Рассказ о вращении земли вокруг солнца

Вращение Земли вокруг оси

Планета делает обороты вокруг самой себя по направлению с запада на восток. Мы не ощущаем этого процесса потому, что все предметы движутся одновременно и параллельно друг другу вместе с космическим телом.

Рис. 1. Обращение Земли вокруг Солнца

Рис. 1. Обращение Земли вокруг Солнца

Вращение планеты имеет такие особенности и последствия:

  • День сменяет ночь.
  • Земля делает полный оборот за 23 часа и 57 минут.
  • Если смотреть с Северного полюса, то планета вращается против часовой стрелки.
  • Угол вращения составляет 15 градусов в час и в любой точке Земли одинаков.
  • Линейная скорость оборотов по всей территории планеты неоднородна. На полюсах она равна нулю и по мере приближения к экватору увеличивает показатели. На экваторе скорость вращения составляет примерно 1668 км/ч.

Важно! Скорость движения с каждым годом уменьшается на 3 миллисекунды. Специалисты связывают этот факт с притяжением Луны. Влияя на приливы и отливы, спутник как бы тянет к себе воду в противоположную от движения Земли сторону. Создается эффект трения на дне океанов, и планета незначительно замедляет ход.

Вращение планеты вокруг Солнца

Наша планета пятая по величине и третья по удаленности от Солнца. Она сформировалась из элементов солнечной туманности около 4,55 млрд лет назад. В процессе становления Земля приобрела форму неправильного шара и установила свою уникальную орбиту длинной более 930 млн км, по которой движется вокруг большой звезды с примерной скоростью — 106000 км/ч. Полный оборот вокруг Солнца она совершает за год, если быть точнее, то за 365,2565 дня. Исследователи отмечают, что орбита движущейся планеты не идеально круглая, а имеет форму эллипса. Когда среднее расстояние до звезды составляет 151 млн км, то при обороте вокруг нее удаленность возрастает до 5,8 млн км.

Важно! Астрономы называют дальнюю от Солнца точку орбиты Афелий, и планета проходит ее в конце июня. Ближнюю — Перигелий, и мы проходим ее вместе с планетой в конце декабря.

Неправильная форма орбиты влияет и на скорость, с которой Земля движется. Летом она достигает своего минимума и составляет 29,28 км/с, а преодолев точку Афелия, планета начинает ускоряться. Достигнув максимальной скорости в 30,28 км/с на границе Перигелия, космическое тело замедляет свой ход. Такой цикл Земля проходит бесконечно, и от точности соблюдения траектории зависит жизнь на планете.

Важно! При более внимательном изучении движения Земли по орбите астрономы учитывают дополнительные не менее важные факторы: притяжение всех небесных тел Солнечной системы, влияние других звезд и характер вращения Луны.

Рис. 2. Движения Земли в пространстве

Рис. 2. Движения Земли в пространстве

Чередование времен года

Совершая оборот вокруг Солнца, Земля движется по направлению с запада на восток. Во время своего путешествия это небесное тело не меняет угол наклона, поэтому на определенном участке орбиты она полностью обращена какой-то одной стороной. Этот период на планете воспринимается живым миром как лето, а на необращенной к Солнцу стороне в это время года будет царить зима. Благодаря постоянному движению на планете происходит смена сезонов.

Важно! Два раза в году на обоих Полушариях планеты устанавливается относительно одинаковое сезонное состояние. Земля в это время повернута к Солнцу таким образом, что оно равномерно освещает ее поверхность. Это происходит осенью и весной в дни равноденствия.

Високосный год

Известно, что планета осуществляет полный оборот вокруг оси не за 24 часа, как принято считать, а за 23 часа и 57 минут. В то же время круг по орбите она делает за 365 дней и 6,5 часа. Со временем недостающие часы суммируются и таким образом появляются еще одни сутки. Они накапливаются каждые четыре года и отмечаются в календаре 29 февраля. Год, в котором есть дополнительный 366-ой день называется високосным.

Важно! На вращение Земли оказывает влияние ее спутник — Луна. Под ее гравитационным полем вращение планеты постепенно замедляется, что с каждым веком увеличивает длину суток на 0,001 с.

Рис. 3. Расстояние от Солнца до планет

Рис. 3. Расстояние от Солнца до планет

Дистанция между нашей планетой и Солнцем

Во время движения Земли вокруг Солнца между ними возникает центробежная сила. Она имеет противоречивый характер и отталкивает планету от звезды. Однако планета вращается, не меняя скорости, которая перпендикулярна скорости падения, что отклоняет ее орбиту от направления к Солнцу. Эта особенность движения космических тел препятствует падению на Солнце и отдалению в сторону прочь от Солнечной системы. Таким образом, Земля движется по четкой траектории своей орбиты. Еще в 16 веке великий Николай Коперник определил, что Земля — не центр Вселенной, а всего лишь вращается вокруг Солнца. Сейчас исследователи значительно продвинулись в знаниях и расчетах, однако повлиять на траекторию вращения и характер самого светила не в состоянии. Наша планета всегда была частью Солнечной системы, и от того, на каком расстоянии мы находимся от ее центра и как мы движемся относительно звезды, зависит жизнь на планете. Чтобы лучше усвоить тему, смотрите также познавательное видео.

Когда произошел переход к гелиоцентрической модели мира, Солнце стало в центр вращения. Теперь Земля вращается вокруг Солнца и другие объекты Солнечной системы тоже.

Оглавление

  • 1 Из-за чего происходит вращение Земли
  • 2 Вращение Земли вокруг Солнца
    • 2.1 Может ли Земля упасть на Солнце или улететь в космос
    • 2.2 В какую сторону происходит орбитальное вращение Земли
  • 3 Земная ось и ее наклон
    • 3.1 Осевое вращение Земли
    • 3.2 Теория об инертном вращении
    • 3.3 Теория о магнитных полях
  • 4 Почему люди не чувствуют движения Земли
  • 5 Линия перемены дат

Из-за чего происходит вращение Земли

Вращение Земли можно поделить на две составляющие: обращение вокруг Солнца и вращение вокруг собственной оси.

Вращение Земли вокруг Солнца

Оба этих процесса, вероятней всего, берут свое начала с времен формирования Солнечной системы, когда протопланетарный диск из газа и пыли собирался вокруг молодого Солнца, образуя планеты и астероиды.

Но все равно, не все планеты Солнечной системы имеют одинаковые параметры вращения. Выходит, не так просто шло формирование нашей звездой системы и на нее современный вид повлияло много факторов.

Вращение Земли вокруг Солнца

Как и у всех объектов Солнечной системы, вращение Земли вокруг Солнца происходит по вытянутой орбите – эллипсу. Средний радиус обращения равен 149,5 млн км – это расстояние принято называть астрономической единицей.

По второму закону Кеплера, тела, движущиеся по эллипсу, в каждый момент времени заметают одинаковую площадь. Это значит, что чем дальше Земля от Солнца – в апогелии – тем меньше ее скорость. А чем ближе планета к звезде – в перигелии – тем больше скорость ее орбитального движения. Так, скорость обращения Земли колеблется в диапазоне 29,3 – 30 км/с.

Время, за которое Земля делает полный оборот вокруг нашей звезды, равно 365 дней, 5 часов, 48 минут и 46 секунд. Из-за этих «добавок» каждый 4-й год добавляется один день.

Афелий и Перигелий

Может ли Земля упасть на Солнце или улететь в космос

Земля «держится» на своей орбите благодаря силе гравитации. Гравитационная сила Солнца в 28 раз сильнее, чем гравитационная сила у Земли. Земля, как бы не старалась, не сможет ее преодолеть.

Упасть на нашу звезду тоже вряд ли получится, ведь скорость орбитального движения Земли достаточно велика, и масса тоже. Земля обладает колоссальной инерцией и кинетической энергией, а для того, чтобы упасть на Солнце, планете придется замедлить свой ход, а для этого потребуется приложить немалую работу, которую «просто так» ниоткуда не взять.

В какую сторону происходит орбитальное вращение Земли

Все планеты движутся вокруг Солнца в одном направлении. Если продлить Земную ось в космос, залезть на ее северный кончик и посмотреть оттуда на плоскость эклиптики, то Солнечная системы осуществляет свое движение против часовой стрелки.

Земная ось и ее наклон

Планета Земля имеет наклон к плоскости эклиптики в 23,5 градуса. Именно благодаря наклону земной оси происходит смена сезонов на планете, что делает жизнь на ней разнообразней и пригодней для развития.

Наклон земной оси относительно плоскости эклиптики

Осевое вращение Земли

Полный круг вокруг своей оси Земля делает за 23 часа, 26 минут и 4 секунды – это звездные сутки.

Скорость вращения на экваторе планеты равна 465 м/c. При приближении к полюсам эта скорость падает, так как уменьшается радиус вращения. В географических полюсах скорость осевого вращения Земли равна 0.

Если мы снова перенесемся на Северный кончик земной оси, то увидим, что Земля вращается вокруг своей оси в ту же сторону что и вокруг Солнца — против часовой стрелки.

Теория об инертном вращении

Существует версия, что в момент формирования Солнечной системы, все планеты и Земля, в частности, двигались по орбитам с бОльшей скоростью, тем самым приобретая запас энергии. Теперь же, все движения Солнечной системы осуществляется благодаря этому «запасу». Но вопрос откуда взялась первоначальная энергия – вопрос пока открытый.

Теория о магнитных полях

Еще одной недоказанной теорией вращения Земли является предположение о магнитных полюсах. Как известно, одноименные полюса магнита отталкиваются друг от друга. Так как Северный и Южный полюса обладают одинаковым знаком, то они стремятся оттолкнутся друг от друга, тем самым заставляя планету вращаться.

Почему люди не чувствуют движения Земли

По той же самой причине, по которой мы не ощущаем полет самолета, находясь внутри него. Или движение корабля. Все что находится на Земле движется вместе с планетой с одинаковой скоростью. И мы просто «привыкли» к этому движению.

Линия перемены дат

Так как часовые пояса двигаются с востока на запад, а планета у нас все-таки круглая, они должны где-то встретится.

Линией такой встречи является условная линия в Тихом океане, которая огибает острова.

В Беренговом проливе, между Камчаткой и Аляской, находятся два острова Ратманова и Крузенштерна. Их называют острова «вчера» и «завтра». Линия смены дат проходит аккурат между ними.

Время, за которое можно доплыть с одного острова до другого составляет около 20 минут. При этом время на островах отличается на сутки.

острова завтра и вчера

Еще больше космоса и интересных фактов в телеграмм-канале.

Содержание

  1. Происхождение вращения Земли
  2. Вращение Земли вокруг своей оси
  3. Истинное и среднее солнечное время
  4. Вращение Земли вокруг Солнца
  5. Линия перемены дат

Земля не стоит на месте, а находится в непрерывном движении.

Вращение Земли вокруг Солнца — определяющий процесс, от которого зависит наличие жизни на планете. От того, какой стороной планета повернута и какое место занимает в Солнечной системе, зависят погодные условия, стабильность атмосферы, биосферы и другие важные условия для жизни организмов.

Именно потому, что Земля вращается вокруг Солнца и в то же самое время вокруг своей собственной оси, абсолютно на всех участках данной планеты происходит периодическая смена дня и ночи, а также последовательная смена четырех времен года.

Происхождение вращения Земли

Самая рас­про­стра­нен­ная тео­рия объ­яс­ня­ет это про­цес­са­ми, шед­ши­ми во вре­ме­на об­ра­зо­ва­ния пла­нет. Об­ла­ка кос­ми­че­ской пыли «сби­ва­лись в кучу», об­ра­зуя за­ро­ды­ши пла­нет, к ним при­тя­ги­ва­лись дру­гие более или менее круп­ные кос­ми­че­ские тела. Столк­но­ве­ния с этими те­ла­ми и могли при­дать вра­ще­ние бу­ду­щим пла­не­там. А даль­ше пла­не­ты про­дол­жа­ли вра­щать­ся по инерции.

Почему Земля не падает на Солнце?

Когда Земля вращается вокруг Солнца, вырабатывается центробежная сила, которая пытается постоянно отбросить нашу планету. Но у неё это не получится. А всё потому, что Земля всегда движется вокруг светила с одинаковой скоростью и находится от него на безопасном расстоянии, соотносимом с центробежной силой, с которой Землю и пытаются выбить с орбиты. Вот почему Земля не падает на Солнце и не улетает в космос, а продолжает двигаться по заданной траектории.

Вращение Земли вокруг своей оси

Планета делает обороты вокруг самой себя по направлению с запада на восток. Мы не ощущаем этого процесса потому, что все предметы движутся одновременно и параллельно друг другу вместе с космическим телом. Во время вращения Земли вокруг своей оси остаются неподвижными только две точки: Северный и Южный полюса. Если их соединить воображаемой линией, то получится ось, вокруг которой вращается Земля.

Земная ось не перпендикулярна, а находится под углом 23,5° к земной орбите.

Осевое вращение Земли вокруг Солнца

Один такой оборот Земли называется сутками и длится 24 часа, точнее — 23 часа 56 минут и несколько секунд. Движение планеты происходит с запада на восток. Это явление объясняет смену дня и ночи: день наблюдается на той половине земного шара, которая освещается Солнцем, а ночь — на теневой стороне.

Сутки делятся на 24 часа (1440 минут, или 86 400 секунд) и условно делятся на четыре характерных интервала — утро, день, вечер и ночь.

Календарные сутки составляют недели, месяцы.

Вращение планеты имеет такие особенности и последствия:

  • Если смотреть с Северного полюса, то планета вращается против часовой стрелки.
  • Угол вращения составляет 15 градусов в час и в любой точке Земли одинаков.
  • Линейная скорость оборотов по всей территории планеты неоднородна. На полюсах она равна нулю и по мере приближения к экватору увеличивается Наглядно это выглядит следующим образом. Город Кито находится вблизи линии экватора, значит, он и его жители незаметно для себя совершают вместе с Землёй поворот на скорости 465 м/с. А вот скорость вращения москвичей, проживающих гораздо севернее экватора, будет почти в два раза меньше: 260 м/с
  • На экваторе скорость вращения составляет примерно 1668 км/ч.

Истинное и среднее солнечное время

Местное истинное солнечное время определяется положением Солнца. Вследствие того, что орбита, по которой Земля движется вокруг Солнца, не является окружностью, а ось Земли имеет наклон (из-за чего на Земле происходит смена времен года), истинное солнечное время неравномерно. Максимальная разница в продолжительности истинных солнечных суток в течение года составляет примерно 50 с, а отклонение времени начала суток от его среднего значения может достигать 16 мин.

Точно местное истинное солнечное время можно узнать, измерив специальным астрономическим инструментом часовой угол Солнца. Приблизительно солнечное время можно узнать по солнечным часам (низкая точность которых обусловлена размытостью тени).

Солнечные часы

Местное истинное солнечное время использовалось в жизни обычного человека примерно до XVIII века. К концу XVIII века широкое распространение получили механические часы, конструкция которых всё более совершенствовалась. Различные государства постепенно начали пользоваться средним солнечным временем, предпочитая его истинному.  Так в Женеве оно было введено с 1780, в Лондоне — с 1792, в Берлине — с 1810, в Париже — с 1816 года.

В настоящее время местное истинное солнечное время используется в основном астрономами. В широком распространении оно потеряло актуальность в конце XIX — начале XX века в связи с введением системы часовых поясов и поясного времени.

Интересный факт. Ученые обнаружили пятилетние циклы ускорения и замедления в обращении Земли вокруг оси, и каждый последний «медленный» год чаще всего сопровождается всплеском количества землетрясений во всем мире. Прямая причинно-следственная связь этого еще не выявлена, но такие циклы могут стать инструментом прогнозирования роста сейсмической активности.

Вращение Земли вокруг Солнца

Наша планета пятая по величине и третья по удаленности от Солнца. Она сформировалась из элементов солнечной туманности около 4,55 млрд лет назад.Обращение планеты по отношению к центральной точке нашей системы происходит по эллиптической орбите на среднем расстоянии от центра системы почти 149,6 млн км со средней орбитальной скоростью примерно 29,8 км/с.

Пока Земля совершает полный оборот вокруг Солнца, она успевает сделать примерно 365,25 своего собственного витка. Столько дней входит в 1 астрономический год.

Вращение Земли вокруг Солнца

Значение скорости изменяется в зависимости от расположения нашей планеты в космическом пространстве: находясь в ближайшей к Солнцу точке (она называется перигелием), это небесное тело движется быстрее — более 30 км/с, в афелии (наиболее удаленной от светила позиции) — медленнее, около 29,3 км/с. Такой цикл Земля проходит бесконечно, и от точности соблюдения траектории зависит жизнь на планете.

Чередование времен года

Совершая оборот вокруг Солнца, Земля движется по направлению с запада на восток. Во время своего путешествия это небесное тело не меняет угол наклона, поэтому на определенном участке орбиты она полностью обращена какой-то одной стороной. Этот период на планете воспринимается живым миром как лето, а на необращенной к Солнцу стороне в это время года будет царить зима. Благодаря постоянному движению на планете происходит смена сезонов.

Два раза в году на обоих Полушариях планеты устанавливается относительно одинаковое сезонное состояние. Земля в это время повернута к Солнцу таким образом, что оно равномерно освещает ее поверхность. Это происходит осенью и весной в дни равноденствия.

Високосный год

Земля делает один оборот вокруг собственной оси примерно за 23 часа 56 минут, а один оборот вокруг Солнца происходит за 365 дней и 6 часов. Эта разница периодов постепенно накапливается и один раз в 4 года у нас в календаре появляется лишний день (29 февраля), и такой год называется високосным.

Также на данный процесс оказывает определенное воздействие располагающаяся в непосредственной близости Луна, под действием гравитационного поля которой вращение Земли постепенно замедляется, а это свою очередь удлиняет сутки примерно на одну тысячную каждые 100 лет.

Что такое год?

Изначально под годом подразумевался полный цикл смен времён года (зима, весна, лето, осень). Лишь после создания гелиоцентрической теории было доказано, что понятие года неразрывно связано с вращением Земли вокруг Солнца (а также наклоном земной оси). Для повышения точности вычисления траекторий небесных тел и решения других астрономических задач необходимо было чёткое определение термина «год», в результате чего на свет появилось несколько его трактовок:

  • Тропический год: временной отрезок, за который Солнце возвращается в изначальное положение на небесной сфере (с точки зрения наблюдателя на поверхности Земли). Продолжительность – 365 дней 5 часов 48 минут 45.19 секунд (незначительно меняется каждый год).
  • Сидерический: временной отрезок, за который Земля делает полный оборот вокруг Солнца и возвращается в начальную точку (отсчёт ведётся относительно звёзд, положение которых на небесной сфере изменяется очень медленно). Продолжительность — 365 дней 6 часов 9 минут 8,97 секунд.
  • Аномалистический год: временной отрезок, за который наша планета возвращается в определённую точку собственной орбиты – перицентр. Продолжительность – 365 дней 6 часов 13 минут 52,6 секунд.
  • Календарный год: временной отрезок, приближённо обозначающий полный сезонный цикл. Продолжительность 365 дней (в григорианском календаре).

Линия перемены дат

Земля вращается вокруг оси с запада на восток. При этом мореплаватели во главе с Магелланом придерживались противоположного направления. Они обогнули планету с востока на запад, увидев на один восход солнца меньше, чем за время путешествия встретили в Европе. Для того чтобы подобная досадная путаница не возникала каждый раз, когда кто-то решит обойти вокруг света, была проведена линия перемены дат.

Она практически полностью проходит по меридиану 180º и является границей, где время суток остается одинаковым, но изменяется календарная дата.

Например, если к западу от линии на календаре 18 мая, то к востоку — еще 17-е. При этом и там, и там часы показывают примерно одно и то же время.

В отличие от нулевого меридиана линия перемены дат практически не попадает на территорию суши. Благодаря этому в большинстве случаев при перемещении по планете не приходится вычитать или прибавлять один день. Как уже было сказано, основная часть линии совпадает с меридианом 180º. Она соединяет два полюса, попадая на сушу только в Антарктиде.

Правило

Смену дат необходимо проводить при пересечении линии. Если корабль движется с востока на запад, то его команде нужно увеличить календарное число на один. В случае перемещения в обратном направлении оно уменьшается. На отрезке, где временная граница отклоняется, огибая острова Океании, команда вправе менять дату, лишь преодолев меридиан 180º, если судно не будет заходить в один из портов, то есть не возникнет необходимость синхронизации с местным временем.

Получается, что при пересечении линии в определенном направлении можно дважды прожить один и тот же день. Некоторые романтики подгадывают такое путешествие под знаменательные даты: годовщину свадьбы, день рождения.

По своей сути, линия перемены дат лишь условная граница. В ее основе не лежат какие-то физические закономерности. Линия создана для удобства международного общения. Смена одной даты на другую при пересечении этой границы похожа на перевод часов при переходе на летнее или зимнее время. Эти действия помогают человеку соотнести свое движение или деятельность с космическими процессами, но напрямую из них не вытекают.

Видео



Источники

    https://aif.ru/dontknows/eternal/kak_vrashchaetsya_zemlya

    https://nauka.club/astronomiya/vrashhenie-zemli-vokrug-solnca.html

    https://wiki2.org/ru/Суточное_вращение_Земли

    https://spacegid.com/vrashhenie-zemli-vokrug-nashego-svetila.html

    https://o-kosmose.ru/solnechnaya-sistema/kak-vrashhaetsya-zemlya

    http://www.vseznaika.org/priroda/chto-takoe-god-mesyac-sutki-s-tochki-zreniya-astronomii/

    https://fb.ru/article/205487/chto-takoe-liniya-peremenyi-dat

Содержание

  • 1 Земная ось и ее наклон
  • 2 Вращение Земли вокруг своей оси
  • 3 Вращение Земли вокруг Солнца
    • 3.1 В какую сторону вращается Земля
  • 4 Почему мы не чувствуем ее движения
  • 5 Что, если она остановится

Наша планета всегда в движении. Вращение Земли происходит одновременно вокруг центральной точки Солнечной системы и вокруг своей оси.

Вращение Земли вокруг солнца и своей оси

Наша планета находится в постоянном движении. Credit: Planetanovosti

Земная ось и ее наклон

Под земной осью понимают условную прямую, проходящую через центр и оба географических полюса планеты.

Она не вертикальна — наклонена под углом 66°33´, и это объясняет смену времен года:

  • при положении Солнце на 23°27´ с. ш. (над Северным тропиком) северное полушарие получает максимум тепла и света, в этот период здесь начинается лето;
  • через полгода Солнце поднимается уже над другим тропиком — Южным, находящимся на 23°27´ ю. ш., теперь больше света и тепла получает южное полушарие, а в северном начинается зима.

Смена времен года

Смена времен года на нашей планете зависит от расположения ее оси. Credit: Сезоны-года.рф

Если бы земная ось располагалась всегда вертикально, явления сезонности планета не знала бы: на освещенной Солнцем половине все точки получали бы одинаковый объем тепла и света.

На угол наклона оси не влияет никакой внешний или внутренний фактор, включая притяжение Солнца, луны или других планет, но сама ось совершает прецессию — перемещение по круговой конической траектории.

Сегодня географический Северный полюс Земли смотрит на Полярную звезду, но уже через 12 тыс. лет ось развернется в противоположную сторону.

Полюс будет направлен на звезду Вега в созвездии Лиры. Через 25,8 тыс. лет он снова вернется к Полярной звезде.

Кроме того, земная ось немного дрейфует в области полюсов из-за того, что Земля вертится, немного колеблясь, двигаясь на восток или на запад со скоростью до 10-15 см/год, объясняется это климатическими изменениями, происходящим до 45° с. ш. и ю .ш.: таянием льдов Антарктиды и Гренландии, потерями воды в Евразии, излишне засушливыми или влажными годами в Австралии.

Вращение Земли вокруг своей оси

Один такой оборот Земли называется сутками и длится 24 часа, точнее — 23 часа 56 минут и несколько секунд. Движение планеты происходит с запада на восток. Это явление объясняет смену дня и ночи: день наблюдается на той половине земного шара, которая освещается Солнцем, а ночь — на теневой стороне.

Из-за такого вращения существует отклонение любых движущихся потоков вещества (воды в реках, воздуха в ветрах) от линий, параллельных экватору: в южном влево, а в северном — в обратную сторону. По-разному движутся и водовороты — от природных круговых водопадов до воды в сливе домашнего умывальника. В северной части планеты вода в воронках крутится по часовой стрелке, в южном полушарии — в обратном направлении.

Как Земля вращается вокруг своей оси

Суточный оборот Земли. Credit: Infourok

Линейная скорость такого движения планеты на экваторе — 465 м/с (1674 км/ч).

С увеличением широты на север и на юг скоростные показатели постепенно становятся ниже, например на 55° с.ш. (широта Москвы) они уже почти в 2 раза меньше и равны 260 м/с.

На Южном и Северном полюсах линейная скорость достигает 0 м/с. Угловая скорость вращения планеты в любой ее точке одинакова — 15° в час.

Ученые обнаружили пятилетние циклы ускорения и замедления в обращении Земли вокруг оси, и каждый последний «медленный» год чаще всего сопровождается всплеском количества землетрясений во всем мире. Прямая причинно-следственная связь этого еще не выявлена, но такие циклы могут стать инструментом прогнозирования роста сейсмической активности.

Вращение Земли вокруг Солнца

Обращение планеты по отношению к центральной точке нашей системы происходит по эллиптической орбите на среднем расстоянии от центра системы почти 149,6 млн км со средней орбитальной скоростью примерно 29,8 км/с.

Значение скорости изменяется в зависимости от расположения нашей планеты в космическом пространстве: находясь в ближайшей к Солнцу точке (она называется перигелием), это небесное тело движется быстрее — более 30 км/с, в афелии (наиболее удаленной от светила позиции) — медленнее, около 29,3 км/с.

Вращение планеты Земля вокруг солнца

Годовой оборот Земли. Credit: Spacegid

Пока Земля совершает полный оборот вокруг Солнца, она успевает сделать примерно 365,25 своего собственного витка. Столько дней входит в 1 астрономический год.

Он отличается от календарного, в котором за сутки принят период времени ровно 24 часа и который длится 365 дней. Каждый четвертый год в календарь добавляется дополнительный, 366 день.

В какую сторону вращается Земля

Если глянуть на Солнечную систему «сверху», т. е. так, что земельные участки, расположенные около Северного полюса, будут ровно напротив нашего взгляда, то вращение будет проходить против часовой стрелки

Почему мы не чувствуем ее движения

Человек не может ощущать вращения планеты, потому что вместе с ним параллельно движутся и все объекты на ее поверхности, в том же направлении и с такой же скоростью. Как пример, можно привести плавание на корабле. Находясь на его палубе, мы не замечаем, что окружающие предметы плывут по водоему вместе с нами. Относительно нас самих они остаются неподвижными.

Что, если она остановится

Если Земля перестанет вращаться вокруг своей оси, то:

  • одна ее сторона будет постоянно повернута к центру Солнечной системы, светило нагреет почву до высочайших температур, и вся влага с поверхности испарится;
  • вторая сторона планеты погрузится в вечную ночь, тут постоянно будет свирепствовать мороз, вода превратится в толстый слой льда, и его толщина достигнет километров;
  • условия станут крайне затруднительны для возникновения и развития любых форм жизни, в т.ч. для дальнейшего существования человечества.

Земные сутки будут длиться целый год, длина дня составит 6 месяцев, и после незначительного периода сумерек на планете наступит шестимесячная ночь. Закат и восход станут определяться исключительно вращением планеты вокруг светила — всходить оно будет на западе и заходить на востоке.

Что будет при остановке нашей планеты

Если остановка Земли вдруг произойдет, то
это повлечет за собой массу негативных последствий. Credit: Krpress

Так как линейная вращательная скорость достигает весомых значений, при внезапной остановке планеты все здания, растения, животные и люди будут снесены с поверхности силами инерции.

Исключение составят лишь сооружения, вмурованные в земную твердь или горные породы. По инерции продолжат вращаться океаны, вызвав гигантский цунами.

Сегодня под воздействием центробежных сил Земля несколько сплющена у полюсов и имеет своеобразный «горб» в области экватора. После остановки он исчезнет, вся вода океанов стечет к югу и северу, обнажив дно в экваториальной области до 30° с.ш. и ю.ш.. Так на планете образуется один опоясывающий ее гигантский материк и две полюсные «водяные шапки».

Магнитное поле Земли также пропадет, оставив нас без защиты от солнечного и космического ветров — опасных для всего живого заряженных частиц, которые обрушатся на планету. Потеря магнитного поля приведет к исчезновению полярных сияний.

Все описанные последствия справедливы и для ситуации, если прекратится движение Земли вокруг Солнца, только они будут еще более катастрофическими. Смены времени суток больше не будет, на одной половине планеты установится вечная ночь, на другой — такой же вечный день.

На чтение 9 мин Просмотров 5.8к.

Со времен создания гелиоцентрической модели известно, что не Солнце вращается вокруг Земли, а Земля вращается вокруг Солнца и вокруг своей оси. Однако ученые не могут точно сказать, почему это происходит и, что самое главное, что заставляет планеты и прочие объекты вращаться вокруг центральной звезды Солнечной системы. Благодаря тому, что Земля двигается вокруг нашей дневной звезды и одновременно вращается по собственной оси происходит смена суточных циклов и сезонов. Эта цикличность является необходимой для поддержания жизни на нашей планете.

Земля и Солнце

Содержание

  1. Из-за чего происходит вращение Земли
  2. Вращение Земли вокруг Солнца
  3. В какую сторону происходит орбитальное вращение Земли
  4. Почему чередуются времена года
  5. Високосный год
  6. Может ли Земля упасть на Солнце
  7. Земная ось и ее наклон
  8. Осевое вращение Земли
  9. Гипотеза об инертном вращении
  10. Теория о магнитных полях
  11. Почему люди не чувствуют движения Земли
  12. Истинное и среднее солнечное время
  13. Линия перемены дат
  14. Что же будет, если Земля вдруг резко остановится

Из-за чего происходит вращение Земли

Единого мнения, объясняющего, почему Земля вращается вокруг Солнца, нет. Наиболее распространенная теория поясняет это процессами, происходящими во время зарождения Земли. Космические облака газов, пыли сформировали протопланеты, к которым притягивались другие космические тела. Из-за столкновений между ними, вероятно, и зародилось движение Земли.

Эта теория не дает ответа на вопрос, почему наш космический дом вращается именно с запада на восток. Также еще более загадочным является тот факт, что другие планеты Солнечной системы ведут себя по-иному: Венера вращается совсем в другом направлении, а Уран и вовсе «лежит на боку».

Вращение Земли вокруг Солнца

Вращение Земли вокруг Солнца происходит со скоростью около 30 км/с по вытянутой орбите. Среднее расстояние от Земли до центральной звезды – около 149,5 млн. км (астрономическая единица). Это расстояние изменяется: в перигелии оно приблизительно равно 147,1 млн. км, а в афелии – около 152,1 млн. км.

Следовательно, скорость вращения в перигелии будет немного превышать 30 км/с, в то время как в афелии – уменьшаться до 29,3 км/с.

Вращение вокруг Солнца

Один оборот вокруг Солнца Земля совершает за 365 суток 5 ч. 48 мин. и 46 сек. Каждые 4 года в календарь вводится дополнительный день.

Многим интересно знать, вокруг чего вращается Солнце и вращается ли Солнце вокруг своей оси. Солнце движется вокруг центра галактики. Также оно делает оборот по оси за 25 суток на экваторе и за 38 суток на полюсах.

В какую сторону происходит орбитальное вращение Земли

Многим интересно узнать, в какую сторону вращается Земля. Вращение Земли происходит по орбите против часовой стрелки. Это направление может увидеть условный наблюдатель, если он будет находиться «сверху» около Северного полюса Земли.

Почему чередуются времена года

Смена сезонов обусловлена годичным вращением Земли вокруг Солнца и наклоном оси относительно плоскости орбиты. В незначительной степени на этот процесс влияет эллиптичность орбиты. Астрономические сезоны определяются от точек солнцестояния и равноденствия.

Без наклона оси в любой земной точке продолжительность дня и ночи была бы неизменной. Днем Солнце занимало бы одно и то же положение в течение целого года, несмотря на то, что Земля вращается вокруг него.

Времена года

В промежутке между сентябрьским и мартовским равноденствием Северное полушарие обращено к Солнцу меньшую часть суток. Поэтому дни становятся короче, а земная поверхность получает меньше тепла. Через полгода Земля находится в противоположной точке, но теперь Южное полушарие получает меньше тепла. За счет инерции атмосферы сглаживаются колоссальные температурные скачки.

Из-за эллиптичности земной орбиты в Северном полушарии осень и зима короче, чем весна и лето. В Южном полушарии наоборот, короче весна и лето, а зима и осень длиннее.

Високосный год

В високосный год в солнечных календарях прибавляется один день – 29 февраля. В лунно-солнечных календарях добавляется еще один месяц.

В нашем календаре високосным является год кратный 4. Исключение – для годов, кратных 100. Они являются високосными, если делятся на 400. Таким образом, год 2096 будет високосным, а 2100 – простым. Год 2000 был високосным, так как делился на 400.

Високосный год

В иудейском календаре високосный – это год, к которому добавлен месяц. В 19-годовом цикле – 7 високосных лет. В итоге получается 235 лунных месяцев из 29,5 дней. Средняя длина года составляет почти 365 ¼ дня, что соответствует полному обороту вокруг Солнца.

В исламском календаре месяцы имеют 29 или 30 дней. В табличном календаре есть регулярный високосный день, который добавляется к последнему месяцу в одиннадцатый год 30-годичного цикла. В этом месяце совершается хадж.

Может ли Земля упасть на Солнце

Наш космический дом никогда не может упасть на Солнце. Причина этого – непрерывное обращение вокруг дневной звезды. Из-за сил гравитации планета обращается по замкнутой орбите.

Земная ось и ее наклон

Ось вращения Земли имеет наклон на 23,44° к плоскости орбиты. Именно он и обусловливает циклическую смену сезонов.

Не существует факторов, которые могли бы повлиять на величину наклона оси планеты к плоскости орбиты. Однако гравитация Солнца и оборот вокруг Земли ее естественного спутника, Луны, вызывает прецессию оси. При этом она изменяет свое направление в пространстве. Она описывает конус с периодом примерно 24 тыс. лет.

Наклон оси

Сейчас северный полюс «смотрит» на альфу Малой Медведицы. Спустя 12 тыс. лет он направится на звезду Вега. Еще через 12 тыс. лет он снова переместится на прежнее место.

Осевое вращение Земли

Полный виток Земля делает в течение звездных суток – 23 ч. 26 мин. 4 сек. Этот период меньше средних солнечных суток на 3 минуты и 56 секунд.

Линейная скорость осевого вращения Земли возле экватора – более 465 м/с. По мере удаления на север она постепенно замедляется и на широте 60° составляет уже 232,5 м/с.

Интересно, что если на широте Санкт-Петербурга самолет будет лететь со скоростью 837 км/ч в западном направлении, фактически он будет на одном месте в инерциальной точке отсчета

На полюсах линейная скорость вращения равна нулю. В любой другой точке угловая скорость одинакова и равняется 15°.

С помощью маятника Фуко в середине 19 века удалось экспериментально доказать земное вращение. Также из-за обращения планеты и связанной с ним силы Кориолиса снаряды, которые выстреливаются в горизонтальном направлении, отклоняются в северном полушарии вправо.

Осевое вращение

Каждые сто лет сутки увеличиваются приблизительно на 0,001 секунды. В прошлом Земля изменяла темп вращения. Недавно ученые обнаружили, что существуют циклы ускорения и замедления вращения нашей планеты с периодом 5 лет.

Гипотеза об инертном вращении

Эта гипотеза говорит, что в прошлом Земля, достаточно интенсивно вращаясь, обрела «запас движения» и сейчас вращается по инерции. Слабость ее в том, что она не объясняет колебания скорости вращения в прошлом.

Теория о магнитных полях

Если соединять два магнита с одноименными полюсами, то они будут отталкиваться. Из этого походит теория магнитных полей. Раз у земных полюсов один и тот же заряд, они будут стремиться оттолкнуться в разные стороны. Этим и объясняется вращение планеты.

Еще одна гипотеза предполагает, что земная магнитосфера заставляет внутреннее ядро двигаться в направлении с запада на восток. Из-за действия этой силы и вращается планета.

Почему люди не чувствуют движения Земли

Мы не можем ощущать, как Земля вращается вокруг своей оси, потому что сами движемся с ней с одинаковой скоростью. Относительно нас все объекты остаются неподвижными.

Истинное и среднее солнечное время

Истинное местное солнечное время определяется локализацией Солнца в конкретной точке земного шара и вращением Земли вокруг оси. Из-за того, что наша планета движется не по круговой орбите, истинное время неодинаково в течение года. В отдельные дни разница между истинным и средним солнечным временем может доходить до 16 минут.

В основе среднего солнечного времени лежит суточное движение «среднего», воображаемого Солнца в результате вращения Земли вокруг своей оси. Его нижняя кульминация рассчитывается от 0 часов (средней полуночи). Чтобы узнать среднее солнечное время, следует географическую долготу конкретного места перевести в часы и минуты.  Так, например, долгота Астрахани составляет 48°02′ в.д., или 3:12 (исходя из того, что период вращения Земли вокруг своей оси (360°) – 24 часа. Следовательно, среднее солнечное время сдвинуто от UTC на +3 ч. 12 мин. Так как поясное время Астрахани равно UTC+4:00, средний солнечный полдень наступает в Астрахани в 12 ч. 48 мин.

Линия перемены дат

Это условная линия на земной поверхности. По разные ее стороны местное время, за некоторыми исключениями, отличается на сутки. Из-за сдвига часовых поясов разница может составлять от 1 до 4 часов. Линия всегда проходит по морю, кроме Антарктиды.

Перемена дат

Международная линия перемены дат

На восток от линии сутки уже начались новые сутки, а на запад от нее – уже закончились. Интересно, что на островах Лайн установлено время, на 14 часов опережающее гринвичское. Их жители первыми на планете встречают новый день. Время островов Лайн на сутки опережает гавайское, которое отстает от гринвичского на 10 часов.

Что же будет, если Земля вдруг резко остановится

Если допустить, что вдруг прекратится вращение Земли вокруг своей оси, то наступят такие изменения:

  • одна сторона будет постоянно повернута к Солнцу, из-за чего нагреется до невообразимо высоких температур, а вся влага испарится;
  • другая сторона не будет освещаться Солнцем, а значит, здесь установится жестокий мороз и накопятся километровые залежи льда;
  • возникшие условия будут неблагоприятными для поддержания жизни;
  • сутки будут длиться целый год.

Поскольку линейная скорость вращения планеты огромна, при резкой остановке планеты все будет снесено и уничтожено инерцией. Океаны под воздействием этой же силы вызовут разрушительные цунами. Вода стечет к полюсам, оставив область суши около экватора. Не будет также и магнитного поля, а значит, что все живое будет уничтожено радиацией и ультрафиолетом.

Если же прекратится движение Земли вокруг Солнца, изменения будут еще более катастрофическими. На одной стороне будет вечный день, а на второй – вечная ночь.

Цикличность смены дня и ночи, и времен года является необходимым условием для поддержания жизни. Прекращение вращения по орбите и вокруг своей оси было бы катастрофическим для нашей планеты. То же самое было бы, если бы земной оборот вокруг Солнца был длиннее или короче.

Опубликовано:

13 апреля 2021, 16:18

Солнце, Земля и Луна
Движение Земли: Freepick

Движение Земли вокруг Солнца непрерывно. Благодаря этому постоянному вращению наблюдаем, как меняются на нашей планете времена года. Облетая вокруг небесного светила, Земля еще успевает совершать движение вокруг оси — так сменяются день и ночь. Почему не ощущаем этого движения и как все это происходит? Попробуем отыскать ответы.

Движение Земли вокруг Солнца

Ученые древности сформулировали идею геоцентричности мира. Считалось, что наша планета — недвижимый центр, а все небесные тела совершают вращение вокруг нее.

Первым мысль о том, что Земля вращается вокруг Солнца, высказал великий астроном Аристарх Самосский в III веке до н. э. Он предложил революционную на тот момент гелиоцентрическую систему мира.

Идею поддержали вавилонянин Селевк (II век до н. э.), Гераклид Понтийский, Сенека. Но все же эти ученые оставались в меньшинстве. Так, Аристотель и Птолемей активно доказывали обратное, а в их работах можно прочесть много аргументов в пользу того, что никакого движения Земли не происходит.

Вопросом продолжили заниматься средневековые авторы. Вновь гипотеза о вращении Земли была сформулирована великим индийским астрономом и математиком Ариабхатой (конец V — начало VI вв.).

Поворотным моментом в этой дискуссии стала публикация фундаментального труда «О вращениях небесных сфер», который написал и издал в 1543 году польский и немецкий астроном Николай Коперник. Ему удалось обосновать гипотезу вращения Земли и добиться того, чтобы гелиоцентрическая система мира была рассмотрена и принята человечеством.

Понадобилось еще много экспериментов для подтверждения выводов ученого. Много было скептиков и противников этой идеи.

Только когда Галилей вывел принцип относительности движения, споры начали утихать. Он установил, что равномерное движение Земли не сказывается на процессах, которые на ней протекают. Ученый объяснил, почему мы, жители планеты, ничего не ощущаем во время ее постоянного движения.

Земля в Космосе

Земля в Космосе: Freepick

Для современного человека то, что Земля вращается вокруг Солнца, не сенсация. Исследователи установили такие подробности этого процесса:

  • Это движение происходит по особенной орбите (траектории движения), длина которой составляет примерно 930 млн км.
  • Скорость движения Земли по орбите равна около 30 км/c, то есть 107 218 км/ч.
  • Вращение нашей планеты происходит в направлении востока.
  • Земля во время этого вращения сохраняет расстояние от светила в 150 млн км.
  • Для одного полного оборота Земле необходимо 365 суток и 6 часов. Промежуток времени, в течение которого происходит это вращение, называем годом.
  • За каждые четыре года набираются еще одни сутки. Поэтому через три года на календаре появляется февраль, в котором 29 дней.

Когда наша планета совершает это вращение, то ее угол наклона остается неизменным. По этой причине на определенном отрезке траектории Земля больше поворачивается к светилу нижней частью, в Южном полушарии наступает летний сезон.

В это же время на Северный полюс солнечные лучи попадают в гораздо меньшей степени — там наступает период зимних холодов. Есть и периоды, когда Солнце более-менее равномерно бросает лучи на оба полушария. Происходит это весной и осенью.

Итак, разобрались, с какой скоростью движется Земля вокруг Солнца, и в том, что такое орбита Земли. Но на этом особенности движения Земли не заканчиваются.

Движение Земли вокруг своей оси

Если между Северным и Южным полюсами нашей планеты провести воображаемую линию, то получится так называемая земная ось. Вокруг нее постоянно происходит вращение, о котором известно:

  • Земная ось — это не перпендикулярная линия. Она расположена под углом 23,5° по отношению к орбите планеты.
  • Вращение вокруг оси осуществляется, как и по орбите, в восточном направлении. Если рассматривать нашу планету сверху в сторону Северного полюса, то вращение оценивается как такое, которое происходит против стрелки часов.
  • По мере этого вращения день сменяется ночью.
  • Скорость вращения Земли рядом с экватором (разделительная линия, равноудаленная от обоих полюсов, которая проходит по всей окружности планеты) составляет 465 м/с (1 674 км/ч). По мере удаления от экватора скорость такого движения уменьшается.

Последний факт мало известен, но вызывает интерес. Наглядно его можно продемонстрировать так:

  • Рядом с экватором расположен город Кито. Люди, которые в нем живут, незаметно для себя постоянно двигаются вместе с планетой на скорости 465 м/с.
  • Жители Москвы, которые живут севернее линии экватора, вращаются практически в два раза медленнее. Их скорость примерно равна 260 м/с.

Земля и Солнце в Космосе

Земля и Солнце в Космосе: Freepick

Этого вращательного движения люди не ощущают, так как оно осуществляется постоянно и равномерно. При этом еще и меняется. Ученые установили, что каждый год происходит замедление вращения в среднем на четыре миллисекунды.

Объясняют это явление притяжением Луны, которое оказывает воздействие на протекание приливов и отливов на планете. Когда они происходят, Луна старается притянуть к себе воду и двигает ее в направлении, которое противоположно ходу Земли.

Это своеобразное противодействие провоцирует возникновение незначительной силы трения на дне водоемов. По законам физики данный процесс приводит к небольшому замедлению скорости движения Земли.

Крайние точки в процессе вращения нашей планеты — это такие даты:

  1. Зимнее солнцестояние (21 декабря). В области Южного полярного круга в этот день ночь не наступает. Северный полярный круг, наоборот, оказывается на сутки под покровом ночи.
  2. Летнее солнцестояние (21 июня). На этот раз все происходит с точностью наоборот: Южный полярный круг на сутки пленяет ночь, а на Северном день продолжается все 24 часа.
  3. В дни весенних (20 марта) и осенних равноденствий (22 или 23 сентября в зависимости от года) ближе всего к Солнцу располагается экватор, а день с ночью равны по продолжительности в обоих полушариях.

Почему же Земля не улетает в космические просторы и не падает на Солнце, если она постоянно находится в движении? Действительно, во время ее вращения происходит выработка центробежной силы, которая направлена на то, чтобы отбросить планету от Солнца.

Но это не происходит, потому что движение Земли всегда имеет одинаковую скорость, а безопасное расстояние до светила соотносится с центробежной силой.

Если бы Солнце не притягивало Землю, она бы отправилась «путешествовать» по Галактике. Наша планета упала бы на свою звезду, если бы скорость вращения на орбите была медленнее. Благодаря идеальному природному балансу всех этих сил и скоростей ни того, ни другого не происходит.

Движение Земли вокруг Солнца подчиняется целому ряду законов, которые человечество разгадывало в течение веков. Люди долго пытались найти иные объяснения смене дня и ночи и времен года. Но теперь точно установлено, что наша планета вращается, а мы движемся вместе с ней.

Оригинал статьи: https://www.nur.kz/family/school/1907566-dvizhenie-zemli-vokrug-solntsa-i-vokrug-svoey-osi/

«Earth’s rotation period» redirects here. For the duration of daylight and night, see Daytime.

Earth’s rotation or Earth’s spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise.

The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where Earth’s axis of rotation meets its surface. This point is distinct from Earth’s North Magnetic Pole. The South Pole is the other point where Earth’s axis of rotation intersects its surface, in Antarctica.

Earth rotates once in about 24 hours with respect to the Sun, but once every 23 hours, 56 minutes and 4 seconds with respect to other distant stars (see below). Earth’s rotation is slowing slightly with time; thus, a day was shorter in the past. This is due to the tidal effects the Moon has on Earth’s rotation. Atomic clocks show that a modern day is longer by about 1.7 milliseconds than a century ago,[1] slowly increasing the rate at which UTC is adjusted by leap seconds. Analysis of historical astronomical records shows a slowing trend; the length of a day increased about 2.3 milliseconds per century since the 8th century BCE.[2]

Scientists reported that in 2020 Earth had started spinning faster, after consistently spinning slower than 86,400 seconds per day in the decades before. On June 29, 2022, Earth’s spin was completed in 1.59 milliseconds under 24 hours, setting a new record.[3] Because of that trend, engineers worldwide are discussing a ‘negative leap second’ and other possible timekeeping measures.[4]

This increase in speed is thought to be due to various factors, including the complex motion of its molten core, oceans, and atmosphere, the effect of celestial bodies such as the Moon, and possibly climate change, which is causing the ice at Earth’s poles to melt. The masses of ice account for the Earth’s shape being that of an oblate spheroid, bulging around the equator. When these masses are reduced, the poles rebound from the loss of weight, and Earth becomes more spherical, which has the effect of bringing mass closer to its centre of gravity. Conservation of angular momentum dictates that a mass distributed more closely around its centre of gravity spins faster.[5]

History[edit]

Among the ancient Greeks, several of the Pythagorean school believed in the rotation of Earth rather than the apparent diurnal rotation of the heavens. Perhaps the first was Philolaus (470–385 BCE), though his system was complicated, including a counter-earth rotating daily about a central fire.[6]

A more conventional picture was supported by Hicetas, Heraclides and Ecphantus in the fourth century BCE who assumed that Earth rotated but did not suggest that Earth revolved about the Sun. In the third century BCE, Aristarchus of Samos suggested the Sun’s central place.

However, Aristotle in the fourth century BCE criticized the ideas of Philolaus as being based on theory rather than observation. He established the idea of a sphere of fixed stars that rotated about Earth.[7] This was accepted by most of those who came after, in particular Claudius Ptolemy (2nd century CE), who thought Earth would be devastated by gales if it rotated.[8]

In 499 CE, the Indian astronomer Aryabhata suggested that the spherical Earth rotates about its axis daily, and that the apparent movement of the stars is a relative motion caused by the rotation of Earth. He provided the following analogy: «Just as a man in a boat going in one direction sees the stationary things on the bank as moving in the opposite direction, in the same way to a man at Lanka the fixed stars appear to be going westward.»[9][10]

In the 10th century, some Muslim astronomers accepted that Earth rotates around its axis.[11] According to al-Biruni, al-Sijzi (d. circa 1020) invented an astrolabe called al-zūraqī based on the idea believed by some of his contemporaries «that the motion we see is due to the Earth’s movement and not to that of the sky.»[12][13] The prevalence of this view is further confirmed by a reference from the 13th century which states: «According to the geometers [or engineers] (muhandisīn), the Earth is in constant circular motion, and what appears to be the motion of the heavens is actually due to the motion of the Earth and not the stars.»[12] Treatises were written to discuss its possibility, either as refutations or expressing doubts about Ptolemy’s arguments against it.[14] At the Maragha and Samarkand observatories, Earth’s rotation was discussed by Tusi (b. 1201) and Qushji (b. 1403); the arguments and evidence they used resemble those used by Copernicus.[15]

In medieval Europe, Thomas Aquinas accepted Aristotle’s view[16] and so, reluctantly, did John Buridan[17] and Nicole Oresme[18] in the fourteenth century. Not until Nicolaus Copernicus in 1543 adopted a heliocentric world system did the contemporary understanding of Earth’s rotation begin to be established. Copernicus pointed out that if the movement of Earth is violent, then the movement of the stars must be very much more so. He acknowledged the contribution of the Pythagoreans and pointed to examples of relative motion. For Copernicus this was the first step in establishing the simpler pattern of planets circling a central Sun.[19]

Tycho Brahe, who produced accurate observations on which Kepler based his laws of planetary motion, used Copernicus’s work as the basis of a system assuming a stationary Earth. In 1600, William Gilbert strongly supported Earth’s rotation in his treatise on Earth’s magnetism[20] and thereby influenced many of his contemporaries.[21]: 208  Those like Gilbert who did not openly support or reject the motion of Earth about the Sun are called «semi-Copernicans».[21]: 221  A century after Copernicus, Riccioli disputed the model of a rotating Earth due to the lack of then-observable eastward deflections in falling bodies;[22] such deflections would later be called the Coriolis effect. However, the contributions of Kepler, Galileo and Newton gathered support for the theory of the rotation of Earth.

Empirical tests[edit]

Earth’s rotation implies that the Equator bulges and the geographical poles are flattened. In his Principia, Newton predicted this flattening would occur in the ratio of 1:230, and pointed to the pendulum measurements taken by Richer in 1673 as corroboration of the change in gravity,[23] but initial measurements of meridian lengths by Picard and Cassini at the end of the 17th century suggested the opposite. However, measurements by Maupertuis and the French Geodesic Mission in the 1730s established the oblateness of Earth, thus confirming the positions of both Newton and Copernicus.[24]

In Earth’s rotating frame of reference, a freely moving body follows an apparent path that deviates from the one it would follow in a fixed frame of reference. Because of the Coriolis effect, falling bodies veer slightly eastward from the vertical plumb line below their point of release, and projectiles veer right in the Northern Hemisphere (and left in the Southern) from the direction in which they are shot. The Coriolis effect is mainly observable at a meteorological scale, where it is responsible for the opposite directions of cyclone rotation in the Northern and Southern hemispheres (anticlockwise and clockwise, respectively).

Hooke, following a suggestion from Newton in 1679, tried unsuccessfully to verify the predicted eastward deviation of a body dropped from a height of 8.2 meters, but definitive results were obtained later, in the late 18th and early 19th century, by Giovanni Battista Guglielmini in Bologna, Johann Friedrich Benzenberg in Hamburg and Ferdinand Reich in Freiberg, using taller towers and carefully released weights.[n 1] A ball dropped from a height of 158.5 m departed by 27.4 mm from the vertical compared with a calculated value of 28.1 mm.

The most celebrated test of Earth’s rotation is the Foucault pendulum first built by physicist Léon Foucault in 1851, which consisted of a lead-filled brass sphere suspended 67 m from the top of the Panthéon in Paris. Because of Earth’s rotation under the swinging pendulum, the pendulum’s plane of oscillation appears to rotate at a rate depending on latitude. At the latitude of Paris the predicted and observed shift was about 11 degrees clockwise per hour. Foucault pendulums now swing in museums around the world.

Periods [edit]

True solar day[edit]

Earth’s rotation period relative to the Sun (solar noon to solar noon) is its true solar day or apparent solar day.[26] It depends on Earth’s orbital motion and is thus affected by changes in the eccentricity and inclination of Earth’s orbit. Both vary over thousands of years, so the annual variation of the true solar day also varies. Generally, it is longer than the mean solar day during two periods of the year and shorter during another two.[n 2] The true solar day tends to be longer near perihelion when the Sun apparently moves along the ecliptic through a greater angle than usual, taking about 10 seconds longer to do so. Conversely, it is about 10 seconds shorter near aphelion. It is about 20 seconds longer near a solstice when the projection of the Sun’s apparent motion along the ecliptic onto the celestial equator causes the Sun to move through a greater angle than usual. Conversely, near an equinox the projection onto the equator is shorter by about 20 seconds. Currently, the perihelion and solstice effects combine to lengthen the true solar day near 22 December by 30 mean solar seconds, but the solstice effect is partially cancelled by the aphelion effect near 19 June when it is only 13 seconds longer. The effects of the equinoxes shorten it near 26 March and 16 September by 18 seconds and 21 seconds, respectively.[27][28]

Mean solar day[edit]

The average of the true solar day during the course of an entire year is the mean solar day, which contains 86400 mean solar seconds. Currently, each of these seconds is slightly longer than an SI second because Earth’s mean solar day is now slightly longer than it was during the 19th century due to tidal friction. The average length of the mean solar day since the introduction of the leap second in 1972 has been about 0 to 2 ms longer than 86400 SI seconds.[29][30][31] Random fluctuations due to core-mantle coupling have an amplitude of about 5 ms.[32][33] The mean solar second between 1750 and 1892 was chosen in 1895 by Simon Newcomb as the independent unit of time in his Tables of the Sun. These tables were used to calculate the world’s ephemerides between 1900 and 1983, so this second became known as the ephemeris second. In 1967 the SI second was made equal to the ephemeris second.[34]

The apparent solar time is a measure of Earth’s rotation and the difference between it and the mean solar time is known as the equation of time.

Stellar and sidereal day[edit]

On a prograde planet like Earth, the stellar day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again but the Sun is not (1→2 = one stellar day). It is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day).

Earth’s rotation period relative to the International Celestial Reference Frame, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86 164.098 903 691 seconds of mean solar time (UT1) (23h 56m 4.098903691s, 0.99726966323716 mean solar days).[35][n 3] Earth’s rotation period relative to the precessing mean vernal equinox, named sidereal day, is 86164.09053083288 seconds of mean solar time (UT1) (23h 56m 4.09053083288s, 0.99726956632908 mean solar days).[35] Thus, the sidereal day is shorter than the stellar day by about 8.4 ms.[37]

Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. This is a result of the Earth turning 1 additional rotation, relative to the celestial reference frame, as it orbits the Sun (so 366.25 rotations/y). The mean solar day in SI seconds is available from the IERS for the periods 1623–2005[38] and 1962–2005.[39]

Recently (1999–2010) the average annual length of the mean solar day in excess of 86400 SI seconds has varied between 0.25 ms and 1 ms, which must be added to both the stellar and sidereal days given in mean solar time above to obtain their lengths in SI seconds (see Fluctuations in the length of day).

Angular speed[edit]

The angular speed of Earth’s rotation in inertial space is (7.2921150 ± 0.0000001)×10−5 radians per SI second.[35][n 4] Multiplying by (180°/π radians) × (86,400 seconds/day) yields 360.9856 °/day, indicating that Earth rotates more than 360° relative to the fixed stars in one solar day. Earth’s movement along its nearly circular orbit while it is rotating once around its axis requires that Earth rotate slightly more than once relative to the fixed stars before the mean Sun can pass overhead again, even though it rotates only once (360°) relative to the mean Sun.[n 5] Multiplying the value in rad/s by Earth’s equatorial radius of 6,378,137 m (WGS84 ellipsoid) (factors of 2π radians needed by both cancel) yields an equatorial speed of 465.10 metres per second (1,674.4 km/h).[40] Some sources state that Earth’s equatorial speed is slightly less, or 1,669.8 km/h.[41] This is obtained by dividing Earth’s equatorial circumference by 24 hours. However, the use of the solar day is incorrect; it must be the sidereal day, so the corresponding time unit must be a sidereal hour. This is confirmed by multiplying by the number of sidereal days in one mean solar day, 1.002 737 909 350 795,[35] which yields the equatorial speed in mean solar hours given above of 1,674.4 km/h.

The tangential speed of Earth’s rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude.[42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1674.4 km/h = 1470.2 km/h. Latitude is a placement consideration for spaceports.

Comparison of Earth’s highest elevation (green) with the farthest points from its axis (pink) and from its centre (blue) – not to scale

The peak of the Cayambe volcano is the point of Earth’s surface farthest from its axis; thus, it rotates the fastest as Earth spins.[43]

Changes[edit]

Earth’s axial tilt is about 23.4°. It oscillates between 22.1° and 24.5° on a 41000-year cycle and is currently decreasing.

In rotational axis[edit]

Earth’s rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth’s crust; this is called polar motion.

Precession is a rotation of Earth’s rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies. The polar motion is primarily due to free core nutation and the Chandler wobble.

In rotational speed[edit]

Tidal interactions[edit]

Over millions of years, Earth’s rotation has been slowed significantly by tidal acceleration through gravitational interactions with the Moon. Thus angular momentum is slowly transferred to the Moon at a rate proportional to r^{{-6}}, where r is the orbital radius of the Moon. This process has gradually increased the length of the day to its current value, and resulted in the Moon being tidally locked with Earth.

This gradual rotational deceleration is empirically documented by estimates of day lengths obtained from observations of tidal rhythmites and stromatolites; a compilation of these measurements[44] found that the length of the day has increased steadily from about 21 hours at 600 Myr ago[45] to the current 24-hour value. By counting the microscopic lamina that form at higher tides, tidal frequencies (and thus day lengths) can be estimated, much like counting tree rings, though these estimates can be increasingly unreliable at older ages.[46]

Resonant stabilization[edit]

A simulated history of Earth’s day length, depicting a resonant-stabilizing event throughout the Precambrian era.[47]

The current rate of tidal deceleration is anomalously high, implying Earth’s rotational velocity must have decreased more slowly in the past. Empirical data[44] tentatively shows a sharp increase in rotational deceleration about 600 Myr ago. Some models suggest that Earth maintained a constant day length of 21 hours throughout much of the Precambrian.[45] This day length corresponds to the semidiurnal resonant period of the thermally-driven atmospheric tide; at this day length, the decelerative lunar torque could have been canceled by an accelerative torque from the atmospheric tide, resulting in no net torque and a constant rotational period. This stabilizing effect could have been broken by a sudden change in global temperature. Recent computational simulations support this hypothesis and suggest the Marinoan or Sturtian glaciations broke this stable configuration about 600 Myr ago; the simulated results agree quite closely with existing paleorotational data.[47]

Global events[edit]

Deviation of day length from SI-based day

Some recent large-scale events, such as the 2004 Indian Ocean earthquake, have caused the length of a day to shorten by 3 microseconds by reducing Earth’s moment of inertia.[48] Post-glacial rebound, ongoing since the last Ice age, is also changing the distribution of Earth’s mass, thus affecting the moment of inertia of Earth and, by the conservation of angular momentum, Earth’s rotation period.[49]

The length of the day can also be influenced by manmade structures. For example, NASA scientists calculated that the water stored in the Three Gorges Dam has increased the length of Earth’s day by 0.06 microseconds due to the shift in mass.[50]

Measurement[edit]

The primary monitoring of Earth’s rotation is performed by very-long-baseline interferometry coordinated with the Global Positioning System, satellite laser ranging, and other satellite geodesy techniques. This provides an absolute reference for the determination of universal time, precession, and nutation.[51]
The absolute value of Earth rotation including UT1 and nutation can be determined using space geodetic observations, such as Very Long Baseline Interferometry and Lunar laser ranging, whereas their derivatives, denoted as Length-of-day excess and nutation rates can be derived from satellite observations, such as GPS, GLONASS, Galileo[52] and Satellite laser ranging to geodetic satellites.[53]

Ancient observations[edit]

There are recorded observations of solar and lunar eclipses by Babylonian and Chinese astronomers beginning in the 8th century BCE, as well as from the medieval Islamic world[54] and elsewhere. These observations can be used to determine changes in Earth’s rotation over the last 27 centuries, since the length of the day is a critical parameter in the calculation of the place and time of eclipses. A change in day length of milliseconds per century shows up as a change of hours and thousands of kilometers in eclipse observations. The ancient data are consistent with a shorter day, meaning Earth was turning faster throughout the past.[55][56]

Cyclic variability[edit]

Around every 25–30 years Earth’s rotation slows temporarily by a few milliseconds per day, usually lasting around 5 years. 2017 was the fourth consecutive year that Earth’s rotation has slowed. The cause of this variability has not yet been determined.[57]

Origin[edit]

Earth’s original rotation was a vestige of the original angular momentum of the cloud of dust, rocks, and gas that coalesced to form the Solar System. This primordial cloud was composed of hydrogen and helium produced in the Big Bang, as well as heavier elements ejected by supernovas. As this interstellar dust is heterogeneous, any asymmetry during gravitational accretion resulted in the angular momentum of the eventual planet.[58]

However, if the giant-impact hypothesis for the origin of the Moon is correct, this primordial rotation rate would have been reset by the Theia impact 4.5 billion years ago. Regardless of the speed and tilt of Earth’s rotation before the impact, it would have experienced a day some five hours long after the impact.[59] Tidal effects would then have slowed this rate to its modern value.

See also[edit]

  • Allais effect
  • Diurnal cycle
  • Earth’s orbit
  • Earth orientation parameters
  • Formation and evolution of the Solar System
  • Geodesic (in mathematics)
  • Geodesics in general relativity
  • Geodesy
  • History of Earth
  • History of geodesy
  • Inner core super-rotation
  • List of important publications in geology
  • Nychthemeron
  • Spherical Earth
  • World Geodetic System

Notes[edit]

  1. ^ See Fallexperimente zum Nachweis der Erdrotation (German Wikipedia article).
  2. ^ When Earth’s eccentricity exceeds 0.047 and perihelion is at an appropriate equinox or solstice, only one period with one peak balances another period that has two peaks.[27]
  3. ^ Aoki, the ultimate source of these figures, uses the term «seconds of UT1» instead of «seconds of mean solar time».[36]
  4. ^ It can be established that SI seconds apply to this value by following the citation in «USEFUL CONSTANTS» to E. Groten «Parameters of Common Relevance of Astronomy, Geodesy, and Geodynamics» which states units are SI units, except for an instance not relevant to this value.
  5. ^ In astronomy, unlike geometry, 360° means returning to the same point in some cyclical time scale, either one mean solar day or one sidereal day for rotation on Earth’s axis, or one sidereal year or one mean tropical year or even one mean Julian year containing exactly 365.25 days for revolution around the Sun.

References[edit]

  1. ^ Dennis D. McCarthy; Kenneth P. Seidelmann (18 September 2009). Time: From Earth Rotation to Atomic Physics. John Wiley & Sons. p. 232. ISBN 978-3-527-62795-0.
  2. ^ Stephenson, F. Richard (2003). «Historical eclipses and Earth’s rotation». Astronomy & Geophysics. 44 (2): 2.22–2.27. Bibcode:2003A&G….44b..22S. doi:10.1046/j.1468-4004.2003.44222.x.
  3. ^ Robert Lea (3 August 2022). «Earth sets record for the shortest day». Space.com. Retrieved 8 August 2022.
  4. ^ Knapton, Sarah (4 January 2021). «The Earth is spinning faster now than at any time in the past half century». The Telegraph. Retrieved 11 February 2021.
  5. ^ Pappas, Stephanie (25 September 2018). «Humans Contribute to Earth’s Wobble, Scientists Say». Scientific American. Retrieved 12 August 2022.
  6. ^ Pseudo-Plutarchus, Placita philosophorum (874d-911c), Stephanus page 896, section A, line 5 Ἡρακλείδης ὁ Ποντικὸς καὶ Ἔκφαντος ὁ Πυθαγόρειος κινοῦσι μὲν τὴν γῆν, οὐ μήν γε μεταβατικῶς, ἀλλὰ τρεπτικῶς τροχοῦ δίκην ἐνηξονισμένην, ἀπὸ δυσμῶν ἐπ’ ἀνατολὰς περὶ τὸ ἴδιον αὐτῆς κέντρον; Plutarchus Biogr., Phil., Numa, Chapter 11, section 1, line 5, Νομᾶς δὲ λέγεται καὶ τὸ τῆς Ἑστίας ἱερὸν ἐγκύκλιον περιβαλέσθαι τῷ ἀσβέστῳ πυρὶ φρουράν, ἀπομιμούμενος οὐ τὸ σχῆμα τῆς γῆς ὡς Ἑστίας οὔσης, ἀλλὰ τοῦ σύμπαντος κόσμου, οὗ μέσον οἱ Πυθαγορικοὶ τὸ πῦρ ἱδρῦσθαι νομίζουσι, καὶ τοῦτο Ἑστίαν καλοῦσι καὶ μονάδα· τὴν δὲ γῆν οὔτε ἀκίνητον οὔτε ἐν μέσῳ τῆς περιφορᾶς οὖσαν, ἀλλὰ κύκλῳ περὶ τὸ πῦρ αἰωρουμένην οὐ τῶν τιμιωτάτων οὐδὲ τῶν πρώτων τοῦ κόσμου μορίων ὑπάρχειν. Burch, George Bosworth (1954). «The Counter-Earth». Osiris. 11: 267–294. doi:10.1086/368583. JSTOR 301675. S2CID 144330867.
  7. ^ Aristotle. Of the Heavens. Book II, Ch 13. 1.
  8. ^ Ptolemy. Almagest Book I, Chapter 8.
  9. ^ «Archived copy» (PDF). Archived from the original (PDF) on 13 December 2013. Retrieved 8 December 2013.{{cite web}}: CS1 maint: archived copy as title (link)
  10. ^ Kim Plofker (2009). Mathematics in India. Princeton University Press. p. 71. ISBN 978-0-691-12067-6.
  11. ^ Alessandro Bausani (1973). «Cosmology and Religion in Islam». Scientia/Rivista di Scienza. 108 (67): 762.
  12. ^ a b Young, M. J. L., ed. (2 November 2006). Religion, Learning and Science in the ‘Abbasid Period. Cambridge University Press. p. 413. ISBN 9780521028875.
  13. ^ Nasr, Seyyed Hossein (1 January 1993). An Introduction to Islamic Cosmological Doctrines. SUNY Press. p. 135. ISBN 9781438414195.
  14. ^ Ragep, Sally P. (2007). «Ibn Sīnā: Abū ʿAlī al‐Ḥusayn ibn ʿAbdallāh ibn Sīnā». In Thomas Hockey; et al. (eds.). The Biographical Encyclopedia of Astronomers. New York: Springer. pp. 570–2. ISBN 978-0-387-31022-0. (PDF version)
  15. ^ Ragep, F. Jamil (2001a), «Tusi and Copernicus: The Earth’s Motion in Context», Science in Context, 14 (1–2): 145–163, doi:10.1017/s0269889701000060, S2CID 145372613
  16. ^ Aquinas, Thomas. Commentaria in libros Aristotelis De caelo et Mundo. Lib II, cap XIV. trans in Grant, Edward, ed. (1974). A Source Book in Medieval Science. Harvard University Press. pages 496–500
  17. ^ Buridan, John (1942). Quaestiones super libris quattuo De Caelo et mundo. pp. 226–232. in Grant 1974, pp. 500–503
  18. ^ Oresme, Nicole. Le livre du ciel et du monde. pp. 519–539. in Grant 1974, pp. 503–510
  19. ^ Copernicus, Nicolas. On the Revolutions of the Heavenly Spheres. Book I, Chap 5–8.
  20. ^ Gilbert, William (1893). De Magnete, On the Magnet and Magnetic Bodies, and on the Great Magnet the Earth. New York, J. Wiley & sons. pp. 313–347.
  21. ^ a b Russell, John L (1972). «Copernican System in Great Britain». In J. Dobrzycki (ed.). The Reception of Copernicus’ Heliocentric Theory. ISBN 9789027703118.
  22. ^ Almagestum novum, chapter nine, cited in Graney, Christopher M. (2012). «126 arguments concerning the motion of the earth. GIOVANNI BATTISTA RICCIOLI in his 1651 ALMAGESTUM NOVUM». Journal for the History of Astronomy. volume 43, pages 215–226. arXiv:1103.2057.
  23. ^ Newton, Isaac (1846). Newton’s Principia. Translated by A. Motte. New-York : Published by Daniel Adee. p. 412.
  24. ^ Shank, J. B. (2008). The Newton Wars and the Beginning of the French Enlightenment. University of Chicago Press. pp. 324, 355. ISBN 9780226749471.
  25. ^ «Starry Spin-up». Retrieved 24 August 2015.
  26. ^ «What Is Solar Noon?». www.timeanddate.com. Retrieved 15 July 2022.
  27. ^ a b Jean Meeus; J. M. A. Danby (January 1997). Mathematical Astronomy Morsels. Willmann-Bell. pp. 345–346. ISBN 978-0-943396-51-4.
  28. ^ Ricci, Pierpaolo. «www.pierpaoloricci.it/dati/giorno solare vero VERSIONE EN». Pierpaoloricci.it. Retrieved 22 September 2018.
  29. ^ «INTERNATIONAL EARTH ROTATION AND REFERENCE SYSTEMS SERVICE : EARTH ORIENTATION PARAMETERS : EOP (IERS) 05 C04». Hpiers.obspm.fr. Retrieved 22 September 2018.
  30. ^ «Physical basis of leap seconds» (PDF). Iopscience.iop.org. Retrieved 22 September 2018.
  31. ^ Leap seconds Archived 12 March 2015 at the Wayback Machine
  32. ^ «Prediction of Universal Time and LOD Variations» (PDF). Ien.it. Retrieved 22 September 2018.
  33. ^ R. Hide et al., «Topographic core-mantle coupling and fluctuations in the Earth’s rotation» 1993.
  34. ^ Leap seconds by USNO Archived 12 March 2015 at the Wayback Machine
  35. ^ a b c d «USEFUL CONSTANTS». Hpiers.obspm.fr. Retrieved 22 September 2018.
  36. ^ Aoki, et al., «The new definition of Universal Time», Astronomy and Astrophysics 105 (1982) 359–361.
  37. ^ P. Kenneth Seidelmann, ed. (1992). Explanatory Supplement to the Astronomical Almanac. Mill Valley, California: University Science Books. p. 48. ISBN 978-0-935702-68-2.
  38. ^ IERS Excess of the duration of the day to 86,400s … since 1623 Archived 3 October 2008 at the Wayback Machine Graph at end.
  39. ^ «Excess to 86400s of the duration day, 1995–1997». 13 August 2007. Archived from the original on 13 August 2007. Retrieved 22 September 2018.
  40. ^ Arthur N. Cox, ed., Allen’s Astrophysical Quantities p.244.
  41. ^ Michael E. Bakich, The Cambridge planetary handbook, p.50.
  42. ^ Butterworth & Palmer. «Speed of the turning of the Earth». Ask an Astrophysicist. NASA Goddard Spaceflight Center.
  43. ^ Klenke, Paul. «Distance to the Center of the Earth». Summit Post. Retrieved 4 July 2018.
  44. ^ a b Williams, George E. (1 February 2000). «Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit». Reviews of Geophysics. 38 (1): 37–59. Bibcode:2000RvGeo..38…37W. doi:10.1029/1999RG900016. ISSN 1944-9208. S2CID 51948507.
  45. ^ a b Zahnle, K.; Walker, J. C. (1 January 1987). «A constant daylength during the Precambrian era?». Precambrian Research. 37 (2): 95–105. Bibcode:1987PreR…37…95Z. CiteSeerX 10.1.1.1020.8947. doi:10.1016/0301-9268(87)90073-8. ISSN 0301-9268. PMID 11542096.
  46. ^ Scrutton, C. T. (1 January 1978). «Periodic Growth Features in Fossil Organisms and the Length of the Day and Month». In Brosche, Professor Dr Peter; Sündermann, Professor Dr Jürgen (eds.). Tidal Friction and the Earth’s Rotation. Springer Berlin Heidelberg. pp. 154–196. doi:10.1007/978-3-642-67097-8_12. ISBN 9783540090465.
  47. ^ a b Bartlett, Benjamin C.; Stevenson, David J. (1 January 2016). «Analysis of a Precambrian resonance-stabilized day length». Geophysical Research Letters. 43 (11): 5716–5724. arXiv:1502.01421. Bibcode:2016GeoRL..43.5716B. doi:10.1002/2016GL068912. ISSN 1944-8007. S2CID 36308735.
  48. ^ Sumatran earthquake sped up Earth’s rotation, Nature, 30 December 2004.
  49. ^ Wu, P.; W.R.Peltier (1984). «Pleistocene deglaciation and the earth’s rotation: a new analysis». Geophysical Journal of the Royal Astronomical Society. 76 (3): 753–792. Bibcode:1984GeoJ…76..753W. doi:10.1111/j.1365-246X.1984.tb01920.x.
  50. ^ «NASA Details Earthquake Effects on the Earth». NASA/JPL. Retrieved 22 March 2019.
  51. ^ «Permanent monitoring». Hpiers.obspm.fr. Retrieved 22 September 2018.
  52. ^ Zajdel, Radosław; Sośnica, Krzysztof; Bury, Grzegorz; Dach, Rolf; Prange, Lars (July 2020). «System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo». GPS Solutions. 24 (3): 74. doi:10.1007/s10291-020-00989-w.
  53. ^ Sośnica, K.; Bury, G.; Zajdel, R. (16 March 2018). «Contribution of Multi‐GNSS Constellation to SLR‐Derived Terrestrial Reference Frame». Geophysical Research Letters. 45 (5): 2339–2348. Bibcode:2018GeoRL..45.2339S. doi:10.1002/2017GL076850. S2CID 134160047.
  54. ^ «Solar and lunar eclipses recorded in medieval Arab chronicles», Historical Eclipses and Earth’s Rotation, Cambridge University Press, pp. 431–455, 5 June 1997, doi:10.1017/cbo9780511525186.012, ISBN 9780521461948, retrieved 15 July 2022
  55. ^ Sid Perkins (6 December 2016). «Ancient eclipses show Earth’s rotation is slowing». Science. doi:10.1126/science.aal0469.
  56. ^ FR Stephenson; LV Morrison; CY Hohonkerk (7 December 2016). «Measurement of the Earth’s rotation: 720 BC to AD 2015». Proceedings of the Royal Society A. 472 (2196): 20160404. Bibcode:2016RSPSA.47260404S. doi:10.1098/rspa.2016.0404. PMC 5247521. PMID 28119545.
  57. ^ Nace, Trevor. «Earth’s Rotation Is Mysteriously Slowing Down: Experts Predict Uptick In 2018 Earthquakes». Forbes. Retrieved 18 October 2019.
  58. ^ «Why do planets rotate?». Ask an Astronomer.
  59. ^ Stevenson, D. J. (1987). «Origin of the moon–The collision hypothesis». Annual Review of Earth and Planetary Sciences. 15 (1): 271–315. Bibcode:1987AREPS..15..271S. doi:10.1146/annurev.ea.15.050187.001415.

External links[edit]

  • USNO Earth Orientation new site, being populated
  • USNO IERS old site, to be abandoned
  • IERS Earth Orientation Center: Earth rotation data and interactive analysis
  • International Earth Rotation and Reference Systems Service (IERS)
  • If the Earth’s rotation period is less than 24 hours, why don’t our clocks fall out of sync with the Sun?

  • Рассказ о вральмане из комедии недоросль кратко
  • Рассказ о городе кизел
  • Рассказ о восходе солнца
  • Рассказ о городе кемерово
  • Рассказ о восточно европейской равнине 4 класс