяется зимой.

С временем суток все понятно: день — на той части планеты, которая в данный момент повернута к Солнцу, ночь — на противоположной. Полный оборот вокруг своей оси Земля делает приблизительно за 24 часа — за это время на Земле проходят сутки.

С временами года сложнее. Полный оборот вокруг Солнца Земля делает за 365 дней. Многие думают, что смена времен года связана с удаленностью Земли от Солнца. Но это не совсем так. Значительно сильнее на температуру воздуха влияет угол наклона Земли по отношению к Солнцу. Дело в том, что ось Земли (вокруг которой происходит вращение) наклонена по отношению к Солнцу больше чем на 23 градуса. И во время вращения солнечные лучи падают на Землю по-разному. Если прямо — наступает лето, если под углом — холодает. Чем больше наклон, тем холоднее.

Самые прямые лучи достаются экватору, потому там почти всегда ровная теплая погода, а крайние точки Земли — полюса — так сильно наклонены, что солнце скользит по поверхности и не согревает землю. Поэтому в Арктике и Антарктике холодно даже летом.

Как появилась планета Земля?

У ребенка наверняка возникнет вопрос о том, как образовалась наша планета. Ученые могут только делать предположения на этот счет — точного ответа у них нет.

Основная гипотеза заключается в том, что 4,6 миллиардов лет назад из огромного газового облака возникло Солнце, и уже под его воздействием из космической пыли вокруг сформировались, «спеклись», планеты Солнечной системы, в том числе Земля. В то время она мало походила на планету, на которой мы живем. Скорее всего, это был огненный шар, который по мере остывания превращался в каменную пустыню — без воды, атмосферы и, конечно, признаков жизни.

Постепенно под влиянием разных процессов, происходивших в глубине, на поверхность поднимались различные вещества. Одни превращались в воду, другие участвовали в формировании атмосферы. Происходило это медленно: ученые считают, что на образование океанов и поверхности ушло более 200 миллионов лет.

Из чего состоит планета Земля?

Ребенку будет интересно узнать и про строение нашей планеты. Земля, если представить ее в разрезе, состоит из нескольких слоев.

Строение Земли для детей

В самом центре — ядро, твердое внутри и жидкое снаружи. Его состав — сплавы металлов, в основном железо и никель. Ядро занимает большую часть диаметра земли, оно величиной с планету Марс. Различают внутреннее и внешнее ядро. Эта часть земли очень горячая, причем чем глубже, тем горячее. Добраться до такого уровня невозможно, но, по мнению ученых, температура внутри ядра может быть больше, чем на Солнце — до 7 тысяч градусов.

Над ядром располагается мантия. Это самый важный слой Земли — и самый большой (свыше 80% всего объема). Именно здесь сосредоточена наибольшая часть веществ, которые составляют Землю. В основном это соединения железа, но структура слоя не совсем твердая: мантия скорее вязкая, поэтому часто говорят, что земная кора «плывет» по мантии.

Земная кора — верхняя часть твердой земли. По сравнению с другими слоями она тонкая. Бывает континентальная и океаническая кора. Слой континентальной коры достигает 40–50 километров, а под океанами — 5–10. Кора составляет около 1% массы Земли.

Земную кору и верхнюю часть мантии называют литосферой.

А гидросферой — всю водную часть поверхности Земли, в которую входят Мировой океан, воды и ледники, подземные воды.

Получается, что для поверхности, покрытой водой, гидросфера расположена над литосферой.

Еще выше — атмосфера. Это уже не часть планеты, а ее газовая оболочка, которая находится над Землей и вращается вместе с ней.

Состав земной атмосферы, а конкретнее — содержание в ней кислорода, сыграл ключевую роль в возникновении жизни на Земле.

Кроме кислорода, в атмосфере Земли присутствует азот и другие газы. А благодаря озоновому слою в атмосфере Земля защищена от большей части ультрафиолетового излучения Солнца.

Как зарождалась и развивалась жизнь на планете

Миллионы лет планета Земля оставалась необитаемой. Ученые нашли подтверждение тому, что живые организмы появились на Земле около 3-4 миллиардов лет назад, в дoкeмбpийcкий период развития Земли. Конечно, это еще не те животные, к которым мы привыкли, а простейшие — микроорганизмы.

Более развитые животные и растения появились позже — во время, которое называют фанерозоем. Этот период делится на 3 эпохи: пaлeoзoй, мeзoзoй и кaйнoзoй. Во время палеозоя появились беспозвоночные, насекомые и рыбы; мезозой подарил нам динозавров, а кайнозой — млекопитающих. Это случилось больше 65 миллионов лет назад, и до сих пор считается, что млекопитающие — высший этап развития для живых организмов. Человек — это млекопитающее.


Вам может быть интересно:

Необъяснимо, но факт: многие дети обожают динозавров. Если ваш ребенок тоже с восторгом смотрит мультфильмы и листает картинки с этими удивительными гигантскими существами, предлагаем вам нашу статью с интересными фактами про динозавров для детей.


Материки и океаны

71% территории Земли покрыт водой. Суша существует в виде шести материков: Евразия; Африка; Северная и Южная Америки, Антарктида и Австралия. Самый большой материк — Евразия, самый маленький — Австралия.

планета Земля для детей

На Земле четыре океана. Они соединены между собой (это так называемый Мировой океан), но при этом сильно отличаются — температурой, особенностями дна, соленостью. Тихий океан — самый большой и глубокий, второй по величине — Атлантический, третий — Индийский (по сравнению с Атлантическим он меньше, но глубже). А самый маленький — Северный Ледовитый океан. Он еще и самый холодный, потому что расположен у Северного полюса и частично покрыт льдом. 

На нашей планете различают четыре климатических пояса — это территории, которые как будто опоясывают планету. В одном поясе по всей Земле примерно одинаковые условия для жизни: температуры, влажность, осадки.

По самому центру Земли идет экваториальный пояс. Здесь погода почти не меняется в течение года — лето, идут дожди и около +25 градусов.

Тропических поясов два, они находятся по обе стороны от экваториального. Здесь сухо и тепло, но разница между летом и зимой уже очевидна: зимой может быть около +15 градусов, зато летом — до +50.

Климат с холодной зимой и теплым летом нам знаком. Он характерен для умеренных поясов. Их тоже два, и они расположены после тропических по направлению от экватора.

На полюсах Земли расположены арктические пояса. Здесь холоднее всего, особенно зимой. Но и летом температура редко поднимается выше нуля.

Конечно, это деление условно. Климат не меняется резко при переходе от одного климатического пояса к другому. Существуют переходные полюса: два субэкваториальных, два субтропических и два субполярных, где проявляются характеристики соседних полюсов. Если плавно двигаться от одного пояса к другому, изменений в погоде практически не заметно. Но если перелететь на самолете, разница ощущается.

Погода в разных точках Земли зависит не только от расстояния от экватора, но и от рельефа. Основные виды рельефа на Земле — горы и равнины.

По площади равнины занимают большую часть суши. Мы можем это увидеть на карте или глобусе. Ни них равнины и горы в зависимости от высоты обозначаются зеленым, желтым или коричневым цветом. Самые высокие горы — темно-коричневые (Гималаи, Анды, Кавказ).

Самая высокая точка суши в мире — гора Джомолунгма в Гималаях — 8848 метров над уровнем моря. А самая низкая находится в океане, это Марианская впадина (на 11022 метра ниже уровня моря).

Луна — спутник Земли

Ученые считают, что Луна образовалась после падения на Землю какого-то большого космического объекта. От Земли оторвался кусок, который попал на ее орбиту и стал ее спутником.

Теперь Луна не только освещает Землю по ночам (кстати, светит она не сама по себе, а отраженным светом Солнца), но и влияет на земные процессы. Например, приливы и отливы на водных поверхностях вызваны именно силой притяжения Луны — самого близкого к Земле объекта. Между Луной и Землей — 384 400 километров. По космическим меркам это сравнительно немного, поэтому Луна — самый изученный космический объект для землян. И единственный, на котором побывал человек.

Луна часто оказывается на пути космических тел к Земле — и принимает их на себя, защищая Землю от нежелательных «гостей».

Изучая историю Земли, мы практически не задумываемся о том, что планета продолжает меняться. Потихоньку двигаются материки, тают ледники, происходят перемены в атмосфере, беднеет животный мир.

К сожалению, большинство перемен — не в лучшую сторону. Они вызваны не естественной эволюцией, а деятельностью людей, не берегущих планету. 

blogArticleAd-image

blogArticleAd-image

Курсы по географии для детей 6-13 лет

На онлайн-курсе «Удивительная планета» знакомим детей с важнейшими местами России и стран мира в увлекательном формате через игры, истории и загадки

узнать подробнее

30 минут – примерно столько вы потратите на прочтение этого текста. Для вас пройдет всего полчаса, а для планеты Земля – это миллиарды лет.

Рождение Земли

Начнем с самого начала: 5 млрд лет назад. Но где же прекрасная голубая планета? Нашему взору предстает лишь только что родившееся Солнце, окруженное протопланетарной пылью. Промотав ленту времени немного вперед, мы заметим миллиарды кружащихся вокруг Солнца камней, которые путем аккреции стягивает вместе. Пройдут миллионы лет – и эти камни станут, по меньшей мере, сотней планет, вращающихся вокруг Солнца. 

4 млрд 540 млн лет назад – Земля появляется на свет. Удивительно, но на заре времен «жизнь» на нашей планете больше похожа на ее конец – тот, каким видит его религия. Твердой «суши» почти нет. Вместо нее – огненное море расплавленной породы. Вместо воздуха – углекислый газ, азот, сера и водяной пар. 

В свое время религиозные схоласты рассчитали, что возраст Земли – не менее 6 тыс. лет. Только к началу XIX века геологи начали догадываться, что наша планета – настоящая «старушка». В этом им помогла Южная Африка – в одном из ее районов сохранились останки древнейшей континентальной плиты. Ученые поняли – породы в этой местности очень древние. 

Вооружившись данными о скорости остывания материалов, идеей о том, что Земля изначально была расплавленным шаром, и многими годами, потраченными на расчеты, британский физик и механик лорд Кельвин в XIX веке сделал вывод о том, что Земле, скорее всего, от 20 до 40 млн лет. 

Это был большой прогресс. Но для геологов-практиков даже эта цифра показалась слишком маленькой. Неизвестно, как долго бы наука пребывала в сомнениях, если бы к молодому ученому Эрнесту Резерфорду не пришло понимание того, что внутри нашей планеты находятся радиоактивные элементы. Все они создают большое количество тепла. Это в корне подрывало расчеты Кельвина, ведь выяснилось, что Земля не остывала постепенно – наоборот, в ней сокрыты постоянные источники тепла. Но главное – распад радиоактивных элементов позволил рассчитать точный возраст Земли.

Рождение Луны

Прошло несколько миллионов лет (младенческий возраст по меркам планеты) после рождения Земли, а ее уже ждали совсем «не детские» испытания. Молодая планета под названием Тейя размером с Марс несется прямо на нас. Считается, что Тейя хоть и столкнулась с Землей, но, по счастью, прошла по касательной. Тем не менее, этого хватило, чтобы обе планеты стали напоминать жидкие шары: по Земле прокатывались настоящие волны породы, а в космос выбросило триллионы тонн обломков. В этой космической катастрофе Земля уцелела. И не только уцелела, но и обрела «украшение»: очень быстро сила тяжести нашей планеты превратила обломки, оставшиеся от катастрофы, в кольцо. 

Из этого кольца постепенно формируется шар – Луна. Она гораздо ближе, чем та Луна, которую знаем мы. Сейчас она находится примерно в 400 тыс. км от нас, тогда же она была всего в 22 тыс. км. Можно только представить какой вид открывался с Земли по ночам! Увы, этими красотами не суждено было насладиться никому.

©NASA

Метеориты атакуют

У Земли воистину было «трудное» детство. 3 млрд 900 млн лет назад ее бомбардируют обломки, оставшиеся от формирования Солнечной системы. Именно они, по мнению многих ученых, и принесут на планету воду. В каждом из них заключено крошечное количество воды, но они атакуют нашу планету более 20 млн лет. Поэтому Земля постепенно покрывается океанами. Когда в следующий раз вы будете утолять жажду прохладной живительной минералкой – вспомните, что каждой капле воды, каждой луже на Земле – миллиарды лет. 

Ядро планеты остается расплавленным, а поверхность остыла до 70-80° C. Из-за очень быстрого вращения Земли (Солнце садится спустя всего 3 часа после рассвета!), на ней дуют страшные ветры. Их скорость превышает скорость самого разрушительного современного урагана. Гигантское притяжение близко расположенной Луны поднимает огромные волны, которые прокатываются по планете. Но со временем спутник отдаляется, волны успокаиваются, и Земля начинает вращаться медленнее.

Бактерии

3 млрд 800 млн лет назад – Земля полностью покрыта водой. Но если приглядеться – можно увидеть крошечные острова – это расплавленная горная порода, вулканами прорывающаяся через океан. Со временем такая лава остынет, образуя вулканические острова. Позже они соединятся, сформировав первые континенты. Впрочем, атмосфера по-прежнему токсична, стоит невыносимая жара – вряд ли нам понравилось бы проводить здесь отпуск. 

Метеориты бомбят Землю с момента ее появления на свет, но 3 млрд 800 млн лет назад наступила еще более ожесточенная стадия. Видимо, что-то повредило орбиты этих метеоритов – они градом посыпались на Землю. 

И все-таки наша планета страдала не зря – метеориты уже принесли сюда воду, но ученые считают, что в них было и еще кое-что – минералы, простейшие белки и аминокислоты. Сейчас, когда стихли ураганы, а Земля остыла, вероятно, пришло их время. 

Одна из популярных гипотез гласит, что жизнь на нашей планете появилась вблизи подводных горячих источников. На глубине, куда почти не проникают солнечные лучи, а температура опускается до отметки чуть выше ноля, подводные трубы извергают нечто похожее на сизый дым. На самом деле это не дым, а горячая жидкость. Морская вода даже на дне океана способна просачиваться еще дальше – через трещины в коре, по пути собирая газы и минералы. Вся эта подогретая смесь и выбрасывается назад в океан. Там ее уже поджидает «бульон» из минералов и химических веществ, оставленных метеоритами. 

Из этой биохимии, по мнению многих исследователей, и появилась жизнь. Каким-то образом все эти вещества соединились и образовали одноклеточные бактерии – самые ранние формы жизни на Земле. Есть, впрочем, предположения, что жизнь на нашей планете зарождалась бесчисленное количество раз, пока, наконец, не приобрела привычные для нас формы. Жизнь появилась. И что же? Проходят миллионы лет, но кардинально ничего не меняется – эволюция, похоже, не спешит порождать более сложные организмы. 

Строматолиты

3 млрд 500 млн лет назад. Если мы посмотрим на мелководную зону океана, то увидим под водой нечто напоминающее камни. На самом деле это цианобактериальные сообщества, представляющие собой конгломераты живых бактерий. Останки этих матов называют строматолитами. Их питание происходит с помощью фотосинтеза, превращающего солнечный свет и воду в глюкозу – простую форму сахара. В ходе этого превращения высвобождается побочный продукт – кислород. Миллионы лет эти невзрачные «камни» творили чудеса, наполняя кислородом океаны и атмосферу. Если бы не они, то на Земле, вероятно, не существовало бы почти ничего живого, включая и нас с вами.

©Alamy

Родиния

1 млрд 500 млн лет назад – сутки длятся не менее 16 часов. И все же, прошло 3 млрд лет с момента появления планеты, а еще нет ни одного сложного организма. 

Но земное ядро по-прежнему активно, оно горячее поверхности Солнца. Это тепло раскалывает земную кору, и она разделяется на огромные литосферные плиты. Они двигаются и тянут по всему миру океаны и острова, сталкивая их между собой. Так, 1 млрд 100 млн лет назад появляется суперконтинент – Родиния. Этот гигантский материк широко известен, но по мнению ученых, до него существовал также и самый первый гипотетический континент – Ваальбара, просуществовавший с 3,6 до 2,8 млрд лет назад, и сформировавшийся еще в Архее. Вторым гипотетическим единым материком был континент под названием Ур, образовавшийся 3 млрд лет назад. На нашей планете, возможно, существовало не менее шести суперконтинентов, но мы расскажем лишь о самых известных из них. Кстати, по многим прогнозам, в будущем – через 200-300 млн лет – все материки Земли вновь соединятся для того, чтобы снова образовать единый суперконтинент. Для него даже придумано название – Пангея Ультима («Последняя Пангея»).

«Земля-снежок»

Из-за большой геологической активности родилось огромное количество вулканов. Углекислый газ, который они выбрасывают, смешивается с водой и превращается в кислотный дождь. Горные породы впитывают его в себя, не давая ему накапливаться в атмосфере, сохраняя тепло. Сейчас этих горных пород намного больше, чем раньше: они обнажились из-за столкновения континентов. В то же время из-за естественных климатических флуктуаций и изменений в солнечной радиации Земля охлаждается. Количество парникового газа, попадаемого в атмосферу, не в состоянии удерживать тепло Солнца. 

Возможно и то, что образование суперконтинента Родиния привело к блокированию экваториальных вод, несших теплые течения. Полярные регионы оледенели и стали отражать все больше солнечного света, что, в свою очередь, повлекло «расползание» льда на другие участки. Температура на поверхности Земли упала до -40 градусов. Лед сковал океаны на глубину более 1 км. 

Наступил, возможно, один из самых длительных и холодных ледниковых периодов в истории Земли. Приверженцы этой теории называют его эпохой «Земли-снежка». Предполагается, что наша планета была полностью покрыта льдом в части криогенийского и эдиакарского периодов неопротерозойской эры, а, возможно, и в другие геологические эпохи. 

Теория о существовании этого грандиозного ледниковья была создана для того, чтобы объяснить отложения ледниковых осадков в тропиках в период криогения (850-630 млн лет назад), а также другие странные черты геологии того же периода. Не все ученые, однако, принимают эту гипотезу, говоря о том, что столь грандиозное оледенение едва ли могло быть возможным, если учесть энергетический баланс и климатические модели глобальной циркуляции.

Кембрийский взрыв

Несмотря ни на что, подо льдом планета остается горячей. Под одеялом льда продолжают жить вулканы. Накопившееся тепло приводит к тому, что со временем они начинают просыпаться один за другим. Но пока горные породы, впитывающие углекислый газ от вулканических извержений, все еще скрыты подо льдом, поэтому ничто не мешает ему накапливаться в атмосфере, удерживая солнечное тепло и постепенно плавя ледник. Таяние льда порождает трещины, изломы и неровности в земной коре, а значит, еще больше вулканов. Серией химических реакций таяние также высвобождает огромное количество кислорода, который был заключен во льду многие миллионы лет. А еще накопившееся тепло приводит к расколу Родинии. Это произошло около 750 млн лет назад. 

Продолжительность суток уже равна примерно 22 часам. Концентрация кислорода в атмосфере достигла невиданных до того показателей. В этот момент, примерно 540 млн лет назад, происходит так называемый Кембрийский взрыв: словно ниоткуда в океане появляется великое множество видов сложных живых организмов. 

Теория Кембрийского взрыва призвана объяснить внезапное появление окаменелостей животных на нижней границе кембрия и их отсутствие в более древних отложениях. Более поздние исследования, однако, показали, что многие сложные животные, сходные с современными видами, возникли задолго до начала кембрия. Тем не менее, подавляющая часть современных типов впервые появилась, похоже, именно в кембрии. Причем произошло это, видимо, действительно быстро. Увеличение размера живых существ и появление большого их разнообразия в числе прочего связано, вероятно, с повышением уровня кислорода.

©Wikimedia Commons

Жизнь на суше

750 млн лет назад сдвиг литосферных плит произошел снова. Родиния раскололась, образовав Гондвану и Лавразию. Температура – около 30° С, уровень кислорода приближается к современному. Но суша по-прежнему безжизненна, на ней почти ничего нет, кроме отдельных участков с водорослями. 
Солнце продолжает разрушать поверхность Земли смертельно опасной радиацией. Однако примерно в 50 км над Землей, там, где лучи проникают в земную атмосферу, происходит нечто интересное: встречаясь с солнечной радиацией, кислород превращается в другой газ – озон. Постепенно он обволакивает всю планету, поглощая смертельную радиацию. Если бы не он, жизнь на суше просто не существовала бы. Спустя миллионы лет, озоновый слой становится толще, и суша покрывается зелеными комочками, напоминающими мох. Эта крошечная зелень, тем не менее, делает важную работу – она выбрасывает еще больше кислорода, уровень которого резко растет. Привлекательную для жизни сушу мало-помалу начинают обживать земноводные.

Болота

Суша становится миром тропических болот. Болота Окефеноки (штат Джорджия, США), что в переводе с индейского означает «колышущаяся земля», считаются современным аналогом болот, которые существовали на Земле в ту эпоху. 

Профессор Фредерик Рич (Fredrick Rich) из университета южной Джорджии – специалист по доисторическим болотам, как и его коллеги, верит, что это болото очень похоже на те, которые существовали повсюду около 300 млн лет назад – в каменноугольный период или карбон. По его словам, именно в это время впервые за всю историю нашей планеты на ее поверхности развивается обширный растительный покров. Растения достигали 20-30 м в высоту, росли плотными массивами, создавая влажный тропический климат. Здесь летают гигантские насекомые – меганевры (гигантские стрекозоподобные насекомые, жившие в каменноугольном периоде), ползают метровые многоножки. Гигантизм насекомых и животных в ту древнюю эпоху связывают с высокой концентрацией кислорода в атмосфере. 

Тропические болота занимали большую часть материковой поверхности Земли в течение десятков миллионов лет. Свидетельства тому можно найти сегодня на всех современных континентах – в месторождениях угля. На суше останки растений превращались в уголь, а на мелководье в течение миллионов лет накапливались останки живых организмов. Они станут другим видом ископаемого топлива – нефтью и газом.

Пермское вымирание

Примерно 250 млн лет назад. К тому моменту сушу уже населяют предки динозавров – горгонопсы и их добыча – скутозавры. Но участь их, как и 96% морских видов и 70% видов наземных позвоночных, предрешена. Около 252 млн лет назад начинается пермское вымирание – самое массовое вымирание всех времен, одно из пяти массовых вымираний, когда-либо происходивших на нашей планете. 

Причины его доподлинно неизвестны до сих пор. Однако наиболее вероятной версией и одной из основных причин считается извержение сибирских траппов, происходившее именно в этот период. До сих пор неизвестно, что именно спровоцировало эти извержения. По всему миру воздух наполнен пеплом, который закрывает солнечный свет. Атмосфера наполняется токсинами и углекислым газом. Время от времени потоки горячей магмы выходят на поверхность. Это продолжается от 500 тыс. до 1 млн лет. Количество базальта, извергнувшегося из недр Земли за это время, хватило бы для того, чтобы похоронить США под почти 6-километровой толщей.

©Flickr

Пангея

Около 250 млн назад – суша вновь почти безжизненна. Прошло 50 млн лет, и материки опять соединяются, образовав единый континент – Пангею. Во время пермского вымирания погибло 70% всех видов наземных позвоночных, а это значит, что есть место для нового вида, который будет править на планете как никто другой – ни до, ни после него – динозавры. Считается, что эти «ужасные ящеры» произошли от небольшого количества рептилий, переживших пермское вымирание. 

Пока они крепнут и развиваются, беспокойные плиты вновь разрывают Землю на части: 190 млн лет назад Пангея распадается. А 180 млн лет назад мир обретает привычные для нас формы, образуется Атлантический океан.

Конец динозавров

65 млн лет назад. Кажется, что правящая династия под названием «динозавры» будет господствовать на планете вечно. Но если на Земле нет силы, способной разрушить эту монополию, она есть в космосе – к нам уже несется огромный астероид. Он летит к побережью полуострова Юкатан. Сегодняшний Мексиканский залив – не что иное, как кратер, образовавшийся от удара этого гиганта. 

Это настоящий Апокалипсис для динозавров. Астероид разрушает все на многие тысячи километров, даже сам он мгновенно испаряется. Энергия, высвободившаяся при ударе, равна энергии взрыва миллионов атомных бомб. Осколки астероида и земной коры разлетаются за тысячи километров. Идут метеоритные дожди, от землетрясений земля ходит ходуном, на побережья обрушиваются цунами. Поверхность Земли нагревается, растительность самовоспламеняется. Дым и пепел в течение нескольких месяцев окутывают планету мощной пеленой, не пропуская солнечные лучи. Господство динозавров, длившееся 165 млн лет, подходит к концу. К счастью, это шанс для непритязательных в еде мелких зверьков, похожих на землеройку, – млекопитающих. 

©National Geographic

Млекопитающие

50 млн лет назад. Планету все уверенней заселяют млекопитающие. На самом деле они появились еще во времена динозавров, но массовое их расселение по понятным причинам могло произойти только после исчезновения гигантских плотоядных. 47 млн лет назад – эволюция млекопитающих набирает обороты. 

Продолжительность суток, между тем, уже почти равна 24 часам, температура около 24° С, уровень кислорода практически такой же, как сегодня.

Наши предки

При столкновении Индийской и Азиатской плит образуется огромная горная гряда – Гималаи. Раньше на этом месте бушевал океан. 

4 млн лет назад. Вдоль Восточного побережья Африки между плитами, образующими земную кору, появляется огромная расселина. Она тянется почти на 6 тыс. км. По ее краю вырастают горы, которые не дают влаге из Индийского океана течь по земле. Становится жарче и суше – плодородный влажный лес Африки превращается в засушливую саванну. Одна из самых популярных версий гласит, что именно в связи с этим нашим предкам пришлось слезть с деревьев и, выпрямив спину, отправиться на поиски пропитания на двух ногах. Впрочем, есть и другие гипотезы о происхождении прямохождения, как правило, дополняющие ее множеством удивительных фактов. 

Например, не так давно в Африке обнаружены останки очень древних гоминид, которые жили как раз тогда, когда произошло разделение линий, ведущих к шимпанзе и человеку. И что же? Выяснилось, что эти гоминиды, возможно, уже ходили на двух ногах – то есть до того, как их потомки слезли с деревьев.

Sahelanthropus tchadensis на сегодняшний день считается первым гоминидом / ©Getty

Ходили они, конечно, не так уверенно, как мы, но факт остается фактом. А вот резкий скачок развития разумной деятельности человека начался всего примерно 10-12 тыс. лет назад – былинка, невероятно малая толика «секунды» на шкале времени, которая прошла с момента рождения нашей планеты. А ведь Земля, по оценкам многих специалистов, прошла лишь около половины своего жизненного пути. То ли еще будет. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

История Земли за полчаса

Автор:

23 ноября 2016 09:37

30 минут – примерно столько вы потратите на прочтение этого текста. Для вас пройдет всего полчаса, а для планеты Земля – это миллиарды лет.

Рождение Земли

Рождение Земли

Источник:

Начнем с самого начала: 5 млрд лет назад. Но где же прекрасная голубая планета? Нашему взору предстает лишь только что родившееся Солнце, окруженное протопланетарной пылью. Промотав ленту времени немного вперед, мы заметим миллиарды кружащихся вокруг Солнца камней, которые путем аккреции стягивает вместе. Пройдут миллионы лет – и эти камни станут, по меньшей мере, сотней планет, вращающихся вокруг Солнца.

4 млрд 540 млн лет назад – Земля появляется на свет. Удивительно, но на заре времен «жизнь» на нашей планете больше похожа на ее конец – тот, каким видит его религия. Твердой «суши» почти нет. Вместо нее – огненное море расплавленной породы. Вместо воздуха – углекислый газ, азот, сера и водяной пар.

В свое время религиозные схоласты рассчитали, что возраст Земли – не менее 6 тыс. лет. Только к началу XIX века геологи начали догадываться, что наша планета – настоящая «старушка». В этом им помогла Южная Африка – в одном из ее районов сохранились останки древнейшей континентальной плиты. Ученые поняли – породы в этой местности очень древние.

Вооружившись данными о скорости остывания материалов, идеей о том, что Земля изначально была расплавленным шаром, и многими годами, потраченными на расчеты, британский физик и механик лорд Кельвин в XIX веке сделал вывод о том, что Земле, скорее всего, от 20 до 40 млн лет.

Это был большой прогресс. Но для геологов-практиков даже эта цифра показалась слишком маленькой. Неизвестно, как долго бы наука пребывала в сомнениях, если бы к молодому ученому Эрнесту Резерфорду не пришло понимание того, что внутри нашей планеты находятся радиоактивные элементы. Все они создают большое количество тепла. Это в корне подрывало расчеты Кельвина, ведь выяснилось, что Земля не остывала постепенно – наоборот, в ней сокрыты постоянные источники тепла. Но главное – распад радиоактивных элементов позволил рассчитать точный возраст Земли.

Рождение Луны

Рождение Луны

Источник:

Прошло несколько миллионов лет (младенческий возраст по меркам планеты) после рождения Земли, а ее уже ждали совсем «не детские» испытания. Молодая планета под названием Тейя размером с Марс несется прямо на нас. Считается, что Тейя хоть и столкнулась с Землей, но, по счастью, прошла по касательной. Тем не менее, этого хватило, чтобы обе планеты стали напоминать жидкие шары: по Земле прокатывались настоящие волны породы, а в космос выбросило триллионы тонн обломков. В этой космической катастрофе Земля уцелела. И не только уцелела, но и обрела «украшение»: очень быстро сила тяжести нашей планеты превратила обломки, оставшиеся от катастрофы, в кольцо.

Из этого кольца постепенно формируется шар – Луна. Она гораздо ближе, чем та Луна, которую знаем мы. Сейчас она находится примерно в 400 тыс. км от нас, тогда же она была всего в 22 тыс. км. Можно только представить какой вид открывался с Земли по ночам! Увы, этими красотами не суждено было насладиться никому.

Метеориты атакуют

Метеориты атакуют

Источник:

У Земли воистину было «трудное» детство. 3 млрд 900 млн лет назад ее бомбардируют обломки, оставшиеся от формирования Солнечной системы. Именно они, по мнению многих ученых, и принесут на планету воду. В каждом из них заключено крошечное количество воды, но они атакуют нашу планету более 20 млн лет. Поэтому Земля постепенно покрывается океанами. Когда в следующий раз вы будете утолять жажду прохладной живительной минералкой – вспомните, что каждой капле воды, каждой луже на Земле – миллиарды лет.

Ядро планеты остается расплавленным, а поверхность остыла до 70-80° C. Из-за очень быстрого вращения Земли (Солнце садится спустя всего 3 часа после рассвета!), на ней дуют страшные ветры. Их скорость превышает скорость самого разрушительного современного урагана. Гигантское притяжение близко расположенной Луны поднимает огромные волны, которые прокатываются по планете. Но со временем спутник отдаляется, волны успокаиваются, и Земля начинает вращаться медленнее.

Бактерии

Бактерии

Источник:

3 млрд 800 млн лет назад – Земля полностью покрыта водой. Но если приглядеться – можно увидеть крошечные острова – это расплавленная горная порода, вулканами прорывающаяся через океан. Со временем такая лава остынет, образуя вулканические острова. Позже они соединятся, сформировав первые континенты. Впрочем, атмосфера по-прежнему токсична, стоит невыносимая жара – вряд ли нам понравилось бы проводить здесь отпуск.

Метеориты бомбят Землю с момента ее появления на свет, но 3 млрд 800 млн лет назад наступила еще более ожесточенная стадия. Видимо, что-то повредило орбиты этих метеоритов – они градом посыпались на Землю.

И все-таки наша планета страдала не зря – метеориты уже принесли сюда воду, но ученые считают, что в них было и еще кое-что – минералы, простейшие белки и аминокислоты. Сейчас, когда стихли ураганы, а Земля остыла, вероятно, пришло их время.

Жизнь на нашей планете появилась вблизи подводных горячих источников. На глубине, куда почти не проникают солнечные лучи, а температура опускается до отметки чуть выше ноля, подводные трубы извергают нечто похожее на сизый дым. На самом деле это не дым, а горячая жидкость. Морская вода даже на дне океана способна просачиваться еще дальше – через трещины в коре, по пути собирая газы и минералы. Вся эта подогретая смесь и выбрасывается назад в океан. Там ее уже поджидает «бульон» из минералов и химических веществ, оставленных метеоритами.

Из этой биохимии, по мнению многих исследователей, и появилась жизнь. В результате процессов, известных, как абиогенез все эти вещества соединились и образовали одноклеточные бактерии – самые ранние формы жизни на Земле. Есть, впрочем, предположения, что жизнь на нашей планете зарождалась бесчисленное количество раз, пока, наконец, не приобрела привычные для нас формы. Жизнь появилась. И что же? Проходят миллионы лет, но кардинально ничего не меняется – эволюция, похоже, не спешит порождать более сложные организмы.

Строматолиты

Строматолиты

Источник:

3 млрд 500 млн лет назад. Если мы посмотрим на мелководную зону океана, то увидим под водой нечто напоминающее камни. На самом деле это цианобактериальные сообщества, представляющие собой конгломераты живых бактерий. Останки этих матов называют строматолитами. Их питание происходит с помощью фотосинтеза, превращающего солнечный свет и воду в глюкозу – простую форму сахара. В ходе этого превращения высвобождается побочный продукт – кислород. Миллионы лет эти невзрачные «камни» творили чудеса, наполняя кислородом океаны и атмосферу. Если бы не они, то на Земле, вероятно, не существовало бы почти ничего живого, включая и нас с вами.

Родиния

Родиния

Источник:

1 млрд 500 млн лет назад – сутки длятся не менее 16 часов. И все же, прошло 3 млрд лет с момента появления планеты, а еще нет ни одного сложного организма.

Но земное ядро по-прежнему активно, оно горячее поверхности Солнца. Это тепло раскалывает земную кору, и она разделяется на огромные литосферные плиты. Они двигаются и тянут по всему миру океаны и острова, сталкивая их между собой. Так, 1 млрд 100 млн лет назад появляется суперконтинент – Родиния. Этот гигантский материк широко известен, но по мнению ученых, до него существовал также и самый первый гипотетический континент – Ваальбара, просуществовавший с 3,6 до 2,8 млрд лет назад, и сформировавшийся еще в Архее. Вторым гипотетическим единым материком был континент под названием Ур, образовавшийся 3 млрд лет назад. На нашей планете, возможно, существовало не менее шести суперконтинентов, но мы расскажем лишь о самых известных из них. Кстати, по многим прогнозам, в будущем – через 200-300 млн лет – все материки Земли вновь соединятся для того, чтобы снова образовать единый суперконтинент. Для него даже придумано название – Пангея Ультима («Последняя Пангея»).

«Земля-снежок»

«Земля-снежок»

Источник:

Из-за большой геологической активности родилось огромное количество вулканов. Углекислый газ, который они выбрасывают, смешивается с водой и превращается в кислотный дождь. Горные породы впитывают его в себя, не давая ему накапливаться в атмосфере, сохраняя тепло. Сейчас этих горных пород намного больше, чем раньше: они обнажились из-за столкновения континентов. В то же время из-за естественных климатических флуктуаций и изменений в солнечной радиации Земля охлаждается. Количество парникового газа, попадаемого в атмосферу, не в состоянии удерживать тепло Солнца.

Возможно и то, что образование суперконтинента Родиния привело к блокированию экваториальных вод, несших теплые течения. Полярные регионы оледенели и стали отражать все больше солнечного света, что, в свою очередь, повлекло «расползание» льда на другие участки. Температура на поверхности Земли упала до -40 градусов. Лед сковал океаны на глубину более 1 км.

Наступил, возможно, один из самых длительных и холодных ледниковых периодов в истории Земли. Приверженцы этой теории называют его эпохой «Земли-снежка». Предполагается, что наша планета была полностью покрыта льдом в части криогенийского и эдиакарского периодов неопротерозойской эры, а, возможно, и в другие геологические эпохи.

Теория о существовании этого грандиозного ледниковья была создана для того, чтобы объяснить отложения ледниковых осадков в тропиках в период криогения (850-630 млн лет назад), а также другие странные черты геологии того же периода. Не все ученые, однако, принимают эту гипотезу, говоря о том, что столь грандиозное оледенение едва ли могло быть возможным, если учесть энергетический баланс и климатические модели глобальной циркуляции.

Кембрийский взрыв

Кембрийский взрыв

Источник:

Несмотря ни на что, подо льдом планета остается горячей. Под одеялом льда продолжают жить вулканы. Накопившееся тепло приводит к тому, что со временем они начинают просыпаться один за другим. Но пока горные породы, впитывающие углекислый газ от вулканических извержений, все еще скрыты подо льдом, поэтому ничто не мешает ему накапливаться в атмосфере, удерживая солнечное тепло и постепенно плавя ледник. Таяние льда порождает трещины, изломы и неровности в земной коре, а значит, еще больше вулканов. Серией химических реакций таяние также высвобождает огромное количество кислорода, который был заключен во льду многие миллионы лет. А еще накопившееся тепло приводит к расколу Родинии. Это произошло около 750 млн лет назад.

Продолжительность суток уже равна примерно 22 часам. Концентрация кислорода в атмосфере достигла невиданных до того показателей. В этот момент, примерно 540 млн лет назад, происходит так называемый Кембрийский взрыв: словно ниоткуда в океане появляется великое множество видов сложных живых организмов.

Теория Кембрийского взрыва призвана объяснить внезапное появление окаменелостей животных на нижней границе кембрия и их отсутствие в более древних отложениях. Более поздние исследования, однако, показали, что многие сложные животные, сходные с современными видами, возникли задолго до начала кембрия. Тем не менее, подавляющая часть современных типов впервые появилась, похоже, именно в кембрии. Причем произошло это, видимо, действительно быстро. Увеличение размера живых существ и появление большого их разнообразия в числе прочего связано, вероятно, с повышением уровня кислорода.

Жизнь на суше

Жизнь на суше

Источник:

750 млн лет назад сдвиг литосферных плит произошел снова. Родиния раскололась, образовав Гондвану и Лавразию. Температура – около 30° С, уровень кислорода приближается к современному. Но суша по-прежнему безжизненна, на ней почти ничего нет, кроме отдельных участков с водорослями.
Солнце продолжает разрушать поверхность Земли смертельно опасной радиацией. Однако примерно в 50 км над Землей, там, где лучи проникают в земную атмосферу, происходит нечто интересное: встречаясь с солнечной радиацией, кислород превращается в другой газ – озон. Постепенно он обволакивает всю планету, поглощая смертельную радиацию. Если бы не он, жизнь на суше просто не существовала бы. Спустя миллионы лет, озоновый слой становится толще, и суша покрывается зелеными комочками, напоминающими мох. Эта крошечная зелень, тем не менее, делает важную работу – она выбрасывает еще больше кислорода, уровень которого резко растет. Привлекательную для жизни сушу мало-помалу начинают обживать земноводные.

Болота

Болота

Источник:

Суша становится миром тропических болот. Болота Окефеноки (штат Джорджия, США), что в переводе с индейского означает «колышущаяся земля», считаются современным аналогом болот, которые существовали на Земле в ту эпоху.

Профессор Фредерик Рич (Fredrick Rich) из университета южной Джорджии – специалист по доисторическим болотам, как и его коллеги, верит, что это болото очень похоже на те, которые существовали повсюду около 300 млн лет назад – в каменноугольный период или карбон. По его словам, именно в это время впервые за всю историю нашей планеты на ее поверхности развивается обширный растительный покров. Растения достигали 20-30 м в высоту, росли плотными массивами, создавая влажный тропический климат. Здесь летают гигантские насекомые – меганевры (гигантские стрекозоподобные насекомые, жившие в каменноугольном периоде), ползают метровые многоножки. Гигантизм насекомых и животных в ту древнюю эпоху связывают с высокой концентрацией кислорода в атмосфере.

Тропические болота занимали большую часть материковой поверхности Земли в течение десятков миллионов лет. Свидетельства тому можно найти сегодня на всех современных континентах – в месторождениях угля. На суше останки растений превращались в уголь, а на мелководье в течение миллионов лет накапливались останки живых организмов. Они станут другим видом ископаемого топлива – нефтью и газом.

Пермское вымирание

Пермское вымирание

Источник:

Примерно 250 млн лет назад. К тому моменту сушу уже населяют предки динозавров – горгонопсы и их добыча – скутозавры. Но участь их, как и 96% морских видов и 70% видов наземных позвоночных, предрешена. Около 252 млн лет назад начинается пермское вымирание – самое массовое вымирание всех времен, одно из пяти массовых вымираний, когда-либо происходивших на нашей планете.

Причины его доподлинно неизвестны до сих пор. Однако наиболее вероятной версией и одной из основных причин считается извержение сибирских траппов, происходившее именно в этот период. До сих пор неизвестно, что именно спровоцировало эти извержения. По всему миру воздух наполнен пеплом, который закрывает солнечный свет. Атмосфера наполняется токсинами и углекислым газом. Время от времени потоки горячей магмы выходят на поверхность. Это продолжается от 500 тыс. до 1 млн лет. Количество базальта, извергнувшегося из недр Земли за это время, хватило бы для того, чтобы похоронить США под почти 6-километровой толщей.

Пангея

Пангея

Источник:

Около 250 млн назад – суша вновь почти безжизненна. Прошло 50 млн лет, и материки опять соединяются, образовав единый континент – Пангею. Во время пермского вымирания погибло 70% всех видов наземных позвоночных, а это значит, что есть место для нового вида, который будет править на планете как никто другой – ни до, ни после него – динозавры. Считается, что эти «ужасные ящеры» произошли от небольшого количества рептилий, переживших пермское вымирание.

Пока они крепнут и развиваются, беспокойные плиты вновь разрывают Землю на части: 190 млн лет назад Пангея распадается. А 180 млн лет назад мир обретает привычные для нас формы, образуется Атлантический океан.

Конец динозавров

Конец динозавров

Источник:

65 млн лет назад. Кажется, что правящая династия под названием «динозавры» будет господствовать на планете вечно. Но если на Земле нет силы, способной разрушить эту монополию, она есть в космосе – к нам уже несется огромный астероид. Он летит к побережью полуострова Юкатан. Сегодняшний Мексиканский залив – не что иное, как кратер, образовавшийся от удара этого гиганта.

Это настоящий Апокалипсис для динозавров. Астероид разрушает все на многие тысячи километров, даже сам он мгновенно испаряется. Энергия, высвободившаяся при ударе, равна энергии взрыва миллионов атомных бомб. Осколки астероида и земной коры разлетаются за тысячи километров. Идут метеоритные дожди, от землетрясений земля ходит ходуном, на побережья обрушиваются цунами. Поверхность Земли нагревается, растительность самовоспламеняется. Дым и пепел в течение нескольких месяцев окутывают планету мощной пеленой, не пропуская солнечные лучи. Господство динозавров, длившееся 165 млн лет, подходит к концу. К счастью, это шанс для непритязательных в еде мелких зверьков, похожих на землеройку, – млекопитающих.

Млекопитающие

Млекопитающие

Источник:

50 млн лет назад. Планету все уверенней заселяют млекопитающие. На самом деле они появились еще во времена динозавров, но массовое их расселение по понятным причинам могло произойти только после исчезновения гигантских плотоядных. 47 млн лет назад – эволюция млекопитающих набирает обороты.

Продолжительность суток, между тем, уже почти равна 24 часам, температура около 24° С, уровень кислорода практически такой же, как сегодня.

Наши предки

Наши предки

Источник:

При столкновении Индийской и Азиатской плит образуется огромная горная гряда – Гималаи. Раньше на этом месте бушевал океан.

4 млн лет назад. Вдоль Восточного побережья Африки между плитами, образующими земную кору, появляется огромная расселина. Она тянется почти на 6 тыс. км. По ее краю вырастают горы, которые не дают влаге из Индийского океана течь по земле. Становится жарче и суше – плодородный влажный лес Африки превращается в засушливую саванну. Одна из самых популярных версий гласит, что именно в связи с этим нашим предкам пришлось слезть с деревьев и, выпрямив спину, отправиться на поиски пропитания на двух ногах. Впрочем, есть и другие гипотезы о происхождении прямохождения, как правило, дополняющие ее множеством удивительных фактов.

Например, не так давно в Африке обнаружены останки очень древних гоминид, которые жили как раз тогда, когда произошло разделение линий, ведущих к шимпанзе и человеку. И что же? Выяснилось, что эти гоминиды, возможно, уже ходили на двух ногах – то есть до того, как их потомки слезли с деревьев.

Ходили они, конечно, не так уверенно, как мы, но факт остается фактом. А вот резкий скачок развития разумной деятельности человека начался всего примерно 10-12 тыс. лет назад – былинка, невероятно малая толика «секунды» на шкале времени, которая прошла с момента рождения нашей планеты. А ведь Земля, по оценкам многих специалистов, прошла лишь около половины своего жизненного пути. То ли еще будет.

Источник:

Ссылки по теме:

Новости партнёров

реклама

Земля прошла долгий путь от огненного шара до ледяного шара. Земля — ​​одна из скалистых планет в нашей солнечной системе. По оценкам, Солнечная система сейчас находится в разгар своей жизни, что означает, что история Земли может продлиться еще  4,5 миллиарда лет. А уж потом скорее всего наступит конец для всех живых существ, населяющих ее.  А пока история Земли кратко, очень кратко, я бы сказал…

По сравнению с долгой жизнью Земли классическая теория предполагает, что люди жили всего несколько десятых секунды. История Земли начинается с насильственного, удушающего и ядовитого прошлого, несовместимого с жизнью. Этот аспект нашей планеты, без сомнения, был бы очень недружелюбен к нам, и он был больше похож на ад, которым сегодня является Венера.

По прошествии сотен миллионов лет Земля постепенно приобрела характеристики, которые сделали ее пригодным для жизни раем. До сих пор мы не знаем ни одной другой планеты с характеристиками Земли.

История нашей Земли — это история, полная катастрофических событий, а также периодов абсолютного и нерушимого спокойствия, смены континентов, океанов, полных опасностей, извержений вулканов и неумолимой жизненной борьбы за адаптацию и выживание.

История Земли кратко от возникновения до наших дней 1

Какое будущее ждет Землю? Это другая история. А пока давайте рассмотрим захватывающее прошлое планеты Земля.

5000 миллионов лет назад: рождение Солнечной системы

Если бы мы могли вернуться на пять миллиардов лет назад, у нас не было бы места, на котором можно было бы опереться. Вместо этого мы будем созерцать кольцо пыли вокруг новорожденной звезды. Мы являемся свидетелями рождения нашей солнечной системы.

Через несколько сотен миллионов лет гравитация превратила пыль в камни, а камни в протопланету.

История Земли кратко

4,5 миллиарда лет назад: рождение Земли

Вначале Земля была большим шаром расплавленной породы, горящим, как ад. Подсчитано, что когда она родилась, на ее поверхности была температура около 1200 ºC. Вероятно, там был водяной пар, углекислый газ и азот, но не было кислорода. Не было никаких континентов, только океан лавы.

История Земли кратко

Тея сталкивается с Землей: рождение Луны

Молодая планета размером с Марс движется к Земле на скорости 15 километров в секунду, в 20 раз быстрее пули. Она называется Theia. Это была еще одна новорожденная скалистая протопланета внутри нашей солнечной системы.

Наконец, происходит планетарная катастрофа, извергнувшая большое количество материала наружу. Мусор от столкновения — это то, что позже сформирует естественный спутник. После столкновения обломки оставались кольцеобразными, как у Сатурна, в течение нескольких миллионов лет и только потом наша сформировалась наша Луна.

Тогда Земля вращалась быстрее, и один день длился всего шесть часов.

3,9 миллиарда лет назад: вода начинает править Землей

Есть две гипотезы о наличии жидкой воды на Земле. Во-первых, она постепенно заполняла поверхность, падая, путешествуя на астероидах, поражавших нашу планету в течение 20 миллионов лет. Другая гипотеза состоит в том, что вода присутствовала с самого начала, скрытая под коркой.

На данный момент в истории Земли океаны правят нашей планетой. Но до сих пор нет никаких следов какой-либо формы жизни, даже микроорганизмов.

История Земли кратко от возникновения до наших дней 2

Первые примитивные формы жизни

Согласно теории панспермии, метеориты принесли незаменимые аминокислоты для жизни и отложили их на дне океанов. Вода теперь содержит одноклеточные организмы, первые формы жизни на Земле.

История Земли кратко от возникновения до наших дней 3

3,8 миллиарда лет назад: первые острова родились

Острова вулканического происхождения начинают разрушать поверхность океанов. В будущем эти острова объединятся, чтобы сформировать первые континенты. Вулканическая активность начинает заполнять атмосферу углекислым газом.

История Земли кратко

3,5 миллиарда лет назад: строматолиты, первые сложные формы жизни

Бактериальные колонии, называемые строматолитами, являются первыми сложными формами жизни на Земле. Строматолиты начинают фотосинтез, превращая углекислый газ в глюкозу и вытесняя кислород наружу. Строматолиты постепенно начинают заполнять океан кислородом.

В течение сотен миллионов лет строматолиты продолжали заполнять океан кислородом, и атмосфера начала формироваться и сгущаться. Эти бактериальные колонии подготовили почву для появления других форм жизни на Земле.

История Земли кратко от возникновения до наших дней 4

1500 миллионов лет назад: образование Родинии

Вращение Земли продолжает замедляться, и теперь дни длятся 16 часов. После миллионов лет тектоники плит был сформирован первый суперконтинент, Родиния, очень засушливый внутри.

Наконец, около 800 миллионов лет назад, Родиния начала разрушаться из-за силы внутреннего тепла Земли, ядро которой все еще расплавлено.

История Земли кратко

750 миллионов лет назад: снежный период Земли

После интенсивной вулканической активности, которая стала причиной разрушения Родинии, образуется много углекислого газа, который поглощается камнями. Углекислого газа недостаточно для удержания солнечного тепла в атмосфере, что приводит к изменению климата и значительному снижению температуры. Мы вступили в самый длинный и интенсивный глобальный ледниковый период на нашей планете, в котором практически вся поверхность Земли оставалась покрытой слоем льда толщиной около трех километров, а средняя температура планеты составляла –50 ºC.

Наконец, 15 миллионов лет спустя вулканическая активность пробивает лед, и CO2 постепенно снова наполняет атмосферу. На этот раз без камней, которые могли бы улавливать углекислый газ, CO2 заполнял атмосферу, вызывая еще одно изменение климата и повышение температуры, что способствовало продолжению таяния льда.

История Земля кратко

540 миллионов лет назад: взрыв жизни

Пока Земля была покрыта слоем льда, под замерзшей коркой, жидкая вода продолжала процветать. Когда лед тает, около 540 миллионов лет назад, происходит то, что палеонтологи называют кембрийским взрывом, то есть взрывом жизни кембрийского периода.

Теперь дни длятся 22 часа, температура становится снова мягкой и под водой множество удивительных многоклеточных форм жизни. Появляются десятки тысяч видов растений и животных: водоросли, трилобиты, губки, черви, аномалокарис… Эти животные являются предками современных насекомых. Picaias, зарождающийся позвоночник, также появился.

История Земли кратко от возникновения до наших дней 5

370 миллионов лет назад: жизнь начинает процветать на суше

Под водой существа защищены, но жизнь на земле была бы невозможна без озонового слоя. Так много кислорода от взрыва жизни под водой заполнило атмосферу, что, реагируя с солнечным светом, создало новый тип газа, названный озоном. Озон может поглощать смертельную радиацию от Солнца, делая жизнь возможной на суше. Утолщение озонового слоя послужило причиной появления первых видов растений на земле.

Но животные кембрийского взрыва столкнулись с исчезновением девонско-каменноугольной массы. Некоторые из выживших выйдут из воды и вскоре начнут колонизировать материк.

Со временем животные наполнили Землю. Мы находимся в середине палеозойской эры, когда крупные насекомые управляли планетой, как меганейра.

Великое эволюционное продвижение, животные и растения перестают полагаться на воду, чтобы колонизировать Землю. Появляются первые рептилии, начинающие доминировать на планете.

252 миллиона лет назад: эпоха рептилий подходит к концу

В течение миллионов лет разные виды крупных животных доминировали на Земле. Это были не динозавры, а крупные рептилии, такие как горгонопы. Больше всего погибло после массового вымирания в пермско-триасовом периоде, третьего по величине вымирания, от которого пострадает Земля, и крупнейшего, которое она когда-либо испытывала.

95% живых существ погибнут, а выжившие виды унаследуют Землю.

История Земля кратко

190 миллионов лет назад: разрыв суперконтинента Пангея

Пангея знаменует собой конец палеозойской эры и начало мезозойской эры. Фрагменты Пангеи будут эскизом того, чем сегодня являются наши нынешние континенты.

Изменения на поверхности Земли заставляют животных приспосабливаться к новым условиям. Великие саурианцы теперь доминируют над землей и морями.

История Земли кратко от возникновения до наших дней 6

66 миллионов лет назад: динозавры вымерли

66 миллионов лет назад доминированию и вообще жизни динозавров пришел конец. Астероид диаметром 11 километров столкнулся с Землёй. Последствия удара вызвали пятую массовую гибель на планете, известную как меловое-палеогеновое массовое вымирание. 76% видов исчезли, включая все виды динозавров, кроме предков птиц.

Это была отличная возможность для млекопитающих, которые в то время существовали только в виде мелких грызунов. Они смогли выжить под землей, питаясь корнями и зерном, пережив катаклизм и имея возможность процветать.

Антропоцен

Некоторые ученые говорят об антропоцене, о человеческом веке, как о новой геологической стадии Земли из-за глубоких последствий деятельности нашего вида на Земле.

В настоящее время наблюдаются свидетельства другого изменения климата, вызванного промышленной деятельностью человека, и мы возможно находимся перед началом шестого массового вымирания.

Источник https://yznavai.ru

Михаил Кузьмин, Владимир Ярмолюк
«Природа» №6, 2017

Об авторах

Михаил Иванович Кузьмин («Природа» №6, 2017)

Михаил Иванович Кузьмин — академик РАН, директор Института геохимии им. А. П. Виноградова СО РАН с 1988 по 2012 г. В настоящее время главный научный сотрудник института и советник РАН. Ведущий специалист в области геохимии, геодинамики, петрологии. Один из создателей нового направления в геологии — химической геодинамики. Лауреат Государственной РФ (1997) и Демидовской (2007) премий.

Владимир Викторович Ярмолюк («Природа» №6, 2017)

Владимир Викторович Ярмолюк — академик РАН, заведующий лаборатории Института геологии рудных месторождений, петрографии, минералогии и геохимии РАН. Область научных интересов — процессы глубинной геодинамики, изотопная геохимия, редкометалльный магматизм и связанные с ним месторождения, палеогеодинамические реконструкции. Лауреат премии имени Ленинского комсомола (1978), Государственной премии РФ (1997) и премии им. В. А. Обручева (2005).

Земля обладает уникальными характеристиками, которых нет у других планет Солнечной системы и у планет других звездных систем. Наиболее полно эти особенности обобщил в своей книге «Земля как эволюционирующая планетная система» замечательный геолог Кент Конди [1]. Книга написана для студентов университетов, но знать об этом, как нам кажется, необходимо со школы, так как только от нас — жителей Земли — зависит, как бережно следует использовать эти удивительные ее свойства, чтобы сохранить для будущих поколений нашу планету. Среди отличительных особенностей Земли Конди отмечает следующее.

Земная орбита близка к круговой, что обеспечивает более или менее постоянное поступление количества тепла, исходящего от Солнца. Если бы орбита была более вытянута, то на планете стало бы холоднее зимой и жарче летом. Тогда высшие формы жизни могли бы и не выжить.

Если бы Земля была только на 5% ближе к Солнцу, то (подобно тому, что происходит на Венере) температура на ее поверхности была бы слишком высокой для существования воды в жидком состоянии. Если бы наша планета находилась на 5% дальше от Солнца, то океаны замерзли бы, фотосинтез был бы значительно ослаблен, и содержание атмосферного кислорода сильно бы сократилось. В обоих случаях условия на Земле затрудняли бы появление привычных для нас форм жизни.

Если бы Земля была существенно массивнее, то силы гравитации, скорее всего, препятствовали бы появлению высших форм жизни, а если меньше, то Земля, подобно Марсу, лишилась бы атмосферы под воздействием солнечного ветра, что также не способствует развитию жизни.

Если бы Земля не имела достаточно мощного магнитного поля, то смертоносные космические лучи убили бы все формы жизни на ней. Если бы не было озонового слоя, фильтрующего и не допускающего вредную ультрафиолетовую солнечную радиацию, высшие формы жизни на Земле также не могли бы существовать.

Если бы гравитационное поле Юпитера не оказывало регулирующее воздействие на внутренние зоны Солнечной системы, Земля беспрерывно подвергалась бы бомбардировкам метеоритов и комет, следствием которых стали бы постоянные катастрофы глобального масштаба, препятствующие эволюции жизни до высших ее форм.

И наконец, если бы не было тектоники плит, то не произошла бы дифференциация рельефа Земли и не сформировались бы континенты, т. е. те территории, на которых мог обитать человек.

От себя добавим, что не образовались бы и многие рудные месторождения, обеспечившие развитие цивилизаций.

Вполне понятно, что большинство уникальных характеристик Земля приобрела как в ходе становления Солнечной системы, так и в процессе всей геологической истории. К сожалению, это предположение сложно обосновать из-за неполноты наших знаний, однако данные, накопленные разными науками (астрономией, геологией, биологией и др.) высвечивают отдельные участки земной истории, что дает основание для попыток реконструировать ее в полном объеме.

Благодаря использованию космических аппаратов и орбитальных телескопов (в том числе телескопа «Хаббл») получен огромный материал о других звездных мирах, позволивший более полно понять закономерности формирования планетных систем, и в частности расшифровать ранние этапы развития Солнечной системы.

Еще совсем недавно считалось, что наша планетная система зародилась во вращающемся газопылевом облаке, в центре которого возникло Солнце, а вокруг него (с учетом дифференциации облака) образовались планеты с определенными стабильными орбитами. Полученные новые данные сильно скорректировали эту стройную концепцию [2]. Разделение Солнечной системы на внутреннюю часть, в пределах которой развиты каменистые планеты небольших размеров, и внешнюю, с газовыми гигантами, делают нашу систему «белой вороной» среди других звездных систем. В Солнечной системе нет планет средних размеров (~1–10 масс Земли), называемых также суперземлями и обычных для других звездных систем. В них планеты расположены ближе к своей звезде, чем Меркурий к Солнцу, и их история, как правило, заканчивается столкновением со светилом. Как полагают некоторые исследователи, особый путь развития нашей системы вызван тем, что в первые миллионы лет ее становления гигантские планеты, возникшие в ее пределах, испытывали динамическую неустойчивость и орбитальные миграции [2]. Эти бурные события могли сбросить на Солнце (или выбросить в межзвездное пространство) целые планеты.

Здесь на основе современных знаний о начальных стадиях формирования Солнечной системы, а также геологической истории Земли мы хотим показать, как образовалась наша уникальная планета, на которой появился и живет человек.

Мы понимаем, что поднимаемую проблему можно раскрыть лишь на уровне наших сегодняшних познаний, в которых еще много пробелов. Однако накопление новых достижений науки в разных направлениях происходит в геометрической прогрессии. В скором времени будут получены новые данные. Они, вероятно, внесут принципиальные изменения в сложившуюся картину земной истории. И тем не менее нам представляется, что какой-то итог понимания эволюции нашей планеты надо подводить в разное время. Это помогает следить за развитием науки и вносить соответствующие дополнения и исправления в наши более ранние построения.

Возникновение Солнечной системы и особенности ее формирования

Зарождение Солнечной системы произошло в недрах гигантского газопылевого облака (рис. 1). По-видимому, «родам» способствовало участие некой сверхновой звезды, засеявшей облако короткоживущими изотопами. Продукты их распада позволяют расшифровать некоторые особенности становления планетной системы (включая Землю) на ранней стадии ее формирования.


Рис. 1. Рождение Солнечной системы 4568 млн лет тому назад («Природа» №6, 2017)

Расчеты показывают, что за менее чем 100 тыс. лет в центре газопылевого скопления под действием гравитации возникла звезда, окруженная широким кольцом из газа и пыли — протопланетным диском [3]. Мельчайшие частицы, двигаясь вместе с потоками газа, сталкивались и слипались друг с другом. Движение пылинок в газе тормозилось, что вынуждало их по спирали опускаться к звезде. При этом они постепенно нагревались. В результате вода и другие летучие вещества с низкой температурой кипения испарялись. Граница, на которой все происходило, называется «линией льда». Располагается она между орбитами Марса и Юпитера, разделяя Солнечную систему на внутреннюю область, лишенную летучих веществ и содержащую твердые планеты, и внешнюю — богатую летучими веществами (см. рис. 1). В пределах последней располагаются газовые планеты-гиганты.

Первые 2 млн лет истории Солнечной системы стали временем формирования многочисленных планетных эмбрионов — планетозималей, а за линией льда — планет-гигантов Юпитера и Сатурна. Этим Солнечная система резко отличается от других планетных систем, где подобные гиганты расположены гораздо ближе к светилу. По образному выражению К. Батыгина с коллегами, такие особенности Солнечной системы — «продукты ее молодости… включавшей больше драмы и хаоса» [2]. Важным элементом первичного хаоса стало сложное взаимодействие гигантских периферийных планет. Впервые на это было обращено внимание в компьютерной модели Ф. Массе и М. Снэллгроува, описавшей одновременную эволюцию в протопланетном диске орбит Сатурна и Юпитера [4]. Эти исследователи показали, что в результате миграции к центру системы планеты-гиганты обрели определенную конфигурацию, благодаря которой они смогли воздействовать на протопланетный диск. Сложившийся баланс сил (гравитации, момента импульса, гравитационного влияния внешнего пояса комет и др.) изменил движение обеих планет.

Развивая эти идеи, Батыгин с коллегами установили, что главным эффектом смены галса стала атака Юпитера и Сатурна на «население» первичных внутренних планет Солнечной системы [2]. Еще двигаясь к Солнцу, гиганты возмущали движение мелких тел, которые сталкивались и дробились, образуя рои обломков. За сотни тысяч лет такие рои могли сбросить на Солнце любую суперземлю. По мере того как бывшие суперземли падали на Солнце, они должны были оставлять за собой пустынную область в протопланетной туманности. Допускается, что прежде чем сменить галс, Юпитер мигрировал к Солнцу до расстояния нынешней орбиты Марса. При этом он увлек за собой во внутреннюю область Солнечной системы ледяные скопления общей массой более 10 масс Земли, обогатив ее водой и другими летучими веществами. Такой сброс протопланет во внутренние участки Солнечной системы изменил орбитальный момент не только Юпитера, но и Сатурна и вызвал смену их галсов в сторону от Солнца. В результате во внутренних участках Солнечной системы возникли условия для формирования новых планет из сохранившихся там редких обломков. Постепенно планеты-путешественники стабилизировали свои орбиты. Этому способствовало их взаимодействие с другими планетами-гигантами (Нептуном и Ураном) и внешним поясом льдистых астероидов (поясом Койпера). Предполагается, что побочным эффектом такого уравновешивания стал еще один вброс во внутреннюю область Солнечной системы потока обломков, который вызвал мощную астероидную бомбардировку внутренних планет. Шрамы от нее видны в виде гигантских кратеров на поверхности Луны, Меркурия и Марса, а на Земле они привели к практически полному уничтожению пород гадейской континентальной коры — первой коры в геологической истории нашей планеты. Около 3,9 млрд лет назад планеты-гиганты успокоились. Структура Солнечной системы стабилизировалась в том виде, в котором сейчас и наблюдается [2].

Мы полагаем, что картина, представленная Батыгиным с коллегами, наиболее полно объясняет особенности ранних этапов развития Солнечной системы, в том числе разделение планет на две большие группы — каменные и газово-ледяные. Вполне понятны обоснования появления планет небольших масс во внутренней части Солнечной системы и их каменный облик. В значительной степени предложенная модель объяснила и смену галсов планет-гигантов. В то же время наши знания о рождении Солнечной системы еще очень скудны, и, очевидно, описанная картина будет модифицироваться по мере появления новых данных.

Историю формирования и развития Земли необходимо начинать практически с зарождения Солнечной системы, ранний этап которой характеризовался путешествием планет газовых гигантов к центру системы и обратно. Он-то во многом и определил особенности строения нашей планеты и ее дальнейшую геологическую историю.

Темные эоны

Два первых эона в истории Земли выделяются как хаотичный, охватывающий время формирования Земли и Луны в интервале от 4568 млн лет до 4500–4450 млн лет назад, и гадейский, характеризующий первые страницы геологической истории Земли в интервале 4500/4450–4000/3900 млн лет назад [5]. Оба эона отвечают времени ранней «бурной» юности Солнечной системы, и их следы не сохранились в явном виде в структурах нашей планеты.

В хаотичный эон (спустя 11 млн лет после зарождения Солнечной системы) масса Земли составляла 63% от ее современных значений, а через 30 млн лет достигла 93% [6]. Конечно, хронология этих ранних событий устанавливается частично и с большим допущением и в основном опирается на данные о поведении продуктов распада короткоживущих изотопов (с константой полураспада в несколько миллионов лет).

Земля — высокодифференцированная планета, имеющая железное ядро и твердую силикатную оболочку, которая включает мантию, литосферу и земную кору. Узнать состав оболочек Земли помогают данные по углистым хондритам, которые стали строительным материалом при образовании внутренних планет Солнечной системы (в том числе и нашей). Сходство хондритов с составом солнечной короны позволило Б. Вуду не только определить состав прото-Солнечной туманности, но и использовать их для оценки среднего состава Земли [6]. При аккреции (слипании, как в снежном коме) такого материала к прото-Земле и его последующем плавлении, вызванном соударениями и радиоактивным распадом, происходило разделение элементов в соответствии с их геохимическими свойствами. Литофильные элементы, имеющие сродство с силикатами (Si, Mg, Ca, Ti, Sc, Al, РЗЭ и др.), концентрировались в мантии и земной коре в соотношениях, близких к составу углистых хондритов. В отличие от них, сидерофильные (Fe, Ni, Co, Mn, W, Cr, Pt, Re и др.) элементы, геохимически близкие к железу, «ушли» совместно с его расплавами в ядро планеты. Их содержание в мантии существенно ниже, чем в хондритах.

О времени формирования ядра позволяют судить данные о распределении в силикатной оболочке Земли продуктов короткоживущих изотопных систем, в которых родительские и дочерние изотопы могли иметь разные геохимические свойства. В результате они по-разному себя вели в процессах аккреции Земли и дифференциации ее оболочек. В этом отношении наиболее интересные результаты дала система 182Hf → 182W. В ней родительский изотоп 182Hf с периодом полураспада около 9 млн лет практически исчез в течение первых 50 млн лет земной истории. В отличие от дочернего сидерофильного изотопа 182W, гафний — литофильный. При дифференциации планеты на железное ядро и силикатную мантию 182W стремился уйти в ядро, а 182Hf оставался в мантии (рис. 2). Если бы ядро сформировалось сразу после аккреции, то дочерний изотоп остался бы вместе с родителем в мантии и соответствовал составу хондритов. Мантия по сравнению с хондритом обеднена вольфрамом (Hf/W = 19 и 1,1 соответственно), что указывает на формирование ядра в некотором интервале геологического времени, в течение которого вольфрам вместе с железом частично перераспределились в ядро. На основе изотопного состава вольфрама в земной мантии минимальное время, необходимое для образования ядра, оценивается в 34 ± 7 млн лет после начала аккреции Земли [7].


Рис. 2. Дифференциация Земли в хаотичный эон («Природа» №6, 2017)

Таким образом, дифференциация вещества Земли началась практически с момента ее образования. Столкновение формирующейся планеты с крупными астероидами, а также тепло радиоактивного распада (в первую очередь короткоживущих изотопов) вызывали плавление ее силикатной оболочки с образованием магматических океанов. При высокой температуре и давлении 20–23 ГПа происходило разделение магмы на силикатный и железный расплавы [6]. Уже через первые 5–8 млн лет объем Земли был близок к половине его нынешнего размера. Удары крупных астероидов могли образовывать магматические бассейны глубиной до 400 км. Расплавы железа, как более тяжелые, накапливались на его дне, а затем «проваливались» вниз, наращивая ядро [6].

Исключительным событием в хаотичном эоне стало формирование Луны, сыгравшей важную роль в дальнейшем развитии нашей планеты. Большинство исследователей считают, что причина ее образования — столкновение Земли с крупным космическим телом, по размеру близким к Марсу. Предполагается, что такая космическая катастрофа произошла спустя 30 млн лет после образования Солнечной системы [8]. Это согласуется с последними оценками минимального возраста нашего спутника — 4,51 млрд лет, полученными по циркону из лунных пород. Масса Земли тогда уже составляла около 93% ее современной массы [8]. К тому времени сформировалась и большая часть ядра Земли (см. рис. 2). Столкновение небесных тел изменило наклон оси вращения Земли к оси ее орбиты, составивший 23° [9], что способствовало, как считает Конди, установлению благоприятных климатических условий для существования жизни. В то же время косой удар обусловил выброс значительной части мантийного (силикатного) вещества, которое пошло на формирование Луны [9]. Ядро же Земли этим столкновением затронуто не было. Действительно, породы Луны обеднены сидерофильными элементами, а также изотопом 182W, что указывает на возникновение удара после формирования значительной части земного ядра.

В результате столь мощного импакта произошло массовое плавление мантии Земли с образованием глубокого (до 700 км) магматического океана, эволюция которого способствовала вещественной дифференциации верхних оболочек планеты в гадейское время.

Название гадейского эона происходит от имени Гадеса — древнегреческого бога подземного мира, — указывая тем самым на «адские» условия на Земле в то время. Новая эпоха началась после формирования системы Земля — Луна. Выделение гадейского эона (как распознаваемой эпохи в истории Земли) началось после обнаружения в конце ХХ в. на западе Австралии в осадочных породах гор Джек Хиллс обломков циркона Zr[SiO4] с возрастными характеристиками, уходящими за известную к тому времени границу геологической истории. Следует отметить, что циркон — великолепный геохронометр, устойчивый к самым экстремальным геологическим воздействиям (высоким температуре и давлению). Находка обломков цирконов с возрастом их центральных частей в 4,376 млрд лет стала мировой сенсацией. Наиболее интенсивно эти цирконы начали изучаться в последние два десятилетия, когда появилось аналитическое оборудование новейшего поколения, позволяющее проводить разнообразные (в том числе геохимические и изотопные) исследования в точке. Обобщающая работа по изучению цирконов Джек Хиллс была выполнена О. Нэбелом с соавторами [10]*. Основные результаты также приведены и в нашей работе [8]. Возникновение этих цирконов связывается с кристаллизацией первых гранитоидных (кислых) расплавов, которые образовались при плавлении первичной основной (базальт-коматиитовой) континентальной коры при воздействии на нее восходящих горячих потоков (плюмов) мантии. Астероидно-метеоритные бомбардировки, имевшие в гадее большой масштаб и, как отмечалось, продолжавшиеся до стабилизации орбит Юпитера и Сатурна, разрушали первичную континентальную кору [8]. Ее фрагменты смешивались с мантией и плавились. Цирконы же, устойчивые до температуры более 1690°С, сохранялись и со вновь образованными порциями магм возвращались на поверхность, принимая участие в формировании новой коры. При плавлении уже этой коры цирконы концентрировались в остаточных кислых расплавах и служили затравками для новых их генераций. Подобный процесс неоднократного вовлечения циркона в разные субстраты плавления, называемый рециклингом, мог повторяться до тех пор, пока Земля подвергалась массированным астероидным бомбардировкам, т. е. вплоть до архейского времени.

Цирконы с гадейскими возрастными характеристиками установлены также в архейских породах Гренландии, Канады, Северного Китая, Северной Америки и Южной Африки [8, 10]. Это говорит о том, что условия для их возникновения в гадейской коре существовали практически повсеместно. Детальное изучение цирконов показало, что пик возрастов в разных их генерациях пришелся на 4,25 млрд лет, что позволяет предполагать наиболее быстрый рост гадейской земной коры именно в тот период. Относительный пик значений возраста приходится также на 4,1 млрд лет, а цирконов возрастом 3,9–4,0 млрд лет очень мало. Это время определяется как окончание гадейского эона. Именно тогда произошла последняя тяжелая бомбардировка Земли и Луны и, очевидно, резко сократился процесс рециклинга цирконов, связанный с их насильственным мгновенным перемещением в область плавления.

Большое значение для понимания геологических условий, существовавших на нашей планете в гадейское время, имеет изучение цирконов в породах Луны, которые были доставлены на Землю экспедициями «Аполлон-14» (1971 г.) и «Аполлон-17» (1972 г.). Возраст лунных цирконов лежит в диапазоне 4,0–4,35 млрд лет [10], т. е. они формировались одновременно с гадейскими. Образование лунных цирконов происходило при высоких температурах (~920–1140°С), а земных — при средних (~700°С) [10, 11]. Отличаются земные и лунные цирконы также по нормированному содержанию в них редкоземельных элементов (рис. 3). В земных цирконах четко видна положительная аномалия церия. Она свидетельствует об окислительных условиях кристаллизации расплавов, способствовавших вхождению церия валентностью +4 в структуру минерала. Об окислительных условиях на Земле в гадейское время свидетельствуют также данные по изотопному составу кислорода в цирконах [10]. В отличие от земных, лунные аналоги формировались в восстановительной среде. Они к тому же обладают и характерной микроструктурой. В них установлено присутствие локальных участков перекристаллизации и аморфизации, выявляются пластические деформации, разрывы и трещины, т. е. типичные следы импактных структур [12]. Судя по всему, эти кристаллы подвергались метеоритным бомбардировкам. В земных цирконах таких структур не наблюдается, что указывает на меньшее влияние астероидных ударов на образование данных минералов.

Рис. 3. Нормированные содержания редкоземельных элементов в лунных и земных (гадейских) цирконах («Природа» №6, 2017)

Несмотря на общий пессимизм в отношении сохранности гадейской коры после переработки ее мощнейшими астероидными бомбардировками, похоже, что ее фрагмент все же был обнаружен. Ему соответствует Нуввуагитугский (Nuvvuagittuq) зеленокаменный пояс на северо-восточном побережье Гудзонского залива в Канаде, изученный в самые последние годы [13]. Его центральная часть (серия Ujaraaluk) сложена основными и ультраосновными вулканическими и интрузивными породами, возраст которых по соотношению продуктов распада короткоживущей (146Sm → 142Nd; T1/2 = 68 млн лет) и долгоживущей (147Sm → 143Nd; T1/2 = 106 млрд лет) изотопных систем оценен в ~4400 млн лет. Полученные оценки позволяют говорить об этих породах как о древнейшей коре Земли, которая сформировалась после гигантского импакта, приведшего к образованию Луны [13].

По завершении аккреции Земли и обособлению ее ядра (т. е. к концу гадейского эона) температура мантии была в 1,2 раза выше современной [1], а перенос тепла и вещества из глубин Земли к поверхности обеспечивался общемантийной конвекцией. На поверхности Земли располагались крупные лавовые плато, подобные лунным морям. Кора наращивалась за счет излияний базальтов и коматиитов, питаемых мантийными плюмами, а также за счет подслаивания снизу магм, внедрявшихся в основание коры. Такой тип развития коры выделяется как режим тектоники покрышки** [14]. Значительные лавовые платоизлияния, массивные метеоритные бомбардировки и общемантийная конвекция служили основными механизмами, определявшими развитие Земли в гадейское время.

Эры самоорганизации Земли

После тяжелой бомбардировки около 4,0–3,9 млрд лет назад [2, 15] космический фактор перестал играть ведущую роль в формировании и разрушении коры Земли. Характер геологических процессов стал определяться механизмами «самоорганизации» недр планеты, которые упорядочили строение и состав всех ее оболочек. С того же времени в структурах верхней оболочки Земли (в ее коре) прослеживается поддающаяся расшифровке летопись событий, которая позволяет с той или иной степенью детальности реконструировать историю нашей планеты.

Архейская эра представляет собой наиболее ранний отрезок, доступный для изучения. Он начался с прекращения тяжелых астероидных бомбардировок и продолжался более миллиарда лет (3,9–2,5 млрд лет назад). В ту эпоху широкое развитие приобрели основные и ультраосновные (коматииты) вулканические породы, а также кислые породы тоналит-трондьемит-гранодиоритовой (ТТГ) серии. Совместно они образуют гранит-зеленокаменные пояса в фундаменте древних платформ.

Об обстановке формирования этих пород позволяют судить данные по изотопному составу кислорода в цирконах архейских гранитоидов, варьирующему в пределах: δ18О = 6–7‰. Подобное постоянство свидетельствует о слабом развитии процессов выветривания, способствующих фракционированию изотопов кислорода. Соответственно, можно говорить о слабой дифференцированности рельефа в архее с преобладанием ландшафтов типа лавовых равнин (подобных равнинам Луны и Марса), а также о развитой гидросфере, которая изолировала каменную оболочку от воздействия атмосферы [16]. Такой тип развития соответствует режиму lid-tectonics и свидетельствует о доминировании в то время механизмов общемантийной конвекции с участием мантийных плюмов. Восходящие мантийные потоки питали лавовые платоизлияния, наращивая тем самым мощность коры. В результате ее основание погружалось в глубины, где происходила трансформация пород в эклогиты. Плавление последних под влиянием тех же мантийных плюмов вело к образованию магм, исходных для пород тоналиттрондьемит-гранодиоритовой серии.

Вопрос о появлении кислых пород ТТГ-серии — принципиальный для понимания геологических процессов в архее. В современных геологических структурах подобные породы образуются преимущественно в обстановках, связанных с зонами субдукции. Однако в те далекие времена процессы тектоники литосферных плит (включающие в качестве основного элемента субдукцию) не имели широкого развития [1, 17]. Указанный выше механизм образования кислых магм за счет плавления низов базитовой коры не так давно обоснован на примере тоналит-трондьемит-гранодиоритового комплекса Минто Блок (Minto Block) на севере Канады [18]. В детализированном виде предложенная модель включает подъем мантийного плюма к основанию коры, плавление его головной части и поступление расплавов не только на поверхность, но и на разные уровни коры (рис. 4). Тепло, привнесенное расплавами в кору, вызывало ее плавление. Продуктами последнего стали тоналитовые магмы, которые поднимались вверх, образуя крупные внутрикоровые линзы. Последующие воздействия плюма на кору вовлекали в плавление тоналиты первого этапа. В результате появлялись все более кислые расплавы — вплоть до гранодиоритов. Предложенная модель полностью согласуется с современной обстановкой океанического плато и не требует образования зон субдукции [18].


Рис. 4. Модель формирования тоналитовых расплавов под влиянием мантийных плюмов в ранней истории Земли («Природа» №6, 2017)

Архейская эра была временем поступления высокого теплового потока из недр Земли. Это послужило причиной высокой степени плавления мантии и образования больших объемов высокотемпературных магм с содержанием MgO ≥ 32% [19, 20]. Потеря тепла привела к тому, что к окончанию архея внутри Земли формируется внутреннее металлическое ядро. Сейчас трудно сказать, как это сказалось на дипольном характере земного магнитного поля, но именно с конца архея в породах начинают определяться палеомагнитные характеристики, которые в руках геологов стали инструментом для распознавания важных событий геологического прошлого, прежде всего — для реконструкций древних континентов.

В соответствии с геологическими и палеомагнитными данными, первый суперконтинент Кенорленд возник около 2700 млн лет назад [1]. С этого момента в геологической истории Земли наступила эпоха суперконтинентальных циклов [21]. Их важная характеристика — перемещение континентальных масс в горизонтальном направлении — стала свидетельством зарождения в конце архея механизмов тектоники литосферных плит. Тем не менее до их доминирования оставалось еще около 700 млн лет.

Эпоха от 2,7 до 2,0 млрд лет — переходная между тектоникой ранней (>2700 млн лет) Земли и современной тектоникой [17, 22]. В этот интервал времени закончилось формирование основных внутренних оболочек планеты, на границе ядра и мантии возник слой D′′, в результате развития процессов субдукции произошло разделение мантии на верхнюю и нижнюю, а общемантийная конвекция сменилась двухъярусной.

Переходный период четко фиксируется по смене целого ряда фундаментальных характеристик (рис. 5), отразивших изменение состава источников магматических и осадочных пород, а также условий их формирования [22]. Тогда радикально модифицировались такие важные эндогенные системы Земли, как магматизм и магматогенное рудообразование. Если в гадее и архее ведущими магматическими ассоциациями были коматиит-базальтовые и трондьемит-тоналит-гранодиоритовые, то в переходный период их арсенал резко расширился. Появились новые группы и семейства пород, в том числе известково-щелочной, субщелочной и щелочной серий. В тот период резко возросла роль магматических ассоциаций андезит-дацитового ряда, которые несли метки формирования в субдукционных условиях. Стали проявляться принципиально новые рудообразующие процессы, существенно расширившие круг эндогенных полезных ископаемых в структурах коры. Начали формироваться полиметаллические месторождения, редких и благородных металлов и редких земель.


Рис. 5. Корреляции вещественных параметров, характеризующих состояния земных оболочек и мантийных разновременных слоев в процессе эволюции планеты («Природа» №6, 2017)

К рубежу ~2,7 млрд лет относятся изменения изотопного состава Nd в продуктах мантийного плавления. В магматических ассоциациях стали преобладать породы с характеристиками деплетированной (верхней, геохимически истощенной) мантии. Этот факт указывает на то, что к концу архея завершилось разделение мантии на верхнюю и нижнюю, более обогащенную несовместимыми элементами.

К этому времени относится также возникновение первой суши. Раньше поверхность Земли была слабо дифференцирована и в основном покрыта водами Мирового океана. 2,5 млрд лет назад размеры суши достигли таких объемов, которые отразились в составе отложений, и в частности в изотопном составе стронция морских вод (см. рис. 5, г). Он формируется из двух основных источников: лав, излившихся на дно океана, и осадков, образовавшихся при разрушении континентальной коры. Изотопный состав стронция в карбонатах архейского океана практически равновесен с породами основных и ультраосновных лав его ложа. Примерно 2,7 млрд лет назад отношение 87Sr/86Sr в карбонатах (см. рис. 5, г) начало отличаться от мантийного и с тех пор постепенно растет. Это указывает на появление в водах океана дополнительного источника стронция с характеристиками континентальной коры и, соответственно, на образование в поверхностных структурах Земли суши, поставляющей осадочный материал в океаны.

Близкие выводы о времени формирования континентальной коры и суши следуют также из данных по изменению изотопного состава кислорода (δ18O) в источнике магматических пород (см. рис. 5, б). Смена источников связывается с возникновением осадочных пород, образовавшихся в результате размыва материковой суши, т. е. с появлением ее значительных объемов. Формирование материков сопровождалось ростом поднятий, породы которых подвергались интенсивному химическому выветриванию. Обогащенные тяжелым изотопом кислорода (18O) измененные породы разрушались и слагали осадки, которые в дальнейшем стали источником гранитных расплавов. Этот процесс — основная причина роста величины δ18O в постархейских гранитоидах.

К границе архея и протерозоя относится и так называемая Великая кислородная революция (ВКР) — глобальное изменение состава атмосферы Земли, произошедшее 2460–2426 млн лет назад. Его результатом стало появление в атмосфере свободного кислорода, определившего смену восстановительных условий в атмосфере на окислительные. Природа этого события таит в себе много загадок. В земных недрах кислород, как правило, находится в связанной форме. В свободном виде он практически не может существовать, так как сразу расходуется на окисление горных пород и минералов. Эндогенная природа кислорода, появившегося в атмосфере на рубеже архея и протерозоя, скорее всего, исключается.

На Земле важнейший механизм высвобождения кислорода из химически связанного состояния в свободную форму — фотосинтез. В ранние эпохи развития фотосинтезирующими организмами были цианобактерии. Можно предположить, что на рассматриваемое время пришлась вспышка образования сообществ этих микроорганизмов. Однако результаты обобщения геохимических исследований, выполненные Т. Лайонзом с соавторами, показывают, что в архее продуцировалось столько же органического углерода, сколько и в более поздние геологические эпохи [26]. Это позволило авторам сделать вывод, что, хотя фотосинтетики и существовали в архее, их деятельность была вторичной по отношению к доминирующим анаэробным процессам. Выделяемый ими кислород практически сразу расходовался на окисление горных пород и растворенных соединений гидросферы.

Ответ на вопрос о природе ВКР и ее приуроченности к границе архея и протерозоя пришлось искать в совокупности таких геологических процессов, которые могли изменить условия в атмосфере и тем самым способствовать образованию свободного кислорода. Исследования, проведенные в Южной Африке, показали, что появление свободного кислорода, зафиксированное горизонтами окисленных пород и минералов, тесно сопряжено с принципиально новыми геологическими процессами. К их числу относится и образование суперконтинента Кенорленд, т. е. первой суши в более или менее значимых размерах; и гуронское оледенение, охватившее всю Землю; и распад суперконтинента под действием мантийного плюма. Эти процессы сопровождались изменениями характера магматизма. В том числе менялся состав вулканических газов, а соответственно, и химические составы океана и атмосферы. Предполагается, что в атмосфере уменьшилось количество сернистых газов и метана, на окисление которых тратился весь свободный кислород. Возможно, одним из следствий таких изменений стало снижение количества парниковых газов, послужившее толчком для глобального оледенения. В условиях суши деятельность фотосинтетиков способствовала поступлению кислорода прямо в атмосферу. В ней неокисленных соединений содержалось существенно меньше, чем в водной среде, которая доминировала на поверхности Земли в более ранние времена. Это обеспечивало большую сохранность кислорода в атмосфере и дальнейшее его накопление. В решении проблемы ВКР еще много вопросов, связанных с реконструкцией развития органического мира на ранних стадиях развития нашей планеты. Но они уводят в сторону от темы нашего повествования и потому здесь не обсуждаются. Нам представляется, что имеющиеся данные позволяют сейчас сделать следующий промежуточный вывод. Несмотря на то что ВКР не была результатом конкретного геологического процесса, она стала следствием кумулятивного эффекта от серии геологических событий, которые создали условия для появления свободного кислорода в атмосфере Земли и тем самым способствовали ускорению эволюции живого вещества.

Характер развития Земли 2,7–2,0 млрд лет назад, очевидно, связан с процессами, протекающими во внутренних оболочках планеты, а также с формированием новых. Во-первых, как уже отмечалось, на рубеже 3,0–2,7 млрд лет назад стали активно проявляться элементы тектоники плит. Это вело к тому, что часть погружающихся литосферных плит оставалась на границе верхней и нижней мантии, разделяя ее и создавая условия для формирования двухъярусной конвекции. Меньшая часть субдуцируемой литосферы погружалась до границы ядро — мантия и, очевидно, 2,7–2,0 млрд лет назад послужила основой для формирования слоя D′′ — пограничного между ядром и мантией. В какой-то степени этот процесс можно наблюдать по изменению состава глубинных плюмов, поднимавшихся от границы ядро — мантия (см. рис. 5, ж), что детально описано Л. Кэмпбеллом и Р. Гриффитсом [19]. Магма таких плюмов 3,4–2,7 млрд лет назад содержала постоянное количество MgO — около 32±2,5 мас.%, что соответствовало температуре расплавов не менее 1650±5°С. Как полагают авторы указанной работы, архейские плюмы формировались на термальной границе, отвечающей поверхности ядра. Их температура оставалась постоянной и соответствовала температуре внешнего жидкого ядра, которая сохранялась благодаря буферирующему эффекту кристаллизации внутреннего твердого железно-никелиевого ядра. 2,7 млрд лет назад плотная субдуцированная литосфера стала накапливаться на внешней границе ядра, создавая разделяющий мантию и ядро изоляционный слой D′′, который последовательно понижал тепловой поток из ядра, а соответственно, и температуру глубинных плюмов (см. рис. 5, ж). Постепенно толщина этого слоя достигла критических значений, необходимых для формирования внутренней конвекции [19]. Слой D′′ изолировал мантию от непосредственного контакта с ядром, что и вызвало понижение температуры на их общей границе. Если на верхней границе ядра температура составляет около 3800–4200 К, то на верхней границе слоя D′′ — 2700–2800 К [28]. Таким образом, буферный слой D′′ при своей средней мощности около 200 км обеспечил перепад температур более чем в 1000 К и стал регулятором снижения температуры в основании мантии.

Процессы формирования слоя D′′ и тектоники плит оказались тесно связанными, хотя и разделяются практически всем объемом мантии. Если слой D′′ регулирует взаимодействие ядра и мантии, то субдукция послужила причиной интенсивной переработки и дифференциации земной коры и верхней мантии. В результате порожденных субдукцией процессов магматизма и метаморфизма кора разделилась на нижнюю, существенно базитовую, и верхнюю, обогащенную гранитным веществом. Важным агентом в этих трансформациях стала морская вода, вовлеченная совместно с субдуцированной литосферой в мантию. Она рециклировала (т. е. вновь перемещалась к поверхности), понижая температуру плавления мантии и низов коры, способствовала образованию расплавов с широким спектром составов, а также их обогащению металлами, редкими элементами и др. В конечном итоге благодаря процессам субдукции возникло большинство месторождений рудных и нерудных полезных ископаемых. Схематично смена стилей тектонических движений от гадейского эона до переходного периода показана на рис. 6.


Рис. 6. Эволюция стилей геодинамического развития Земли 4,5–2,7 (2,0) млрд лет назад («Природа» №6, 2017)

Поздние эпохи

Итак, окончательное изменение в составе отдельных оболочек Земли произошло 2,0 млрд лет назад [22]. К тому времени завершилось формирование деплетированной мантии нашей планеты, которая потеряла значительную часть литофильных элементов, перешедших в континентальную кору. Произошла дифференциация последней на базитовый и гранитный слои. Геологическим показателем такой дифференциации стало образование на рубеже 1,9 млрд лет огромной массы гранитов-рапакиви, обогащенных литофильными элементами. Деплетированная мантия стала основным поставщиком базальтов срединно-океанических хребтов.

С того времени в развитии Земли четко прослеживаются суперконтинентальные циклы [29]. Начало им, как уже отмечалось, положило образование в конце архея суперконтинента Кенорленд, который прекратил свое существование 2,1 млрд лет назад. Около 1,8 млрд лет назад возник суперконтинент Колумбия (или Нуна), распавшийся 1,4 млрд лет назад. Позднее, около 1 млрд лет назад, сформировался суперконтинент Родиния, прекративший свое существование 0,8–0,7 млрд лет назад. Около 300 млн лет назад образовался суперконтинент Пангея, раскол которого начался в ранней юре (200–180 млн лет назад) и привел к обособлению современных континентов.

Общее в этих суперконтинентальных циклах — смена доминирующих геодинамических механизмов. На ранней стадии образования суперконтинентов ведущую роль играли механизмы тектоники плит, определявшие перемещение отдельных блоков (континентов и микроконтинентов) к общему центру [22]. Блоки сталкивались, и вдоль их границ формировались орогенные пояса. Субдуцированная литосфера (главным образом океаническая) погружалась в мантию. Значительная ее часть сохранялась на границе верхней и нижней мантии, другая же отрывалась и в виде фрагментов слэбов погружалась до слоя D′′, нарушая сложившееся в нем термальное равновесие. В результате формировался поток горячей мантии, который восходил от слоя D′′ и компенсировал поступление в низы мантии фрагментов литосферных слэбов. Этот поток в виде огромного гриба (суперплюма) поднимался до границы нижней и верхней мантии, где преобразовывался в серию небольших плюмов. Последние воздействовали на литосферу суперконтинента, раскалывая его на более мелкие континентальные массы [30].

Еще один значительный процесс после рубежа 2,0 млрд лет — образование Африканского и Тихоокеанского горячих полей мантии [31], или мантийных провинций с пониженными скоростями сейсмических волн [32]. Соответствующие этим событиям мантийные пертурбации, по-видимому, нашли отражение в свинцовой изотопной системе базальтов океанических островов и срединно-океанических хребтов. На рис. 7 видно, что их составы образуют тренд, наклон которого соответствует возрастной зависимости в 1,8 млрд лет [33]. Этот тренд позволяет оценить возраст существующей гетерогенности мантии. Низкоскоростные мантийные провинции (суперплюмы) по сравнению с окружающей мантией более горячие. Они представляют собой восходящие мантийные потоки и играют важную роль в современной геодинамике Земли. Например, Африканское горячее поле мантии сыграло роковую роль в судьбе Пангеи, вызвав продолжающееся до сих пор ее дробление. Таким образом, именно последние 2 млрд лет геологической истории отвечают окончательному становлению современного стиля тектонических движений на Земле. Выделение деплетированной мантии (источника базальтов срединно-океанических хребтов) можно определить по изменению изотопов стронция, которые показывают, что этот мантийный резервуар образовался также около 2,0 млрд лет назад [34].


Рис. 7. Графики, определяющие время формирования деплетированного (астеносферного) слоя мантии и обогащенных базальтов океанических островов («Природа» №6, 2017)

Уникальная планета

Уникальность Земли определяется, во-первых, ее положением в той части Солнечной системы, где возможно возникновение жизни; во-вторых, особыми условиями ее внутреннего саморазвития, которые создали предпосылки для появления живых организмов и их эволюции вплоть до высших форм. На нашей планете реализовались геологические механизмы, обусловившие образование многочисленных месторождений полезных ископаемых, без использования которых возникновение человеческой цивилизации было бы невозможно.

И ныне наша планета остается тектонически активной. В геологических процессах, которые определяют формирование различных структур на континентах и в океанах, образование полезных ископаемых, естественные изменения окружающей среды и климата, принимают участие все оболочки Земли, включая атмосферу и гидросферу. Конечно, окончательно понять роль каждой оболочки в эволюции планеты пока еще нельзя, но очертить их значение попробуем.

Ядро, формирующее магнитное поле, определяет главное наше комфортное существование, не допуская на поверхность Земли смертоносные космические лучи. Внешнее ядро по плотности отличается от внутреннего, что, скорее всего, связано с наличием в нем легких летучих компонентов, которые, поднимаясь в слой D′′, вызывают образование плюмов. В одной из последних сводок, выполненной К. Литасовым и А. Шацким, говорится, что легкими компонентами ядра могли быть Si, S, O, C, H и N [28]. Понятно, что они сохранились в жидком ядре во время кристаллизации внутреннего металлического, но когда и как они первоначально оказались в ядре, пока не ясно.

Мантийные плюмы, поднимаясь от ядра к поверхности, несут энергию для взаимодействия двух верхних оболочек — литосферы и астеносферы. Плюмы — важнейший элемент нижнемантийной конвекции. Их подъем вверх компенсируется погружением холодного субдуцированного вещества вниз, в слой D′′. Нижнемантийная конвекция поддерживает мелкоячеистую верхнемантийную конвекцию.

Происходящие на Земле процессы отражены в ее современном рельефе, который чрезвычайно разнообразен — от обширных океанических котловин и континентальных равнин до узких горных систем, островных дуг и цепочек островов. Активные геологические процессы проявляются в виде сейсмических катастроф, вулканизма, гидротермальной (в том числе рудообразующей) деятельности. Кроме того, они во многом определяют климат планеты, состояние атмосферы и гидросферы.

В значительной степени характер современной активности Земли обусловлен механизмами тектоники литосферных плит, в которой взаимодействуют два слоя — литосфера и астеносфера. Они определяют формирование литосферных плит, рождение и закрытие океанических бассейнов, а вместе с веществом плюмового магматизма способствуют образованию месторождений полезных ископаемых. Рост гор, их разрушение, а также различные газы, поступающие из недр планеты, определяют изменения климата, появление холодных и теплых периодов, к приходу которых человечество должно готовиться.

Так схематично можно представить современную геолого-тектоническую жизнь нашей планеты.

Познавать историю Земли и понимать ее дальнейшее развитие необходимо для жизни последующих поколений землян, а также чтобы постичь устройство других планет и Космоса в целом.

Исследования выполнены при финансовой поддержке гранта Президента РФ (НШ-9638.2016.5) и Программы Президиума РАН № 15.

Литература
1. Condie K. C. Earth as an evolving Planetary System. Elsevier, 2011.
2. Батыгин К., Лафлин Г., Морбиделли А. Рожденные из хаоса // В мире науки. 2016. № 7. С. 16–27.
3. Лин Д. Происхождение планет // В мире науки. 2008. № 8. С. 22–31.
4. Masset F., Snellgrove M. Reversing type II migration: resonance trapping of a lighter giant protoplanet // Monthly Notices of the Royal Astronomical Society. 2001. V. 320. № 4. L55–L59.
5. Goldblatt C., Zahnle K. J., Sleep N. H., Nisbet E. G. The eons of chaos and hades // Solid Earth. 2010. V. 1. P. 1–3.
6. Wood B. The formation and differentiation of Earth // Physics Today. 2011. V. 64. № 12. P. 40–45.
7. Костицын Ю. А. Возраст земного ядра по изотопным данным: согласование Hf—W и U—Pb систем // Геохимия. 2012. № 6. С. 531–554.
8. Кузьмин М. И. Докембрийская история зарождения и эволюции Солнечной системы и Земли. Статья I // Geodynamics & Tectonophysics. 2014. V. 5. № 3. P. 625–640.
9. Хейзен Р. История Земли (от звездной пыли — к живой планете). М., 2015.
10. Nebel O., Rapp R. P, Yaxley G. M. The role of detrital zircons in Hadean crustal research // Lithos. 2014. V. 190–191. P. 313–327.
11. Taylor D. J., McKeegan K. D., Harrison T. M. Lu—Hf zircon evidence for rapid lunar differentiation // Earth and Planet. Sci. Lett. 2009. V. 279. P. 157–164.
12. Grange M. L., Pidgeon R. T., Nemchin A. A. et al. Interpreting the U—Pb data from primary and secondary features in lunar zircon // Geochim. et Cosmochim. Acta. 2013. V. 101. P. 112–132.
13. O’Neil J., Carlsona R. W., Paquetteb J.-L., Francisc D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt // Precamb. Res. 2012. V. 220–221. P. 23–44.
14. Debaille V., O’Neill C., Brandon A. D. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks // Earth and Planet. Sci. Lett. 2013. V. 373. P. 83–92.
15. Bottke W. F., Vokrouhlicky D., Minton D. et al. An Archean heavy bombardment from a destabilized extension of the asteroid belt // Nature. 2012. V. 485. P. 78–81.
16. Valley J. W., Lackey J. S., Cavosie A. J. et al. 4,4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon // Contrib. Mineral. Petrol. 2005. V. 150. P. 561–580.
17. Кузьмин М. И., Ярмолюк В. В., Эрнст Р. Е. Тектоническая активность Земли на ранних этапах (4,56–3,4 (2,7?)) ее эволюции // Геология и геофизика. 2016. Т. 57. № 5. С. 815–832.
18. Bédard J. H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle // Geochim. et Cosmochim. Acta. 2006. V. 79. P. 1188–1214.
19. Campbell I. A., Griffiths R. W. Did the formation of D′′ cause the Archean-Proterozoic transition? // Earth and Planet. Sci. Lett. 2014. V. 388. P. 1–8.
20. Ernst R. E. Large igneous provinces. Cambridge, 2014.
21. Кузьмин М. И., Ярмолюк В. В. Тектоника плит и мантийные плюмы — основа эндогенной тектонической активности Земли последние 2 млрд лет // Геология и геофизика. 2016. Т. 57. № 1. С. 11–30.
22. Кузьмин М. И., Ярмолюк В. В. Изменение стиля тектонических движений в процессе эволюции Земли // Докл. АН. 2016. Т. 469. № 6. С. 706–710.
23. Condie K. C., Aster. R. C. Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. // Precamb. Res. 2010. V. 180. P. 227–236.
24. de Wit M. J., Ashwal L. D. Greenstone belts: what are they? // South African J. of Geology. 1995. V. 98. P. 505–520.
25. Магматические горные породы. Т. 6. Эволюция магматической истории Земли. М., 1987.
26. Lyons T. W., Reinhard C. T., Planavsky N. J. The rise of oxygen in Earth’s early ocean and atmosphere // Nature. 2014. V. 506. P. 307–315.
27. Gumsleya A. P., Chamberlainb K. R., Bleekerd W. et al. Timing and tempo of the Great Oxidation Event // Proceedings of the National Academy of Sciences. 2017. V. 114. № 8. P. 1811–1816.
28. Литасов К. Д., Шацкий А. Ф. Состав и строение ядра земли. Новосибирск, 2016.
29. Li Z. X., Zhong S. Supercontinent — superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics // Physics of the Earth and Planetary Interiors. 2009. V. 176. P. 143–156.
30. Кузьмин М. И., Ярмолюк В. В. Мантийные плюмы Северо-Восточной Азии и их роль в формировании эндогенных месторождений // Геология и геофизика. 2014. Т. 55. № 2. С. 153–184.
31. Зоненшайн Л. П., Кузьмин М. И. Внутриплитовый вулканизм и его значение для понимания процессов в мантии Земли // Геотектоника. 1983. № 1. C. 28–45.
32. Dziewonski A. M. Mapping the lower mantle: Determination of lateral heterogeneity in P-velocity up to degree and order 6 // J. of Geophys. Res. 1984. V. 89. P. 5929–5952.
33. Hofmann A. W. Mantle geochemistry the message from oceanic volcanism // Nature. 1997. V. 385. P. 219–229.
34. Кузьмин М. И. Тектоника литосферных плит и геохимия // Современные проблемы теоретической и прикладной геохимии. Новосибирск, 1987. С. 19–26.


* Ссылки на других авторов можно найти в этой работе.

** В гадей-архейское время верхняя каменная оболочка Земли была более или менее однородной. Ее сплошность нарушалась либо бомбардировкой астероидов, либо прорывом магмы глубинных плюмов. Оба эти процесса обеспечивали появление на поверхности магматических расплавов, наращивающих кору сверху. Такое состояние земной поверхности обозначается как «тектоника инертной покрышки», или, кратко, — «тектоника покрышки» (lid-tectonics).

  • Рассказ как поссорились кошка с собакой
  • Рассказ концерт про осла
  • Рассказ как получаются легенды
  • Рассказ как подружились арифметические действия
  • Рассказ контрольный диктант гиваргизов читать