Содержание
- Обозначение геометрических фигур буквами
- Точка
- Отрезок
- Ломаная линия
- Многоугольники
- Угол
- Обозначения и символика
- Основы геометрии
- Точка
- Прямая
- Способы обозначения прямых
- Способы обозначения лучей
- Отрезок
- Ломаная
- Плоскость, прямая линия, луч
- Прямая линия
- Обозначение прямой
- Некоторые свойства прямой
- Обозначение луча
- Углы в геометрии
- Способы обозначения углов
- Виды углов
Обозначение геометрических фигур буквами
В математике есть правило: обозначать геометрические фигуры заглавными буквами латинского алфавита. Сегодня мы научимся этому.
Точка
точка А, точка С, точка D, точка Е и точка F.
Отрезок
отрезок AD, отрезок СВ, отрезок FE
Сколько всего отрезков на данном чертеже?
Ломаная линия
А эта ломаная линия совсем по-другому, потому что соединение точек у неё другое:
Ломаная линия ACDFE
Прочитаю название следующей ломаной линии:
Ломаная линия AFDCE
Многоугольники
Угол
Угол обозначается тремя буквами. В середине указывается буква, которая обозначает вершину угла.
1 угол: угол BAC или CAB с вершиной А
2 угол: угол AOD или DOA с вершиной О
3 угол: угол AED или DEA с вершиной Е
4 угол: угол BCD или DCB с вершиной С
Поделись с друзьями в социальных сетях:
Источник
Обозначения и символика
Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык, составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).
Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:
группа I — обозначения геометрических фигур и отношений между ними;
группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.
Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.
СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ
А. Обозначение геометрических фигур
1. Геометрическая фигура обозначается — Ф.
2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:
3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:
Линии уровня обозначаются: h — горизонталь; f— фронталь.
Для прямых используются также следующие обозначения:
(АВ) — прямая, проходящая через точки А а В;
[АВ) — луч с началом в точке А;
[АВ] — отрезок прямой, ограниченный точками А и В.
4. Поверхности обозначаются строчными буквами греческого алфавита:
Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:
α(а || b) — плоскость α определяется параллельными прямыми а и b;
5. Углы обозначаются:
6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:
— величина угла АВС;
— величина угла φ.
Прямой угол отмечается квадратом с точкой внутри
7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками — ||.
|АВ| — расстояние между точками А и В (длина отрезка АВ);
|Аа| — расстояние от точки А до линии a;
|Аα| — расстояшие от точки А до поверхности α;
|аb| — расстояние между линиями а и b;
|αβ| расстояние между поверхностями α и β.
π2 —фрюнтальная плоскость проекций.
При замене плоскостей проекций или введении новых плоскостей последние обозначают π3, π4 и т. д.
Постояшную прямую эпюра Монжа обозначают k.
10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:
11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α, подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.
12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.
Например: Ha — горизонтальный след прямой (линии) а;
Fa — фронтальный след прямой (линии ) a.
13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3. n:
Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:
14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0 :
15. Вторичные проекции обозначаются путем добавления верхнего индекса 1 :
Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.
Источник
Основы геометрии
Геометрия — это раздел математики, изучающий геометрические фигуры и их свойства.
Познакомимся с основными геометрическими понятиями, изучаемыми в начальной школе.
Точка
Точка — это основная и самая простая геометрическая фигура.
В геометрии точка обозначается заглавной латинской буквой или цифрой. Многие латинские буквы по написанию похожи на английские буквы.
В тексте точку обозначают следующим символом: « (·) A » — точка « А ».
Прямая
Прямая — это самая простая геометрическая фигура, которая не имеет ни начала, ни конца.
Слова «не имеет ни начала, ни конца» говорят о том, что прямая бесконечна.
Способы обозначения прямых
Способы обозначения лучей
Отрезок
Основное свойство отрезка — это его длина.
Длина отрезка — это расстояние между его концами.
В математике отрезок обозначается заглавными латинскими буквами.
Ломаная
Ломаная — это геометрическая фигура, состоящая из точек, которые соединены отрезками.
Вершины ломаной — это точки, в которых соединяются отрезки, образующие ломаную.
Звенья ломаной — это отрезки ломаной.
В математике ломаная обозначается заглавными латинскими буквами.
Чтобы найти длину ломаной, необходимо сложить длины всех её звеньев (отрезков), из которых она состоит.
KLCM = KL + LC + CM = 3 см + 2 см + 2 см = 7 см
Вот мы и познакомились с основами геометрии. Теперь мы готовы рассмотреть не менее важную геометрическую фигуру — угол.
Источник
Плоскость, прямая линия, луч
Плоскость в математике можно сравнить с другими плоскостями, которые окружают нас в повседневной жизни: школьная доска, лист бумаги, экран планшета или смартфона и т.д. На них мы можем легко обозначить точки и линии, которые мы изучали на предыдущем уроке. На школьной доске мы это делаем мелом или фломастером, на листе бумаги можем нарисовать их ручкой, карандашом, фломастером; когда мы прокручиваем окно сайта или приложения на смартфоне, мы проводим на экране пальцем линию, когда переходим по ссылкам – ставим на его плоскости точку.
Но эти примеры плоскостей из жизни имеют свои размеры и границы, они конечные, их можно измерять.
Плоскость – это воображаемая абсолютно ровная и неизменяемая поверхность, которая не имеет толщины, но обладает бесконечными длиной и шириной.
Плоскость нельзя измерять, потому что она бесконечная.
Плоскость нельзя согнуть, в каком бы положении она ни находилась.
Все объекты и фигуры, которые изучаются в курсе математики 5 класса, находятся на плоскости.
Прямая линия
Прямая линия – абсолютно ровная линия, которая длится бесконечно в обе стороны, и на всем ее протяжении не изгибается и не преломляется.
Обозначение прямой
Например, на рисунке 1 обозначены такие прямые:
Рис. 1 Обозначение прямой линии
Рис. 2 Обозначение прямой с несколькими точками
Некоторые свойства прямой
Две точки, лежащие на одной прямой, создают отрезок этой прямой.
Через две любые точки на плоскости можно провести единственную прямую.
Рис. 3 Отрезок на прямой
Две разные прямые могут пересекаться или не пересекаться.
Две прямые пересекаются в том случае, если у них есть общая точка.
Рис. 5 Пересечение прямых
Более подробно об этих и других свойствах прямой написано в уроке геометрии 7 класса.
Луч – это часть прямой, которая начинается в определенной точке и длится бесконечно в одну сторону.
Рис. 6 Деление прямой линии точкой
У луча есть начало, но нет конца. От прямой луч отличается тем, что луч бесконечно продолжается только в одну сторону.
Свое название этот математический объект получил по аналогии с лучом света, который имеет начало (источник света), но определенного конца у него нет.
Обозначение луча
Луч, как и прямую, обозначают двумя способами.
Рис. 7 Обозначение луча
На рисунке 2 приведены примеры обозначения луча:
Луч имеет второе название – полупрямая.
Рис. 8 Дополнительные друг другу и совпадающие лучи
На рисунке 8 видно, что:
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.6 / 5. Количество оценок: 18
Источник
Углы в геометрии
Угол — это геометрическая фигура, которая состоит из двух лучей и вершины.
Вершина угла — это точка, в которой два луча берут начало.
Стороны угла — это лучи, которые образуют угол.
Например: Вершина угла — точка « O ».
Стороны угла — « OA » и « OB ».
Для обозначения угла в тексте используется символ: AOB
Способы обозначения углов
Одной заглавной латинской буквой, указывающей его вершину.
Угол: O
Тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.
Угол: AOD
Называть угол можно с любого края, но НЕ с вершины.
При таком обозначении вершина угла должна всегда находиться в середине названия.
Единица измерения углов — градусы. Углы измеряют с помощью специального прибора — транспортира.
Для обозначения градусов в тексте используется символ: °
50 градусов обозначаются так: « 50° »
Виды углов
Вид угла | Размер в градусах | Пример |
---|---|---|
Прямой | Равен 90° | |
Острый | Меньше 90° | |
Тупой | Больше 90° | |
Развернутый | Равен 180° |
Два угла могут иметь одну общую сторону.
Обратите внимание на рисунок ниже. Попробуйте сосчитать и назвать все углы на изображении.
Если насчитали три угла, то вы правы. Давайте их назовём:
Источник
B = {9,14,28}
B = {3,9,14},
A = B
B = {1,2,3},
AB = {9,14}
B = {1,2,3},
AB = {9,14}
B = {1,2,3},
A ∆ B = {1,2,9,14}
B = {1,2,3},
A ⊖ B = {1,2,9,14}
принадлежит
В разделе собраны математические символы, которые невозможно корректно отобразить с помощью ввода на клавиатуре. Весь представленный набор можно разделить на несколько групп:
- знаки операций – сложение, вычитание, деление, умножение, сумма;
- символы интегралов – двойные, тройные, интеграл по объему, поверхности, с правым и левым обходом;
- знаки сравнения – больше, меньше;
- примерно равно, не равно, эквивалентно, тождественно;
- геометрические символы – отображение угла, пропорции, диаметра, перпендикуляра, параллельности, пересечения;
- геометрические фигуры — треугольники, дуги, параллелограмм, ромб;
- знак извлечения из корня, степень числа;
- для теории множеств — пустое множество, принадлежит, подмножество, объединение, пересечение;
- логические — следовательно, и, или, отрицание, равносильно;
- иные символы – бесконечность, существует, принадлежит, оператор набла, троеточия для матриц, скобки потолков числа, для теории групп.
Примеры использования
Функция параболы: ƒ(x)=ax²+bx+c (a≠0)
Определение исключающего «ИЛИ»: A⊕B :⇔ (A⋁B) ∧¬ (A∧B)
Скорость, с которой упадет тело с высоты h: V=√̅2̅g̅h̅
Использование данных иконок – единственный вариант корректного отображения ряда математических символов на сайте или в сообщении в любой операционной системе конечного пользователя. Достаточно лишь скопировать закодированный значок. Применение изображений для этих целей значительно усложняет процесс, требует подгонки при разработке и наполнении интернет-ресурса. Кроме того, медиа-контент занимает большой объем дискового пространства.
Математические символы подойдут для публикаций в социальных сетях, создания сообщений в чатах и форумах, разработки интернет-страниц.
Математика, как язык всех наук, не может обходиться без системы записи. Многочисленные понятия, и операторы обрели своё начертание по мере развития этой науки. Так как в стандартные алфавиты эти символы не входят, напечатать их с клавиатуры может оказаться проблематично. Отсюда можно скопировать и вставить.
Консорциум Юникода включил в таблицу множество различных знаков. Если тут нет того, что нужно, воспользуйтесь поиском по сайту или посмотрите в разделах:
Математические операторы 2200–22FF
Разные математические символы — A 27C0–27EF
Разные математические символы — B 2980–29FF
Дополнительные математические операторы 2A00–2AFF
Буквы для формул:
Греческое и коптское письмо 0370–03FF
Математические буквы и цифры 1D400–1D7FF
Степени и дроби
Для степеней числа используются Подстрочные и надстрочные цифры. Мы собрали их в отдельный набор. В этом же наборе собраны дроби.
Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык, составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).
Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:
группа I — обозначения геометрических фигур и отношений между ними;
группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.
Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.
Группа I
СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ
А. Обозначение геометрических фигур
1. Геометрическая фигура обозначается — Ф.
2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:
А, В, С, D, … , L, М, N, …
1,2,3,4,…,12,13,14,…
3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:
а, b, с, d, … , l, m, n, …
Линии уровня обозначаются: h — горизонталь; f— фронталь.
Для прямых используются также следующие обозначения:
(АВ) — прямая, проходящая через точки А а В;
[АВ) — луч с началом в точке А;
[АВ] — отрезок прямой, ограниченный точками А и В.
4. Поверхности обозначаются строчными буквами греческого алфавита:
α, β, γ, δ,…,ζ,η,ν,…
Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:
α(а || b) — плоскость α определяется параллельными прямыми а и b;
β(d1 d2gα) — поверхность β определяется направляющими d1 и d2 , образующей g и плоскостью параллелизма α.
5. Углы обозначаются:
∠ABC — угол с вершиной в точке В, а также ∠α°, ∠β°, … , ∠φ°, …
6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:
— величина угла АВС;
— величина угла φ.
Прямой угол отмечается квадратом с точкой внутри
7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками — ||.
Например:
|АВ| — расстояние между точками А и В (длина отрезка АВ);
|Аа| — расстояние от точки А до линии a;
|Аα| — расстояшие от точки А до поверхности α;
|аb| — расстояние между линиями а и b;
|αβ| расстояние между поверхностями α и β.
8. Для плоскостей проекций приняты обозначения: π1 и π2,
где π1 — горизонтальная плоскость проекций;
π2 —фрюнтальная плоскость проекций.
При замене плоскостей проекций или введении новых плоскостей последние обозначают π3, π4 и т. д.
9. Оси проекций обозначаются: х, у, z, где х — ось абсцисс; у — ось ординат; z — ось аппликат.
Постояшную прямую эпюра Монжа обозначают k.
10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:
А’, В’, С’, D’, … , L’, М’, N’, горизонтальные проекции точек; А», В», С», D», … , L», М», N», … фронтальные проекции точек; a’ , b’ , c’ , d’ , … , l’, m’ , n’ , —
горизонтальные проекции линий; а» ,b» , с» , d» , … , l» , m» , n» , … фронтальные проекции линий; α’, β’, γ’, δ’,…,ζ’,η’,ν’,… горизонтальные проекции поверхностей;
α», β», γ», δ»,…,ζ»,η»,ν»,…
фронтальные проекции поверхностей.
11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α, подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.
Так: h0α — горизонтальный след плоскости (поверхности) α;
f0α — фронтальный след плоскости (поверхности) α.
12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.
Например: Ha — горизонтальный след прямой (линии) а;
Fa — фронтальный след прямой (линии ) a.
13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,…, n:
А1, А2, А3,…,Аn;
a1, a2, a3,…,an;
α1, α2, α3,…,αn;
Ф1, Ф2, Ф3,…,Фn и т. д.
Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:
A0, B0, С0, D0, …
Аксонометрические проекции
14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:
А0, В0, С0, D0, …
10, 20, 30, 40, …
a0, b0, c0, d0, …
α0, β0, γ0, δ0, …
15. Вторичные проекции обозначаются путем добавления верхнего индекса 1 :
А1 0, В1 0, С1 0, D1 0, …
11 0, 21 0, 31 0, 41 0, …
a1 0, b1 0, c1 0, d1 0, …
α1 0, β1 0, γ1 0, δ1 0, …
Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.
№ по пор. | Обозначение | Содержание | Пример символической записи |
---|---|---|---|
1 | ≡ | Совпадают | (АВ)≡(CD) — прямая, проходящая через точки А и В, совпадает с прямой, проходящей через точки С и D |
2 | ≅ | Конгруентны | ∠ABC≅∠MNK — угол АВС конгруентен углу MNK |
3 | ∼ | Подобны | ΔАВС∼ΔMNK — треугольники АВС и MNK подобны |
4 | || | Параллельны | α||β — плоскость α параллельна плоскости β |
5 | ⊥ | Перпендикулярны | а⊥b — прямые а и b перпендикулярны |
6 | Скрещиваются | с d — прямые с и d скрещиваются | |
7 | Касательные | t l — прямая t является касательной к линии l. βα — плоскость β касательная к поверхности α |
|
8 | → | Отображаются | Ф1→Ф2 — фигура Ф1 отображается на фигуру Ф2 |
9 | S | Центр проецирования. Если центр проецирования несобственная точка, то его положение обозначается стрелкой, указывающей направление проецирования |
— |
10 | s | Направление проецирования | — |
11 | P | Параллельное проецирование | рsα Параллельное проецирование — параллельное проецирование на плоскость α в направлении s |
№ по пор. | Обозначение | Содержание | Пример символической записи | Пример символической записи в геометрии |
---|---|---|---|---|
1 | M,N | Множества | — | — |
2 | A,B,C,… | Элементы множества |
— | — |
3 | { … } | Состоит из … | Ф{A, B, C,… } | Ф{A, B, C,… } — фигура Ф состоит из точек А, В,С, … |
4 | ∅ | Пустое множество | L — ∅ — множество L пустое (не содержит элементов ) | — |
5 | ∈ | Принадлежит, является элементом | 2∈N (где N — множество натуральных чисел) — число 2 принадлежит множеству N |
А ∈ а — точка А принадлежит прямой а (точка А лежит на прямой а ) |
6 | ⊂ | Включает, cодержит | N⊂М — множество N является частью (подмножеством) множества М всех рациональных чисел |
а⊂α — прямая а принадлежит плоскости α (понимается в смысле: множество точек прямой а является подмножеством точек плоскости α) |
7 | ∪ | Объединение | С = A U В — множество С есть объединение множеств A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5} |
ABCD = [AB] ∪ [ВС] ∪ [CD] — ломаная линия, ABCD есть объединение отрезков [АВ], [ВС], [CD] |
8 | ∩ | Пересечение множеств | М=К∩L — множество М есть пересечение множеств К и L (содержит в себе элементы, принадлежащие как множеству К, так и множеству L). М ∩ N = ∅— пересечение множеств М и N есть пустое множество (множества М и N не имеют общих элементов) |
а = α ∩ β — прямая а есть пересечение плоскостей α и β а ∩ b = ∅ — прямые а и b не пересекаются (не имеют общих точек) |
№ по пор. | Обозначение | Содержание | Пример символической записи |
---|---|---|---|
1 | ∧ | Конъюнкция предложений; соответствует союзу «и». Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны |
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия), состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β |
2 | ∨ | Дизъюнкция предложений; соответствует союзу «или». Предложение (p∨q) истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба). |
— |
3 | ⇒ | Импликация — логическое следствие. Предложение р⇒q означает: «если р, то и q» | (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой |
4 | ⇔ | Предложение (р⇔q) понимается в смысле: «если р, то и q; если q, то и р» | А∈α⇔А∈l⊂α. Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости. Справедливо также и обратное утверждение: если точка принадлежит некоторой линии, принадлежащей плоскости, то она принадлежит и самой плоскости |
5 | ∀ | Квантор общности, читается: для всякого, для всех, для любого. Выражение ∀(x)P(x) означает: «для всякого x: имеет место свойство Р(х) « |
∀( ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов при вершинах равна 180° |
6 | ∃ | Квантор существования, читается: существует. Выражение ∃(х)P(х) означает: «существует х, обладающее свойством Р(х)» |
(∀α)(∃a)[a⊄α∧a||α].Для любой плоскости α существует прямая а, не принадлежащая плоскости α и параллельная плоскости α |
7 | ∃1 | Квантор единственности существования, читается: существует единственное (-я, -й)… Выражение ∃1(x)(Рх) означает: «существует единственное (только одно) х, обладающее свойством Рх» |
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a, проходящая через эти точки. |
8 | (Px) | Отрицание высказывания P(x) | аb(∃α)(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их |
9 | Отрицание знака | [AB]≠[CD] —отрезок [АВ] не равен отрезку [CD].а?b — линия а не параллельна линии b |
,,э,, только в другую сторону
Ниже представлена таблица с основными математическими символами и знаками, которые используются в геометрии с 7 класса и старше.
Знак | Название | Значение/описание | Пример |
∠ | угол | фигура, состоящая из двух лучей и вершины | ∠ABC = 30° |
острый угол | угол от 0 до 90 градусов | ∠AOB = 60° | |
прямой угол | угол, равный 90 граусам | ∠AOB = 90° | |
тупой угол | угол от 90 до 180 градусов | ∠AOB = 120° | |
развернутый угол | угол, равный 180 градусам | ∠AOB = 180° | |
° (или deg) |
градус | единица измерения угла, равна 1/360 окружности | 45° |
′ | минута | единица измерения угла, 1° = 60′ | α = 70°59′ |
″ | секунда | единица измерения угла, 1′ = 60″ | α = 70°59′59″ |
линия | бесконечная прямая без начала и конца | ||
отрезок | участок на прямой между точками A и B | ||
луч | бесконечная прямая, имеющая начало в точке A, но не имеющая конца | ||
дуга | дуга, образованная между точками A и B | ||
⊥ | перпендикулярность | линии (прямые), расположенные под углом 90° по отношению друг к другу | AC ⊥ BC |
|| | параллельность | непересекающиеся прямые (линии) | AB || CD |
∩ | пересечение | множество одинаковых элементов, принадлежащих как множеству A, так и B | A ∩ B |
∈ / ∉ | принадлежность/ непринадлежность |
элемент является/не является элементом заданного множества | a ∈ S |
≅ | конгуэнтность | эквивалентность геометрических форм и размеров | ∆ABC ≅ ∆XYZ |
~ | подобие | та же форма, но разные размеры | ∆ABC ~ ∆XYZ |
Δ | треугольник | фигура треугольника | ΔABC ≅ ΔBCD |
|x-y| | дистанция | дистанция между точками X и Y | | x-y | = 5 |
π | константа «Пи» | отношение длины окружности к диаметру круга, π = C/d | π = 3.141592654… |
рад (rad) или c |
радиан | единица измерения угла | 360° = 2π c |
microexcel.ru
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Как в геометрии пишется знак принадлежности? …» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Аня Колесникова
Ученик
(222),
закрыт
10 лет назад
Лучший ответ
Maxim
Гений
(71098)
10 лет назад
Этот знак используется не только в геометрии и изображается ∩
Остальные ответы
РОМАН ВОРОНЦОВ
Профи
(759)
10 лет назад
∩ знак пересечения
Мери теккозян
Ученик
(136)
6 лет назад
∩ знак
Хо Минхо
Профи
(690)
5 лет назад
∩ — знак пересечения
Мария Стасевич
Ученик
(135)
3 года назад
Перевёрнутая U
Некто никто
Профи
(543)
3 года назад
Этот знак используется не только в геометрии и обозначается ∩
Ҝρนĉ⍡นӈα
Гуру
(3130)
3 года назад
∩
Mihail Dogadov
Ученик
(112)
1 год назад
∩
13
1 ответ:
0
0
Мне кажется так,просто я ещё не изучаю геометрию.
Читайте также
жалко не могу скинуть фотку.
так что на словах: биссектрис-т.е угол по 45град значит катеты равны по 2 см
гипотенузу найти по т.пифагора. 2под корнем 2
периметр: 4+2под корнем 2
Задача имеет два случая, но , что интересно, единственное решение. Значит, случай все же один. Но все равно будем считать как два, т.к рисунков «типа два»
Решение в файле.
44ЕВ будет примерно в Сталинграде
П4=10
В тр-ке ABC: AC=CB=10см, угол а=30 градусов, BK- перпендикуляр у плоскости треугольника и равен 5 см найти расстояние от K до AC
рассмотрим образованную пирамиду АВСК, КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС, По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН.
рассмотрим основание пирамиды — треугольник АВС, Он равнобедренный ас=ВС=10 с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ — СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ — прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см). По теореме Пифагора найдем второй катет СМ:
CM=sqrt(AC2-AM2)
CM=sqrt(100-25)=sqrt75=5sqrt3
BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны:
АН/АМ=НВ/МС=АВ/АС
НВ/МС=АВ/АС
НВ=МС*АВ/АС
НВ=5*(2*5sqrt3)/10=5sqrt3
Треугольник КНВ — прямоугольный (КВ перпендикулярно плоскости АВС). По теореме Пифагора найдем КН:
KH2=KB2+HB2
KH=sqrt(25+75)=sqrt100=10 (см)
Площадь параллелограма можно найти по формуле S= ABумножить наВС и на sinуглаВ. S=16*40*sin150. sin150=sin30=1/2. S=320
Страницы работы
Содержание работы
Чесноков Е. А.
МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ
ОДНОЙ ПЕРЕМЕННОЙ
Северо – Западная академия государственной службы
Санкт – Петербург, 2008
Введение
Настоящее учебное пособие посвящено …
1. Сокращенные обозначения в математике
В математической литературе используются ряд символов (знаков), призванных
сократить запись наиболее часто встречающихся в математике предложений.
Использование математических символов позволяет значительно ускорить процесс
конспектирования, а также существенно сократить время записи решения задач.
Приведем некоторые наиболее часто встречающиеся символы:
— знак принадлежности: означает, что элемент принадлежит множеству
— знак подмножества: означает, что множество является подмножеством (составной частью)
множества , иначе говоря все элементы, принадлежащие , принадлежат также и
— знак допущения, заменяет слова
«предположим», «допустим»
— знак существования, как
правило заменяет слово «существует»
— знак произвольности, обычно
заменяет слово «любой»
— знак единственности,
используется вместо слова «единственный»
— знак окрестности (некоторой
прилегающей области)
— знак следствия: означает, что из утверждения следует утверждение , то есть при выполнении обязательно будет выполняться и
— знак эквивалентности: означает, что утверждения и эквивалентны
(равнозначны), то есть и выполняются
или не выполняются одновременно
— знак тождественного равенства:
например, подчеркивает, что равенство имеет место
при всех , в то время как уравнение выполняется только при
— знак приближенного (неточного)
равенства
— знак рассмотрения (глаз),
заменяет слово «рассмотрим»
— знак, заменяющий слова «такое,
что»
Перечеркнутый символ означает отрицание, например:
— «не равно»
— «не принадлежит»
Пример 1: Предложение «допустим, что существует единственное решение уравнения » можно коротко записать как «»
Пример 2: Предложение «рассмотрим некоторую окрестность точки , такую, что для любого , принадлежащего этой окрестности,
выполняется неравенство » эквивалентно записи «».
2. Элементы математической логики
Доказательства различных математических утверждений в конечном счете
основываются на логических связях между некоторыми высказываниями, каждое из
которых может быть оценено как истинное или ложное. По сути дела,
доказательство некоторого неочевидного утверждения сводится к тому, что это
утверждение раскладывается в цепь логически связанных элементарных
высказываний, каждое из которых без труда может быть оценено как истинное или
ложное. Один раз тщательно проверенная логическая цепь может использоваться в
дальнейшем (например, в виде теоремы) как составная часть более длинной цепи,
соответствующей некоторому более сложному утверждению. В качестве примера
рассмотрим два наиболее часто встречающихся способа математических
доказательств: доказательство от противного и метод математической индукции.
Определение 1: Утверждение, состоящее в том, что утверждение ложно ( не
имеет места), называют отрицанием и обозначают . Отметим, что .
Определение 2: Логическим сложением утверждений ()
называют утверждение, состоящее в том, что по крайней мере одно из двух
утверждений ( или ) истинно.
Определение 3: Логическим умножением утверждений ()
называют утверждение, состоящее в том, что оба утверждения ( и )
истинны.
Определение 4: Импликацией (логическим следствием) называют утверждение, состоящее в том, что
если утверждение истинно, то и утверждение тоже истинно (если ложно,
то импликация считается истинной), называют условием, — заключением.
Определение 5: Утверждения и называют взаимно обратными.
Определение 6: Произведение прямого и обратного утверждений называют утверждением эквивалентности
и обозначают . Утверждение эквивалентности означает, что
либо и оба
истинны, либо они оба ложны, при этом не имеет значения какое из двух
утверждений делать.
Определение 7: Утверждения и называют взаимно противоположными.
Теорема 1:
И то и другое утверждения являются ложными только
в одном случае: когда — истинное, а — ложное, в остальных случаях оба
утверждения истинны. Ч.Т.Д.
Теорема 2: Прямое и противоположное обратному утверждения эквивалентны
(равносильны):
Действительно, из Т1 следует: Ч.Т.Д.
На непосредственном использовании Т2 основан
способ доказательства, который носит название доказательства от противного:
делается предположение, которое отрицает следствие импликации (теоремы), после
чего показывается, что данное предположение приводит к отрицанию условия
импликации, то есть к логическому противоречию, откуда следует вывод об
истинности следствия импликации. Другими словами, вместо прямого утверждения доказывается утверждение противоположное
обратному .
Пример 1: Докажем, что число иррациональное, то есть
не может быть представлено в виде несократимой дроби .
Условие теоремы: ( — несократимая дробь, то есть натуральные
числа и не
содержат в своем составе общих простых чисел).
Следствие теоремы:
Предположим, что следствие теоремы ложно:
Похожие материалы
- Математический анализ функции одной переменной: Учебное пособие. Часть 2 (Производные высших порядков. Ряд Тейлора. Раскрытие неопределенностей. Сходимость ряда Тейлора. Ряд Лорана)
- Определение степени с дробным показателем. Область определения неравенства
- Комбинированные уравнения. Указания для решения контрольных тестов
Информация о работе
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание — внизу страницы.
Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Алфавиты, номиналы, коды / / Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… / / Таблица математических символов. Сокращённая запись математического текста, математические обозначения. Математический алфавит. Математическая скоропись. Негламурный эксклюзив от Проекта DPVA.info
Таблица математических символов. Сокращённая запись математического текста, математические обозначения. Математический алфавит. Математическая скоропись. Негламурный эксклюзив от Проекта DPVA.info
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||